
SE 292 (3:0)
High Performance Computing

Aug. 2014

R. Govindarajan (govind@serc)
Yogesh Simmhan (simmhan@serc)

2

Syllabus
Introduction to computer systems: Processors, Memory, I/O Devices; Cost,
timing and scale (size) models; Program Execution: Machine level view of a
program; typical RISC instruction set and execution; Pipelining. Performance
issues and Techniques; Caching and Virtual Memory. Temporal and spatial
locality. Typical compiler optimizations. Identifying program bottlenecks –
profiling, tracing. Simple high level language optimizations – locality
enhancement, memory disambiguation. Choosing appropriate computing
platforms: benchmarking, cost-performance issues. [8 - weeks]

OS Concepts: Process Management, System Calls, Memory Management, and
I/O. Parallel Computing: Introduction to parallel architectures and
interconnection networks, communication latencies. Program parallelization;
task partitioning and mapping; data distribution; message passing;
synchronization and deadlocks. Distributed memory programming using
MPI/PVM. Shared memory parallel programming. Multithreading. [8 weeks]

3

Course Objectives
 Understand computer systems (processor

architecture and memory subsystem (incl.
cache) from a programmer’s viewpoint to
maximize performance of his/her appln.

 Understand underlying Operating Systems
concepts (programmer’s viewpoint) – process,
memory management, file system, …

 Understand parallel processing systems
(programmer’s viewpoint) and Parallel Prog.

 Improve Application Performance

4

Reference Material

 Bryant and O’Hallaron, Computer Systems: A
Programmer’s Perspective. Pearson Education
(2003)

Dowd, High Performance Computing, O’Reilly (1993)
 Selected readings from other sources

 Silberschatz, Galvin and Gagne, Operating System
Concepts (8th Edition), John Wiley & Sons.

 Ananth Grama, Anshul Gupta, George Karypis, Vipin
Kumar, Introduction to Parallel Computing. Addison
Wesley, 2003.

 David Culler, Jaswant Singh, Parallel Computer
Architecture. Morgan Kauffman

5

Course Conduct
 Lectures Tuesday, Thursday
 Official 8.00 a.m. – 9.30 a.m.

 Assignments & Projects : 25%
 Midterms : 11/9, 14/10, 11/11 30%
 Final Exam : Dec ?? 45%

6

What is a Computer Program?
 Description of algorithms and data structures
 Programming language: standard notation for

writing programs
 Examples: C, Java, assembly language,

machine language
 Need for program translators

7

What are the Steps in gcc?
% gcc hello.c

hello.c a.out
gcc

`source file’ `object file’

8

Steps in gcc and Intermediate Files

cpphello.c

Lib. files

cc1

as

ld

hello.s

hello.o

a.out

9

Steps in gcc
 cpp, cc1, as, ld

 Temporary files generated and used
 a.out well defined format
 Contents?

 Program (machine instructions)
 Data values (values, size of arrays)
 Other info needed for
 execution
 relocation
 debugging

10

Example
#include<stdio.h>
#include<math.h>
float arr[100];
int size=100;
void main()
{

int i;
float sum;
for(i=0, sum=0.0; i<size; i++)
{

arr[i] = sqrt(arr[i]);
sum += arr[i];

}
printf ("sum is %f\n",sum);

}

11

Object file format

Symbol Table

Initialized Data

Machine Code

Header Info

Reloc. Info

12

Format of the Object File
Header

Info.
0 94 MachineCode Size

4 4 Init. Data size

8 400 Uninit. Data size

12 60 Symbol Table

16 ?? Reloc. Info

Machine
Code

20 ?? Start of main; Code
for First intrn.

… …

66 ?? code for call sqrt

13

Format of the Object File
Init. Data 114 100 -- Initialized Data

Symbol
Table

118 XX size Name of symbol
“size” and its addr..

130 YY arr Name of symbol “arr”
and its addr..

142 ZZ main Name of symbol
“main” and its addr..

154 ?? Sqrt Name of symbol “sqrt”
and its addr..

166 ?? printf Name of symbol
“printf” and its addr..

Reloc. Info 178 ?? Info. On offsets at which ext.
vars are called

14

Linking Multiple Modules

Symbol Table

Initialized Data

Func 1
…
Call … // func2
…
Use x

Header Info

Reloc. Info

Func 2
…

return…

Header Info

Symbol Table

Initialized Data

Reloc. Info

15

Symbol Table

Initialized Data

Func 1
…
Call … // func2
…
Use x

Header Info

Reloc. Info

Func 2
…

return…

Header Info

Symbol Table

Initialized Data

Reloc. Info

Linking Multiple Modules

Func 1
…
Call yy
…
Use X
Func 2
….

Combined
Header Info

Symbol Table

Combined
Initialized Data

Reloc. Info

16

Process’ Address Space
 Process: A program in

execution, containing
 code
 data (initialized and

uninitialized)
 heap (for dynamically

allocated data)
 stack (for local variables,

function parameters, …)

Code (read only)

Init. Data

Uninit. Data

Heap

Stack

17

Function Call and Return
 Transfer of control from point of function call

in the caller to start of called function (callee)
 Execution of function body until point of

return
 Transfer of control back to just after the point

of call in the caller
 Parameter passing: by value, by reference,

etc
 Formal parameters and actual parameters
 Function local variables

18

Function Call and Return

Local Vars of main

Parameters of func1

Ret. addr. in main

Prev. FP contents

Local vars. Of func1
SP

FP

19

Homework
 Find out details of a.out format in your machine
 What is the size of a.out from hello.c?
 How is the old SP value recovered on a function

return?
 Where are different types of variables (automatic,

static, global, dynamic variables) stored?

20

Program Data: Different Kinds
 Constant vs variable
 Basic vs structured
 Of different types
 Character
 Integer (unsigned, signed)
 Real
 Others (boolean, complex, …)

21

Of Different Lifetimes
 Execution time of program
 Initialized/uninitialized data
 Must be indicated in executable file

 Explicit creation until deletion
 Dynamic memory allocation
 malloc, free
 Why and where?

 During execution of a function
 Memory is Static/Heap/Stack allocated

22

How is Data Represented?
 Binary, Bit (b), Byte (B), K, M, G, T
 Character data representation: ASCII code
 7 bit code, with an added parity bit
 (HW: Write a C program to generate the ASCII

code)

23

Integer Data
 Signed vs Unsigned integer
 Representing a signed integer

 Sign-magnitude representation

xxxxx onn 1221 ...


represents the value







2

0
2)1(1

n

i

i

ixxn

least significant bit

24

2s Complement Representation

This image cannot currently be displayed.

xxx nn 021
...



The n bit quantity

represents the signed integer value











2

0

1

1 22
n

i

i

i

n

n xx

Hex
Rep.

Bin.
Rep.

Dec.
Val.

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 -8
9 1001 -7
A 1010 -6
B 1011 -5
C 1100 -4
D 1101 -3
E 1110 -2
F 1111 -1

25

Which Representation is Better?
 Considerations
 speed of arithmetic (addition, multiplication)
 comparison
 range of values that can be represented

 2s complement is widely used

26

Example: Signed integer
What is the Decimal

value of 0xED7E

1110 1101 0111 1110
Invert all bits and Add 1
0001 0010 1000 0001

1

0001 0010 1000 0010

which is 4738 decimal

Answer: -4738 decimal

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

What is the 2s compl.
Rep. for -4738
4738 is 0x1282
0001 0010 1000 0010
Invert all bits and Add 1
1110 1101 0111 1101

1

1110 1101 0111 1110

0xED7E
which is the rep. -4738

27

Real Data: Floating Point Representation

IEEE Floating Point Standard (IEEE 754)
32 bit value with 3 components
 s (1 bit sign)
 e (8 bit exponent) – excess 127 notation;

range -126 to 127
 f (23 bit fraction)

represents the value
1272.1)1( es f

s exponent fraction

28

An Example

Consider the value 0.625

 Equal to 0.101 in binary

 s: 0, e: 126, f: 010…000

 In 32 bits,
0 01111110 0100000000000000000000

1201.1 

29

More on IEEE Floating Point
 Why is the exponent represented in this way?

(excess-127 representation for signed
integers)

 Normalized representation
 Special forms
 Denormalized values (exp = 0; f = non-zero)
 Zero (exp = 0; f = 0)
 Infinity (exp = 255; f = 0)
 NaN (exp = 255; f = non-zero)

30

More on IEEE Floating Point
 Smallest positive number (in normalized form)

(1+0) * 2 -126 = 1.2 * 10 -38

 Largest positive number (in normalized form)
(1+1) * 2 127 = 3.4 * 10 38

 Smallest postive number in denormalized
representation
2 –23 * 2 –126 = 1.4 * 10 -45

(Implicit exponent of 2 –126 for denorm values)
 Denorm form for representing numbers from

1.4 * 10 -45 to 1.2 * 10 -38

31

Floating Point Representation: Summary
0

1.
4*

10
 -4

5

1.
2*

10
 -3

8

3.
4*

10
 38

D
en

or
m

.
Fo

rm

N
or

m
.

Fo
rm

What about Double Precision FP?
IEEE Double Precision Floating Point

Representation (IEEE 754)
64 bit value with 3 components
 s (1 bit sign)
 e (11 bit exponent) – excess 1023 notation;

range -1022 to 1023
 f (52 bit fraction)

represents the value

32

10232.1)1( es f

33

Homework
1. Read B&O Chapter 2
2. B&O 2.43
3. B&O 2.46
4. B&O 2.49
5. B&O 2.53
6. Write a C program which checks whether the

machine it is running on supports IEEE FP
representation and arithmetic on NaN, denormals
and infinity.

7. Write a C program to find the machine epsilon.

34

Assignments (so far)
 Find out details of a.out format for any C program.
 Write a C program to identify in which region the

following types of variables are stored:
(a) global (b) local; (c) static, and (d) dynamically
allocated generate the ASCII code)

 Write a C program which checks whether the
machine it is running on supports IEEE FP
representation and arithmetic on NaN, denormals
and infinity

 Write a C program to find the machine epsilon.

