
1

SE-292 High Performance Computing
Memory Hierarchy

R. Govindarajan

govind@serc

2

Memory Hierarchy

2

3

Memory Organization
Memory hierarchy
 CPU registers

 few in number (typically 16/32/128)
 subcycle access time (nsec)

 Cache memory
 on-chip memory
 10’s of KBytes (to a few MBytes) of locations.
 access time of a few cycles

 Main memory
 100’s of MBytes storage
 access time several 10’s of cycles

 Secondary storage (like disk)
 100’s of GBytes storage
 access time msec

4

Cache Memory; Memory Hierarchy

 Recall: In discussing pipeline, we assumed
that memory latency will be hidden so that it
appears to operate at processor speed

 Cache Memory: HW that makes this happen
 Design principle: Locality of Reference

 Temporal locality: least recently used objects are
least likely to be referenced in the near future

 Spatial locality: neighbours of recently reference
locations are likely to be referenced in the near
future

3

5

Cache Memory Exploits This

Cache: Hardware structure that provides
memory contents the processor references

 directly (most of the time)

 fast

CacheCPU Main Memory

address

data

6

Cache Design
Cache

address A

Fast
Memory

`Do I Have It’?
Logic

Lookup Logic

Table of
`Addresses
I Have’

Cache
Directory

Cache RAM

Typical size: 32KB

4

7

How to do Fast Lookup?

• Search Algorithms

• Hashing: Hash table, indexed into using a hash
function

• Hash function on address A. Which bits?

address A

For a small program, everything would index into the same place (collision)
A and neighbours possibly differ only in these bits; should be treated as one

msbs lsbs

8

Summing up

 Cache organized in terms of blocks, memory
locations that share the same address bits
other than lsbs. Main memory too.

 Address used as

block
offset

Index into
directorytag

5

9

How It Works

CPU

Main Memory

Cache Memory

.

.

.

Case 1: Cache hit

: Direct Mapping

Same: Hit

address

tag index offset

Case 2: Cache miss

Not Same: Miss

.

.

.

10

Cache Terminology

 Cache hit: A memory reference where the
required data is found in the cache

 Cache Miss: A memory reference where the
required data is not found in the cache

 Hit Ratio: # of hits / # of memory references

 Miss Ratio = (1 - Hit Ratio)

 Hit Time: Time to access data in cache

 Miss Penalty: Time to bring a block to cache

6

11

Cache Organizations
1. Where can a block be placed in the cache?
 Direct mapped, Set Associative

2. How to identify a block in cache?
 Tag, valid bit, tag checking hardware

3. Replacement policy?
 LRU, FIFO, Random …

4. What happens on writes?
 Hit: When is main memory updated?

 Write-back, write-through
 Miss: What happens on a write miss?

 Write-allocate, write-no-allocate

12

Block Placement: Direct Mapping
 A memory block goes to the unique cache block

(memory block no.) mod (# cache blocks)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

14

6

0
1
2
3
4
5
6
7

614

Cache

memory block number

7

13

Identifying Memory Block (DM Cache)
Assume 32-bit address space, 16 KB cache,

32byte cache block size.

Offset field -- to identify bytes in a cache line
Offset Bits = log (32) = 5 bits

No. of Cache blocks = 16KB/ 32 = 512
Index Bits = log (522) = 5 bits

Tag -- identify which memory block is in this
cache block -- remaining bits (= 18bits)

Tag
18 bits

Index
9 bits

Offset
5 bits

14

Accessing Block (DM Cache)

Tag V D

=

AND Cache Hit

Data

Tag
18 bits

Index
9 bits

Offset
5 bits

8

15

Block Placement: Set Associative
 A memory block goes to unique set, and

within the set to any cache block

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7Set 3

Set 2

Set 0

Set 1

3

7

11

15

7
15

memory block number

16

Identifying Memory Block
(Set Associative Cache)

Assume 32-bit address space, 16 KB cache, 32byte

cache block size, 4-way set-associative.

Offset field -- to identify bytes in a cache line
Offset Bits = log (32) = 5 bits

No. of Sets = Cache blocks / 4 = 512/4 = 128
Index Bits = log (128) = 7 bits

Tag -- identify which memory block is in this cache
block -- remaining bits (= 20 bits)

Tag
20 bits

Index
7 bits

Offset
5 bits

9

17

Accessing Block (2-w Set-Associative)

OR

Cache Hit
Data

Tag
19 bits

Index
8 bits

Offset
5 bits

Tag V D

Tag V D

=

=

18

Block Replacement

 Direct Mapped: No choice is required

 Set-Associative: Replacement strategies
 First-In-First-Out (FIFO)

 simple to implement

 Least Recently Used (LRU)

 complex, but based on (temporal) locality,
hence higher hits

 Random

 simple to implement

10

19

Block Replacement…
•Hardware must keep track of LRU information

•Separate valid bits for each word (or sub-block) of
cache can speedup access to the required word on a
cache miss

Data
OR

Cache
Hit

Tag
19 bits

Index
8 bits

Offset
5 bits

Tag VD

=

=

L

Tag VDL

4 bits

20

Write Policies

When is Main Memory Updated on Write Hit?

 Write through: Writes are performed both in
Cache and in Main Memory

+ Cache and memory copies are kept consistent

-- Multiple writes to the same location/block cause
higher memory traffic

-- Writes must wait for longer time (memory write)

Solution: Use a Write Buffer to hold these write
requests and allow processor to proceed
immediately

11

21

Write Policies…

 Write back: writes performed only on cache.
Modified blocks are written back in memory
on replacement

o Need for dirty bit with each cache block

+ Writes are faster than with write through

+ Reduced traffic to memory

-- Cache & main memory copies are not always the same

-- Higher miss penalty due to write-back time

22

Write Policies…

What happens on a Write Miss?
 Write-Allocate: allocate a block in the cache and

load the block from memory to cache.

 Write-No-Allocate: write directly to main memory.

 Write allocate/no-allocate is orthogonal to
write-through/write-back policy.
 Write-allocate with write-back

 Write-no-allocate with write-through: ideal if
mostly-reads-few-writes on data

12

23

What Drives Computer Architecture?

Year

20
00

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

19
82

Processor
60%/yr.
(2X/1.5yr)

Memory
9%/yr.
(2X/10
yrs)

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

“Moore’s Law”

1

10

100

1000

DRAM

CPU

24

Cache and Programming
 Objective: Learn how to assess cache related

performance issues for important parts of our
programs

 Will look at several examples of programs
 Will consider only data cache, assuming

separate instruction and data caches
 Data cache configuration:
 Direct mapped 16 KB write back cache with 32B

block size

Offset: 5bIndex: 9bTag : 18b

13

25

Example 1: Vector Sum Reduction

double A[2048]; sum=0.0;

for (i=0; i<2048, i++)

sum = sum +A[i];

 To do analysis, must view program close to
machine code form (to see loads/stores)

Loop: FLOAD F0, 0(R1)

FADD F2, F0, F2

ADDI R1, R1, 8

BLE R1, R3, Loop

26

Example 1: Vector Sum Reduction

• To do analysis:
• Observe loop index i, sum and &A[i] are

implemented in registers and not load/stored
inside loop

• Only A[i] is loaded from memory

• Hence, we will consider only accesses to array
elements

14

27

Example 1: Reference Sequence
 load A[0] load A[1] load A[2] … load A[2047]
 Assume base address of A (i.e., address of

A[0]) is 0xA000, 10 10 0000 000 0 0000
 Cache index bits: 100000000 (value = 256)

 Size of an array element (double) = 8B
 So, 4 consecutive array elements fit into each

cache block (block size is 32B)
 A[0] – A[3] have index of 256

 A[4] – A[7] have index of 257 and so on

100000000 00000
100000000 01000
100000000 10000
100000000 11000

100000001 00000
100000001 01000
100000001 10000
100000001 11000

28

Example 1: Cache Misses and Hits

A[0] 0xA000 256 Miss Cold start

A[1] 0xA008 256 Hit

A[2] 0xA010 256 Hit

A[3] 0xA018 256 Hit

A[4] 0xA020 257 Miss Cold start

A[5] 0xA028 257 Hit

A[6] 0xA030 257 Hit

A[7] 0xA038 257 Hit

..

..

A[2044] 0xDFE0 255 Miss Cold start

A[2045] 0xDFE8 255 Hit

A[2046] 0xDFF0 255 Hit

A[2047] 0xDFF8 255 Hit

Hit ratio of our loop is
75% -- there are 1536
hits out of 2048 memory
accesses

This is entirely due to
spatial locality of
reference.

If the loop was preceded
by a loop that accessed
all array elements, the hit
ratio of our loop would be
100%, 25% due to
temporal locality and 75%
due to spatial locality

Cold start miss: we
assume that the cache is
initially empty. Also called
a Compulsory Miss

A[0] 0xA000 256

A[1] 0xA008 256

A[2] 0xA010 256

A[3] 0xA018 256

A[4] 0xA020 257

A[5] 0xA028 257

A[6] 0xA030 257

A[7] 0xA038 257

..

..

A[2044] 0xDFE0 255

A[2045] 0xDFE8 255

A[2046] 0xDFF0 255

A[2047] 0xDFF8 255

15

29

Example 1 with double A[4096]
Why should it make a difference?

 Consider the case where the loop is preceded by
another loop that accesses all array elements in
order

 The entire array no longer fits into the cache –
cache size: 16KB, array size: 32KB

 After execution of the previous loop, the second half
of the array will be in cache

 Analysis: our loop sees misses as we just saw

 Called Capacity Misses as they would not be misses
if the cache had been big enough

30

Example 2: Vector Dot Product
double A[2048], B[2048], sum=0.0;

for (i=0; i<2048, i++) sum = sum +A[i] * B[i];

• Reference sequence:
• load A[0] load B[0] load A[1] load B[1] …

• Again, size of array elements is 8B so that 4
consecutive array elements fit into each
cache block

 Assume base addresses of A and B are
0xA000 and 0xE000 0000 10 10 0000 000 0 0000

0000 11 10 0000 000 0 0000

16

31

Example 2: Cache Hits and Misses

A[0] 0xA000 256 Miss Cold start

B[0] 0xE000 256 Miss Cold start

A[1] 0xA008 256 Miss Conflict

B[1] 0xE008 256 Miss Conflict

A[2] 0xA010 256 Miss Conflict

B[2] 0xE010 256 Miss Conflict

A[3] 0xA018 256 Miss Conflict

B[3] 0xE018 256 Miss Conflict

..

..

B[1023] 0xFFF8 511 Miss Conflict

Conflict miss: a miss due to
conflicts in cache block
requirements from memory
accesses of the same
program

Hit ratio for our program:
0%

Source of the problem: the
elements of arrays A and B
accessed in order have the
same cache index

Hit ratio would be better if
the base address of B is
such that these cache
indices differ

32

Example 2 with Padding

• Assume that compiler assigns addresses as
variables are encountered in declarations

• To shift base address of B enough to make cache
index of B[0] different from that of A[0]
double A[2052], B[2048];

• Base address of B is now 0xE020
• 0xE020 is 1110 0000 0010 0000
 Cache index of B[0] is 257; B[0] and A[0] do not conflict for

the same cache block

• Whereas Base address of A is 0xA000 which is
1010 0000 0000 0000 – cache index is 256

 Hit ratio of our loop would then be 75%

17

33

Example 2 with Array Merging

What if we re-declare the arrays as

struct {double A, B;} array[2048];

for (i=0; i<2048, i++)

sum += array[i].A*array[i].B;

Hit ratio: 75%

34

Example 3: DAXPY
 Double precision Y = aX + Y, where X and Y

are vectors and a is a scalar
double X[2048], Y[2048], a;
for (i=0; i<2048;i++)

Y[I] = a*X[I]+Y[I];

 Reference sequence
 load X[0] load Y[0] store Y[0] load X[1] load Y[1]

store Y[1] …

 Hits and misses: Assuming that base
addresses of X and Y don’t conflict in cache,
hit ratio of 83.3%

18

35

Example 4: 2-d Matrix Sum
double A[1024][1024], B[1024][1024];

for (j=0;j<1024;j++)

for (i=0;i<1024;i++)

B[i][j] = A[i][j] + B[i][j];

 Reference Sequence:
load A[0,0] load B[0,0] store B[0,0]

load A[1,0] load B[1,0] store B[1,0] …

 Question: In what order are the elements of a
multidimensional array stored in memory?

36

Storage of Multi-dimensional Arrays

 Row major order
 Example: for a 2-dimensional array, the

elements of the first row of the array are
followed by those of the 2nd row of the
array, the 3rd row, and so on

 This is what is used in C

 Column major order
 A 2-dimensional array is stored column

by column in memory

 Used in FORTRAN

19

37

Example 4: 2-d Matrix Sum
double A[1024][1024], B[1024][1024];

for (j=0;j<1024;j++)

for (i=0;i<1024;i++)

B[i][j] = A[i][j] + B[i][j];

 Reference Sequence:
load A[0,0] load B[0,0] store B[0,0]

load A[1,0] load B[1,0] store B[1,0] …

38

Example 4: Hits and Misses
 Reference order and storage order for

an array are not the same
 Our loop will show no spatial locality

 Assume that packing has been to
eliminate conflict misses due to base
addresses

 Reference Sequence:
load A[0,0] load B[0,0] store B[0,0]
load A[1,0] load B[1,0] store B[1,0] …

 Miss(cold), Miss(cold), Hit for each array
element

 Hit ratio: 33.3%
 Question: Will A[0,1] be in the cache when

required?

20

39

Example 4 with Loop Interchange
double A[1024][1024], B[1024][1024];

for (i=0;i<1024;i++)

for (j=0;j<1024;j++)

B[i][j] = A[i][j] + B[i][j];

 Reference Sequence:
load A[0,0] load B[0,0] store B[0,0]

load A[0,1] load B[0,1] store B[0,1] …

 Hit ratio: 83.3%

40

Is Loop Interchange Always Safe?

for (i=1; i<2048; i++)

for (j=1; j<2048; j++)

A[i][j] = A[i+1][j-1] + A[i][j-1];

A[1,1] = A[2,0]+A[1,0]

A[2,1] = A[3,0]+A[2,0]

…

A[1,2] = A[2,1]+A[1,1]

A[1,1] = A[2,0]+A[1,0]

A[1,2] = A[2,1]+A[1,1]

…

A[2,1] = A[3,0]+A[2,0]

for (i=1; i<2048; i++)

for (j=1; j<2048; j++)

for (i=2047; i>1; i--)

21

41

Example 5: Matrix Multiplication
double X[N][N], Y[N][N], Z[N][N];

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

X[i][j] += Y[i][k] * Z[k][j];

Reference Sequence:

X Y Z

X[i][j] Y[i][k] Z[k][j]
/ Dot product inner loop

Y[0,0], Z[0,0], Y[0,1], Z[1,0], Y[0,2], Z[2,0] … X[0,0],

Y[0,0], Z[0,1], Y[0,1], Z[1,1], Y[0,2], Z[2,1] … X[0,1],

…

Y[1,0], Z[0,0], Y[1,1], Z[1,0], Y[1,2], Z[2,0] … X[1,0],

Y[0,0], Z[0,0], Y[0,1], Z[1,0], Y[0,2], Z[2,0] … X[0,0],

Y[0,0], Z[0,1], Y[0,1], Z[1,1], Y[0,2], Z[2,1] … X[0,1],

…

Y[1,0], Z[0,0], Y[1,1], Z[1,0], Y[1,2], Z[2,0] … X[1,0],

…

42

With Loop Interchanging
• Can interchange the 3 loops in any way
• Example: Interchange i and k loops

• For inner loop: Z[k][j] can be loaded into
register once for each (k,j), reducing the
number of memory references

double X[N][N], Y[N][N], Z[N][N];

for (k=0; k<N; k++)

for (j=0; j<N; j++)

for (i=0; i<N; i++)

X[i][j] += Y[i][k] * Z[k][j];Z[k][j]X[i][j] Y[i][k]

22

43

Let’s try some Loop Unrolling Instead
double X[N][N], Y[N][N], Z[N][N];

for (i=0; i<N; i++)

for (k=0; k<N; k++)

X[i][j] += Y[i][k] * Z[k][j];

for (j=0; j<N; j++)

Exploits spatial locality for array Z?

for (k=0; k<N; k+=2)

X[i][j] += Y[i][k]*Z[k][j] + Y[i][k+1]*Z[k+1][j];

Unroll k loop

44

Let’s try some Loop Unrolling Instead
double X[N][N], Y[N][N], Z[N][N];

for (i=0; i<N; i++)

for (k=0; k<N; k++)

X[i][j] += Y[i][k] * Z[k][j];

for (j=0; j<N; j++)

Exploits spatial locality for array Z

for (k=0; k<N; k++) {

X[i][j] += Y[i][k]*Z[k][j];

X[I][j+1] += Y[I][k]*Z[k][j+1];

}

Unroll j loopfor (j=0; j<N; j+=2)

23

45

Let’s try some Loop Unrolling Instead
double X[N][N], Y[N][N], Z[N][N];

for (i=0; i<N; i++)

for (k=0; k<N; k++)

X[i][j] += Y[i][k] * Z[k][j];

for (j=0; j<N; j++)

Exploits spatial locality for array Z

Exploits temporal locality for array Y

Unroll j loop

Blocking or Tiling

Unroll k loop

for (j=0; j<N; j+=2)

for (k=0; k<N; k+=2){

X[i][j] += Y[i][k]*Z[k][j] +Y[i][k+1]*Z[k+1][j];

X[i][[j+1] += Y[i][k]*Z[k][j+1] +Y[i][k+1]*Z[k+1][j+1];

}

46

Blocking/Tiling
Idea: Since problem is with accesses to array Z,
make full use of elements of Z when they are
brought into the cache

X

0,0 0,0

1,0

0,1

1,1 1,0 1,1

0,1

Y Z

X Y x Z

0,0 0,0x0,0 + 0,1x1,0

1,0 1,0x0,0 + 1,1x1,0

24

47

Blocked Matrix Multiplication
Y Z

K

K

J

for (J=0; J<N; J+=B)

for (K=0; K<N; K+=B)

r += Y[i][k] * Z[k][j];

X[i][j] += r;

for (j=J; j<min(J+B,N); j++){

for (k=K, r=0; k<min(K+B,N); k++)

}

for (i=0; i<N; i++)

48

Revisit Example 1 : with double A[4096]

double A[4096];
sum=0.0;

for (i=0; i<4096, i++)

sum = 0.0;

for (i=0; i<4096, i++)

sum = sum +A[i];

 The entire array no longer
fits into the cache – cache
size: 16KB, array size: 32KB

 After execution of the
previous loop, the second
half of the array will be in
cache

 Analysis: our loop sees
misses as we just saw

 Called Capacity Misses as
they would not be misses if
the cache had been big
enough

25

49

Some Homework

1. Implementing Matrix Multiplication

Objective: Best programs for multiplying
1024x1024 double matrices on any 2
different machines that you normally use.

Techniques: Loop interchange, blocking, etc

Criterion: Execution time

Report: Program and execution times

