SE-292 High Performance Computing
Memory Hierarchy

R. Govindarajan
govind@serc

Memory Hierarchy

Interconnect used between
types of memory

Data and instruction
caches

On-chip wires
On-chip bus to L2 interface

System bus or interconnect

Main memory
IO bus &

Network

Disk/tape Remote ‘ on chip

storage systems ‘ ;
: migrating to microprocessor

A migrating to CPU board

Memory Organization

Memory hierarchy

o CPU reqisters
few in number (typically 16/32/128)
subcycle access time (nsec)
o Cache memory
on-chip memory
10's of KBytes (to a few MBytes) of locations.
access time of a few cycles
o Main memory
100’s of MBytes storage
access time several 10’s of cycles
o Secondary storage (like disk)
100's of GBytes storage
access time msec

Cache Memory; Memory Hierarchy

Recall: In discussing pipeline, we assumed
that memory latency will be hidden so that it
appears to operate at processor speed

Cache Memory: HW that makes this happen
o Design principle: Locality of Reference

o Temporal locality: least recently used objects are
least likely to be referenced in the near future

o Spatial locality: neighbours of recently reference
locations are likely to be referenced in the near
future

' Cache Memory Exploits This

Cache: Hardware structure that provides
memory contents the processor references

= directly (most of the time)
= fast

address

data

Cache Design

Lookup Logic
‘Do | Have It'?
Logic

Cache RAM

Cache Fast

: Memory
s A Directory
a
Table of Typical size: 32KB
"Addresses

| Have’

How to do Fast Lookup?

Search Algorithms

Hashing: Hash table, indexed into using a hash

function

Hash function on address A. Which bits?

address A C)

msbs

Isbs

For a small program, everything would index into the same place (collision)
A and neighbours possibly differ only in these bits; should be treated as one

Summing up

Cache organized in terms of blocks, memory
locations that share the same address bits
other than Isbs. Main memory too.

Address used as

tag

Index into
directory

block
offset

Main Memory

How It Works : Direct

Case 1 Cachehit—
Case 2: Cache miss
Cache Memor

tag index offset

address

gt

—SameHit—

Not Same: Miss

' Cache Terminology

= Cache hit: A memory reference where the
required data is found in the cache

= Cache Miss: A memory reference where the
required data is not found in the cache

Hit Ratio: # of hits / # of memory references
Miss Ratio = (1 - Hit Ratio)

Hit Time: Time to access data in cache

Miss Penalty: Time to bring a block to cache

Cache Organizations

1. Where can a block be placed in the cache?
o Direct mapped, Set Associative

2. How to identify a block in cache?
o Tag, valid bit, tag checking hardware

3. Replacement policy?
o LRU, FIFO, Random ...

4. What happens on writes?
o Hit: When is main memory updated?
Write-back, write-through
o Miss: What happens on a write miss?
Write-allocate, write-no-allocate

Block Placement: Direct Mapping

A memory block goes to the unique cache block
(memory block no.) mod (# cache blocks)

memory block number
0

-~ l

R

~NOoO s WN R O
R

AR

14

14 14

Identifying Memory Block (DM Cache)

Assume 32-bit address space, 16 KB cache,
32byte cache block size.
Offset field -- to identify bytes in a cache line
Offset Bits = log (32) =5 bits
No. of Cache blocks = 16KB/ 32 =512
Index Bits = log (522) =5 bits
Tag -- identify which memory block is in this
cache block -- remaining bits (= 18bits)

Tag Index |Offset
18 bits 9 bits |5 bits

Accessing Block (DM Cache)

Tag Index |Offset
18 bits 9 bits |5 bits
Tag VD

> (:? él Data

AND Cache Hit

Block Placement: Set Associative

A memory block goes to unique set, and
within the set to any cache block

memory block number

0
1
2
3 3
o1 T T 1 e
Set0 & :
3
Set 1 3 6
i z ;
Set 2 5 5
6 7 2:[/< 10
Set 3 7 15 1 1
12
13
14
15 15

Identifying Memory Block

(Set Associative Cache)
Assume 32-bit address space, 16 KB cache, 32byte
cache block size, 4-way set-associative.

Offset field -- to identify bytes in a cache line
Offset Bits = log (32) =5 bits
No. of Sets = Cache blocks /4 = 512/4 = 128
Index Bits = log (128) = 7 bits
Tag -- identify which memory block is in this cache
block -- remaining bits (= 20 bits)

Tag Index |Offset
20 bits 7 bits |5 bits

Accessing Block (2-w Set-Associative)

Tag
19 bits

Index
8 bits

Offset]

5 bits

Data

Cache Hit

» Tag VD >

Block Replacement

Direct Mapped: No choice is required

Set-Associative: Replacement strategies
o First-In-First-Out (FIFO)

simple to implement
o Least Recently Used (LRU)

complex, but based on (temporal) locality,
hence higher hits

o Random

simple to implement

Block Replacement...
sHardware must keep track of LRU information

Separate valid bits for each word (or sub-block) of
cache can speedup access to the required word on a

cache miss
Tag Index |Offset
19 bits 8 bits |5 bits| , it
> D
“SAor :E—»D
;%::zzl \ Data
Cache
Hit
—»[LD Vv >
19
Write Policies

When is Main Memory Updated on Write Hit?

Write through: Writes are performed both in
Cache and in Main Memory
+ Cache and memory copies are kept consistent
-- Multiple writes to the same location/block cause

higher memory traffic

-- Writes must wait for longer time (memory write)

Solution: Use a Write Buffer to hold these write
requests and allow processor to proceed

immediately

20

10

Write Policies...

Write back: writes performed only on cache.
Modified blocks are written back in memory
on replacement

o0 Need for dirty bit with each cache block

+ Writes are faster than with write through

+ Reduced traffic to memory

-- Cache & main memory copies are not always the same

-- Higher miss penalty due to write-back time

21

Write Policies...

What happens on a Write Miss?

o Write-Allocate: allocate a block in the cache and
load the block from memory to cache.

o Write-No-Allocate: write directly to main memory.
Write allocate/no-allocate is orthogonal to
write-through/write-back policy.

o Write-allocate with write-back

a Write-no-allocate with write-through: ideal if
mostly-reads-few-writes on data

22

11

What Drives Computer Architecture?

“Moore’s Law”
1000 ...

100 e

10 ..

Performance

....... Processor
60%l/yr.
(2X/1.5yr)

Performance Gap:

(grows 50% / year)
¥~ Memory
P Q0%lyr.

— (2X/10
yrs)

23

Cache and Programming

Objective: Learn how to assess cache related
performance issues for important parts of our

programs
Will look at several examples

of programs

Will consider only data cache, assuming

separate instruction and data
Data cache configuration:

caches

o Direct mapped 16 KB write back cache with 32B

block size

Tag : 18b Index: 9b | Offset: 5b

24

12

Example 1: Vector Sum Reduction

double A[2048]; sum=0.0;

for (i=0; <2048, i++)
sum = sum +A[i];

To do analysis, must view program close to
machine code form (to see loads/stores)

Loop: FLOAD FO,

FADD F2,
ADDI R1,
BLE R1,

0(R1)
FO, F2
R1, 8
R3, Loop

25

Example 1: Vector Sum Reduction

To do analysis:

- Observe loop index i, sum and &A[i] are
implemented in registers and not load/stored

inside loop

- Only A[i] is loaded from memory
- Hence, we will consider only accesses to array

elements

26

13

Example 1: Reference Sequence

load A[O] load A[1] load A[2] ... load A[2047]
Assume base address of A (i.e., address of
A[0]) is 0OxA000, 10|10 0000 000|0 0000
o Cache index bits: 100000000 (value = 256)

Size of an array element (double) = 8B

So, 4 consecutive array elements fit into each
cache block (block size is 32B) 100000001 00000

a A[O] — A[3] have index of 256 100000001 01000
100000001 10000
_ 100000001 11000

a A[4] — A[7] have index of 257 and so on

Example 1: Cache Misses and Hits

AO] 0xA000 |256 |Miss | Cold start| Hitratio of ourloop is
75% -- there are 1536

AL 0xAQ08 | 256 | Hit hits out of 2048 memory
Al2] O0xA010 | 256 |Hit accesses
A3] 0xA018 |256 |Hit This is entirely due to

- spatial locality of
A[4] OXA020 257 M|SS C0|d start reference.

A[5] 0xA028 | 257 |Hit Cold start miss: we

: assume that the cache is
Al6] OxA030 | 257 H!t initially empty. Also called
Al7] 0xA038 | 257 | Hit a Compulsory Miss

If the loop was preceded
by a loop that accessed
- - - " all array elements, the hit
A[2044] | OXDFEO | 255 | Miss | Cold start ratio of our loop would be
- 100%, 25% due to
A[2045] | OXDFES | 255 | Hit temporal locality and 75%
A[2046] | OXDFFO | 255 | Hit due to spatial locality

A[2047] | OXDFF8 | 255 | Hit

28

Example 1 with double A[4090]

Why should it make a difference?

Consider the case where the loop is preceded by
another loop that accesses all array elements in
order

The entire array no longer fits into the cache —
cache size: 16KB, array size: 32KB

After execution of the previous loop, the second half
of the array will be in cache

Analysis: our loop sees misses as we just saw

Called Capacity Misses as they would not be misses
if the cache had been big enough

29

Example 2: Vector Dot Product

double A[2048], B[2048], sum=0.0;

for (i=0; <2048, i++) sum = sum +A[i] * BJ[i];
Reference sequence:

- load AJO] load B[0] load A[1] load B[1] ...

Again, size of array elements is 8B so that 4

consecutive array elements fit into each
cache block

Assume base addresses of A and B are
0OxA000 and OxEOO0O 0000 1o|10 0000 ooolo 0000

0000 11 |10 0000 ooo‘o 0000

30

15

Example 2: Cache Hits and Misses
Conflict miss: a miss due to
AJ0] 0xA000 | 256 |Miss |Cold start conflicts in cache block

B[0] |OXEO00 |256 |Miss |Cold start| requirements from memory
accesses of the same

All] 0xA008 | 256 | Miss | Conflict program

B[1] OxE008 | 256 | Miss | Conflict Hit ratio for our program:
Al2] 0xA010 |256 |Miss | Conflict 0%

B[2] OxEQ010 | 256 |Miss | Conflict Source of the problem: the

AB] |0xA018 |256 |Miss | Conflict elements of arrays A and B
accessed in order have the

B[3] 0xE018 | 256 | Miss | Conflict same cache index

Hit ratio would be better if
the base address of B is
such that these cache
indices differ

B[1023] | OXFFF8 | 511 | Miss | Conflict

31

Example 2 with Padding

Assume that compiler assigns addresses as
variables are encountered in declarations

To shift base address of B enough to make cache
index of B[0] different from that of A[O]

double A[2052], B[2048];

Base address of B is now 0xE020

+ 0xE020 is 1110 0000 0010 0000

o Cache index of B[0] is 257; B[0] and A[0] do not conflict for
the same cache block

Whereas Base address of A is OXxA000 which is
1010 0000 0000 0000 — cache index is 256

Hit ratio of our loop would then be 75%

32

16

Example 2 with Array Merging

What if we re-declare the arrays as

struct {double A, B;} array[2048];
for (i=0; <2048, i++)
sum += array/[i].A*array[i].B;
Hit ratio: 75%

33

Example 3: DAXPY

Double precision Y =aX + Y, where X and Y
are vectors and a is a scalar

double X[2048], Y[2048], a;

for (i=0; i<2048;i++)

Y[I] = a*X[I]+Y[l];
Reference sequence
o load X[0] load Y[0] store Y[O] load X[1] load Y[1]
store Y[1] ...

Hits and misses: Assuming that base
addresses of X and Y don’t conflict in cache,
hit ratio of 83.3%

34

17

Example 4: 2-d Matrix Sum

double A[1024][1024], B[1024][1024];
for (j=0;j<1024;j++)
for (i=0;i<1024;i++)
Bl0] = ALiI0] + BIL;

Reference Sequence:
load A[0,0] load BJ[0,0] store B[0,0]
load A[1,0] load B[1,0] store B[1,0] ...
Question: In what order are the elements of a
multidimensional array stored in memory?

35

Storage of Multi-dimensional Arrays

Row major order
o Example: for a 2-dimensional array, the A

elements of the first row of the array are *'—’ :

followed by those of the 2" row of the

array, the 3 row, and so on

o Thisis what is used in C

Column major order A
o A 2-dimensional array is stored column

by column in memory

o Used in FORTRAN

36

18

Example 4: 2-d Matrix Sum

double A[1024][1024], B[1024][1024];
for (j=0;j<1024;j++)
for (i=0;i<1024;i++)
B[]0l = A1 + BILI;
Reference Sequence:
load A[0,0] load BJ[0,0] store B[0,0]
load A[1,0] load B[1,0] store B[1,0] ...

Example 4: Hits and Misses n

Reference order and storage order for

an array are not the same

Our loop will show no spatial locality

o Assume that packing has been to

eliminate conflict misses due to base

addresses
o Reference Sequence:

load A[0,0] load B[0,0] store BJ[0,0]

load A[1,0] load B[1,0] store B[1,0] ...

o Miss(cold), Miss(cold), Hit for each array
element

o Hit ratio: 33.3%

o Question: Will A[0,1] be in the cache when
required?

38

19

Example 4 with Loop Interchange

double A[1024][1024], B[1024][1024]; A
for (i=0;i<1024;i++) Enon
for (j=0:j<1024:j++) -
B[i]0] = ALi]0] + BL;
Reference Sequence:
load A[0,0] load BJ[0,0] store B[0,0]
load A[0,1] load B[0,1] store B[0,1] ... P
Hit ratio: 83.3%

39

Is Loop Interchange Always Safe?
for(=2047, 2L 1) A

TOT \I— L, T~ U0, I 1)

for (j=1; j<2048; j++)

AT = AILIG-1] + AIGL

A[1,1] = A[2,0]+A[L,0] A[1,1] = A[2,0]+A[1,0]
A[2,1Q[3,0]+A[2,0] A[L,2)\= Aj2,1]+A[1,1]

”

A[1,2] = A[2,1]+A[1,1] Atz,’l] = A[3,0]+A[2,0]

40

20

Example 5: Matrix Multiplication
double X[N][N], Y[N][N], Z[N][N];
for (i:O; i<N; i++) X Y z

for (j=0; j<N; j++) [} [:} |
for (k=0; k<N; k++)

X[0T += Y[k] * Z[K]0;

/ Dot product inner loop

Reference Sequence:
Y[0,0], Z[0,0], Y[0,1], Z[1,0], Y[0,2], Z[2,0] ... X[0,0],
Y[0,0], Z[0,1], Y[0,1], Z[1,1], Y[0,2], Z[2,1] ... X[0,1],

.ﬁl,O], Z[0,0], Y[1,1], Z[1,0], Y[1,2], Z[2,0] ... X[1,0],

With Loop Interchanging

Can interchange the 3 loops in any way
Example: Interchange i and k loops

double X[N][N], Y[N][N], Z[N][N];

for (k=0; k<N; k++)

for (j=0; J<N; j++)
for (i=0; I<N; i++)
X[0] += YIK] * Z[K](T:

For inner loop: Z[K][j] can be loaded into

register once for each (k,j), reducing the
number of memory references

42

21

Let’s try some Loop Unrolling Instead
double X[N][N], Y[N][N], Z[N][NI;
for (i=0; i<N; i++)
for (7=0; j<N; j++)
for (k=0; k<N; k+=2) Unroll k loop
XM0] += YIKPZIKI0] + YIk+1]*Z[k+ 11015

Exploits spatial locality for array Z?

43

Let’s try some Loop Unrolling Instead
double X[N][N], YIN]IN], Z[N]IN];
for (i=0; i<N; i++)
for (j=0; j<N; j+=2) Unroll j loop
for (k=0; k<N; k++) {
X[0] += YOIKI*ZIK]G;
X[[+1] += Y[[KPZ[K][+1];

Exploits spatial locality for array Z

44

22

Let’s try some Loop Unrolling Instead
double X[N][N], Y[N][N], Z[N][NJ;
for (i=0; i<N; i++)
for (j=0; j<N; j+=2) Unroll j loop
for (k=0; k<N; k+=2){ Unroll k loop
X[i] += Y[IK*Z[K][] YIik+1FZ[k+1]0];
X[G+1] += Y[IKRZ[K][+1] A+ Y[i][k+13Z[k+1][j+1];
} N—

Exploits spatial locality for array Z

Exploits temporal locality for array Y
Blocking or Tiling

45

:) +0,1x1,0
Idea: Since proble esses to array Z,

make full use of el

brought into the cache

0,1

1,0 11 1,1

46

23

Blocked Matrix Multiplication

for (J=0; J<N; J+=B)
for (K=0; K<N; K+=B)
for (i=0; i<N; i++)

e N

for (j=J; j<min(J+B,N); j++){
for (k=K, r=0; k<min(K+B,N); k++)

r += Y[i][k] * Z[K][i];

X[Ql +=r;

Revisit Example 1 : with double A[4090]

double A[4096];
sum=0.0;

for (i=0; <4096, i++)
sum = 0.0;

for (i=0; <4096, i++)
sum = sum +A[i];

The entire array no longer
fits into the cache — cache
size: 16KB, array size: 32KB

After execution of the
previous loop, the second
half of the array will be in
cache

Analysis: our loop sees
misses as we just saw
Called Capacity Misses as
they would not be misses if
the cache had been big
enough

48

24

‘ Some Homework

1. Implementing Matrix Multiplication

Objective: Best programs for multiplying
1024x1024 double matrices on any 2
different machines that you normally use.

Techniques: Loop interchange, blocking, etc
Criterion: Execution time
Report: Program and execution times

49

25

