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Memory Organization
Memory hierarchy
 CPU registers  

 few in number (typically 16/32/128)
 subcycle access time (nsec)

 Cache memory
 on-chip memory
 10’s of  KBytes  (to a few MBytes) of locations.
 access time of a few cycles

 Main memory
 100’s  of MBytes  storage
 access time several 10’s of cycles  

 Secondary storage (like disk)
 100’s of GBytes storage
 access time msec 
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Cache Memory; Memory Hierarchy

 Recall: In discussing pipeline, we assumed 
that memory latency will be hidden so that it 
appears to operate at processor speed

 Cache Memory: HW that makes this happen
 Design principle: Locality of Reference

 Temporal locality: least recently used objects are 
least likely to be referenced in the near future

 Spatial locality: neighbours of recently reference 
locations are likely to be referenced in the near 
future
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Cache Memory Exploits This

Cache: Hardware structure that provides 
memory contents the processor references

 directly (most of the time)

 fast

CacheCPU Main Memory

address

data
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Cache Design
Cache

address A

Fast 
Memory

`Do I Have It’? 
Logic

Lookup Logic

Table of 
`Addresses  
I Have’

Cache 
Directory

Cache RAM

Typical size: 32KB
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How to do Fast Lookup?

• Search Algorithms

• Hashing: Hash table, indexed into using a hash 
function

• Hash function on address A. Which bits?

address A

For a small program, everything would index into the same place (collision)
A and neighbours possibly differ only in these bits; should be treated as one

msbs lsbs
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Summing up

 Cache organized in terms of blocks, memory 
locations that share the same address bits 
other than lsbs. Main memory too.

 Address used as

block 
offset

Index into 
directorytag
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How It Works

CPU

Main Memory

Cache Memory

.

.

.

Case 1: Cache hit

: Direct Mapping

Same: Hit

address

tag index offset

Case 2: Cache miss

Not Same: Miss

. 

. 

.
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Cache Terminology 

 Cache hit: A memory reference where the 
required data is found in the cache

 Cache Miss: A memory reference where the 
required data is not found in the cache

 Hit Ratio:  # of hits / # of memory references 

 Miss Ratio = (1 - Hit Ratio) 

 Hit Time:  Time to access data in cache 

 Miss Penalty:  Time to bring a block to cache 
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Cache Organizations
1. Where can a block be placed in the cache? 
 Direct mapped, Set Associative

2. How to identify a block in cache?
 Tag, valid bit, tag checking hardware

3. Replacement policy?
 LRU, FIFO, Random …

4. What happens on writes?
 Hit: When is main memory updated?

 Write-back, write-through
 Miss: What happens on a write miss?

 Write-allocate, write-no-allocate  
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Block Placement: Direct Mapping
 A memory block goes to  the unique cache block 

(memory block no.) mod (# cache blocks)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

14
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0
1
2
3
4
5
6
7

614

Cache

memory block number
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Identifying Memory Block (DM Cache)
Assume 32-bit address space, 16 KB cache,  

32byte cache block size.

Offset field -- to identify bytes in a cache line 
Offset Bits = log (32)  = 5 bits

No. of Cache blocks  =  16KB/ 32  = 512
Index Bits = log (522)  = 5 bits

Tag -- identify which memory block is in this 
cache block  -- remaining bits (= 18bits)

Tag  
18 bits

Index
9 bits

Offset
5 bits

14

Accessing Block (DM Cache)

Tag V D

=

AND Cache Hit

Data

Tag  
18 bits

Index
9 bits

Offset
5 bits
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Block Placement: Set Associative 
 A memory block goes to unique set, and 

within the set to any cache  block 

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7Set  3

Set  2

Set  0

Set  1

3

7

11

15

7
15

memory block number
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Identifying Memory Block
(Set Associative Cache)

Assume 32-bit address space, 16 KB cache,  32byte

cache block size, 4-way set-associative.

Offset field -- to identify bytes in a cache line 
Offset Bits = log (32)  = 5 bits

No. of Sets = Cache blocks / 4 =  512/4 = 128
Index Bits = log (128) = 7 bits

Tag -- identify which memory block is in this cache 
block  -- remaining bits (= 20 bits)

Tag  
20 bits

Index
7 bits

Offset
5 bits
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Accessing Block (2-w Set-Associative) 

OR

Cache Hit
Data

Tag  
19 bits

Index
8 bits

Offset
5 bits

Tag V D

Tag V D

=

=
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Block Replacement

 Direct Mapped: No choice is required

 Set-Associative: Replacement strategies
 First-In-First-Out (FIFO)

 simple to implement

 Least Recently Used (LRU)

 complex, but  based on (temporal) locality, 
hence higher hits

 Random 

 simple to implement
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Block  Replacement…
•Hardware must keep track of LRU information

•Separate valid bits for each word (or sub-block) of  
cache can speedup access to the required word on a 
cache miss

Data
OR

Cache 
Hit

Tag  
19 bits

Index
8 bits

Offset
5 bits

Tag VD

=

=

L

Tag VDL

4 bits
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Write Policies

When is Main Memory Updated on Write Hit?  

 Write through:  Writes are performed both in 
Cache and in Main Memory 

+  Cache and memory copies are kept consistent 

-- Multiple writes to the same location/block cause 
higher memory traffic 

-- Writes must wait for longer time (memory write) 

Solution:  Use a Write Buffer to hold these write 
requests and allow processor to proceed 
immediately
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Write Policies…

 Write back: writes  performed only on cache. 
Modified blocks are written back in memory 
on replacement

o  Need for dirty bit with each cache block

+  Writes are faster than with write through 

+  Reduced traffic to memory

-- Cache & main memory copies are not always the same

-- Higher miss penalty due to write-back time
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Write Policies…

What happens on a Write Miss? 
 Write-Allocate: allocate a block in the cache and 

load the block from memory to cache.

 Write-No-Allocate: write directly to main memory.

 Write allocate/no-allocate is orthogonal to 
write-through/write-back policy. 
 Write-allocate with write-back

 Write-no-allocate with write-through: ideal if 
mostly-reads-few-writes on data 
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What Drives Computer Architecture?

Year
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Cache and Programming
 Objective: Learn how to assess cache related 

performance issues for important parts of our 
programs

 Will look at several examples of programs
 Will consider only data cache, assuming 

separate instruction and data caches
 Data cache configuration:
 Direct mapped 16 KB write back cache with 32B 

block size

Offset: 5bIndex: 9bTag : 18b
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Example 1: Vector Sum Reduction

double A[2048]; sum=0.0;

for (i=0; i<2048, i++) 

sum = sum +A[i];

 To do analysis, must view program close to 
machine code form (to see loads/stores)

Loop: FLOAD F0, 0(R1)

FADD F2, F0, F2

ADDI R1, R1, 8

BLE R1, R3, Loop

26

Example 1: Vector Sum Reduction

• To do analysis:
• Observe loop index i, sum and &A[i] are 

implemented in registers and not load/stored 
inside loop

• Only A[i] is loaded from memory

• Hence, we will consider only accesses to array 
elements
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Example 1: Reference Sequence
 load A[0] load A[1] load A[2] … load A[2047]
 Assume base address of A (i.e., address of 

A[0]) is 0xA000, 10 10 0000 000 0 0000
 Cache index bits: 100000000 (value = 256)

 Size of an array element (double) = 8B
 So, 4 consecutive array elements fit into each 

cache block (block size is 32B)
 A[0] – A[3] have index of 256

 A[4] – A[7] have index of 257 and so on

100000000 00000
100000000 01000
100000000 10000
100000000 11000

100000001 00000
100000001 01000
100000001 10000
100000001 11000
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Example 1: Cache Misses and Hits

A[0] 0xA000 256 Miss Cold start

A[1] 0xA008 256 Hit

A[2] 0xA010 256 Hit

A[3] 0xA018 256 Hit

A[4] 0xA020 257 Miss Cold start

A[5] 0xA028 257 Hit

A[6] 0xA030 257 Hit

A[7] 0xA038 257 Hit

.. .. .. .. 

.. .. .. ..

A[2044] 0xDFE0 255 Miss Cold start

A[2045] 0xDFE8 255 Hit

A[2046] 0xDFF0 255 Hit

A[2047] 0xDFF8 255 Hit

Hit ratio of our loop is 
75% -- there are 1536 
hits out of 2048 memory 
accesses

This is entirely due to 
spatial locality of 
reference.

If the loop was preceded 
by a loop that accessed 
all array elements, the hit 
ratio of our loop would be 
100%, 25% due to 
temporal locality and 75% 
due to spatial locality

Cold start miss: we 
assume that the cache is 
initially empty. Also called 
a Compulsory Miss

A[0] 0xA000 256

A[1] 0xA008 256

A[2] 0xA010 256

A[3] 0xA018 256

A[4] 0xA020 257

A[5] 0xA028 257

A[6] 0xA030 257

A[7] 0xA038 257

.. .. ..

.. .. ..

A[2044] 0xDFE0 255

A[2045] 0xDFE8 255

A[2046] 0xDFF0 255

A[2047] 0xDFF8 255
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Example 1 with double A[4096]
Why should it make a difference?

 Consider the case where the loop is preceded by 
another loop that accesses all array elements in 
order

 The entire array no longer fits into the cache –
cache size: 16KB, array size: 32KB

 After execution of the previous loop, the second half 
of the array will be in cache

 Analysis: our loop sees misses as we just saw

 Called Capacity Misses as they would not be misses 
if the cache had been big enough

30

Example 2: Vector Dot Product
double A[2048], B[2048], sum=0.0;

for (i=0; i<2048, i++) sum = sum +A[i] * B[i];

• Reference sequence:
• load A[0] load B[0] load A[1] load B[1] …

• Again, size of array elements is 8B so that 4 
consecutive array elements fit into each 
cache block

 Assume base addresses of A and B are 
0xA000 and 0xE000 0000 10 10 0000 000 0 0000

0000 11 10 0000 000 0 0000
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Example 2: Cache Hits and Misses

A[0] 0xA000 256 Miss Cold start

B[0] 0xE000 256 Miss Cold start

A[1] 0xA008 256 Miss Conflict

B[1] 0xE008 256 Miss Conflict

A[2] 0xA010 256 Miss Conflict

B[2] 0xE010 256 Miss Conflict

A[3] 0xA018 256 Miss Conflict

B[3] 0xE018 256 Miss Conflict

.. .. .. .. 

.. .. .. ..

B[1023] 0xFFF8 511 Miss Conflict

Conflict miss: a miss due to 
conflicts in cache block 
requirements from memory 
accesses of the same 
program

Hit ratio for our program: 
0%

Source of the problem: the 
elements of arrays A and B 
accessed in order have the 
same cache index

Hit ratio would be better if 
the base address of B is 
such that these cache 
indices differ
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Example 2 with Padding

• Assume that compiler assigns addresses as 
variables are encountered in declarations

• To shift base address of B enough to make cache 
index of B[0] different from that of A[0]
double A[2052], B[2048];

• Base address of B is now 0xE020
• 0xE020 is 1110 0000 0010 0000
 Cache index of B[0] is 257; B[0] and A[0] do not conflict for 

the same cache block

• Whereas Base address of A is 0xA000 which is 
1010 0000 0000 0000 – cache index is 256

 Hit ratio of our loop would then be 75%
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Example 2 with Array Merging

What if we re-declare the arrays as

struct {double A, B;} array[2048];

for (i=0; i<2048, i++) 

sum += array[i].A*array[i].B;

Hit ratio: 75%
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Example 3: DAXPY
 Double precision Y = aX + Y, where X and Y

are vectors and a is a scalar
double  X[2048],  Y[2048],  a;
for (i=0; i<2048;i++) 

Y[I] = a*X[I]+Y[I];

 Reference sequence
 load X[0] load Y[0] store Y[0] load X[1] load Y[1] 

store Y[1] …

 Hits and misses: Assuming that base 
addresses of X and Y don’t conflict in cache, 
hit ratio of 83.3%
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Example 4: 2-d Matrix Sum
double A[1024][1024], B[1024][1024];

for (j=0;j<1024;j++)

for (i=0;i<1024;i++)

B[i][j] = A[i][j] + B[i][j];

 Reference Sequence:
load A[0,0] load B[0,0] store B[0,0]

load A[1,0] load B[1,0] store B[1,0] …

 Question: In what order are the elements of a 
multidimensional array stored in memory?

36

Storage of Multi-dimensional Arrays

 Row major order
 Example: for a 2-dimensional array, the 

elements of the first row of the array are 
followed by those of the 2nd row of the 
array, the 3rd row, and so on

 This is what is used in C

 Column major order
 A 2-dimensional array is stored column 

by column in memory

 Used in FORTRAN
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Example 4: 2-d Matrix Sum
double A[1024][1024], B[1024][1024];

for (j=0;j<1024;j++)

for (i=0;i<1024;i++)

B[i][j] = A[i][j] + B[i][j];

 Reference Sequence:
load A[0,0] load B[0,0] store B[0,0]

load A[1,0] load B[1,0] store B[1,0] …
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Example 4: Hits and Misses
 Reference order and storage order for 

an array are not the same
 Our loop will show no spatial locality

 Assume that packing has been to 
eliminate conflict misses due to base 
addresses

 Reference Sequence:
load A[0,0] load B[0,0] store B[0,0]
load A[1,0] load B[1,0] store B[1,0] …

 Miss(cold), Miss(cold), Hit for each array 
element

 Hit ratio: 33.3%
 Question: Will A[0,1] be in the cache when 

required?
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Example 4 with Loop Interchange
double A[1024][1024], B[1024][1024];

for (i=0;i<1024;i++)

for (j=0;j<1024;j++)

B[i][j] = A[i][j] + B[i][j];

 Reference Sequence:
load A[0,0] load B[0,0] store B[0,0]

load A[0,1] load B[0,1] store B[0,1] …

 Hit ratio: 83.3%
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Is Loop Interchange Always Safe?

for (i=1; i<2048; i++)

for (j=1; j<2048; j++)

A[i][j] = A[i+1][j-1] + A[i][j-1];

A[1,1] = A[2,0]+A[1,0]

A[2,1] = A[3,0]+A[2,0] 

…

A[1,2] = A[2,1]+A[1,1]

A[1,1] = A[2,0]+A[1,0]

A[1,2] = A[2,1]+A[1,1] 

…

A[2,1] = A[3,0]+A[2,0]

for (i=1; i<2048; i++)

for (j=1; j<2048; j++)

for (i=2047; i>1; i--)



21

41

Example 5: Matrix Multiplication
double X[N][N], Y[N][N], Z[N][N];

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

X[i][j] += Y[i][k] * Z[k][j];

Reference Sequence:

X Y Z

X[i][j] Y[i][k] Z[k][j]
/ Dot product inner loop

Y[0,0], Z[0,0], Y[0,1], Z[1,0], Y[0,2], Z[2,0] … X[0,0],

Y[0,0], Z[0,1], Y[0,1], Z[1,1], Y[0,2], Z[2,1] … X[0,1],

…

Y[1,0], Z[0,0], Y[1,1], Z[1,0], Y[1,2], Z[2,0] … X[1,0],

Y[0,0], Z[0,0], Y[0,1], Z[1,0], Y[0,2], Z[2,0] … X[0,0],

Y[0,0], Z[0,1], Y[0,1], Z[1,1], Y[0,2], Z[2,1] … X[0,1],

…

Y[1,0], Z[0,0], Y[1,1], Z[1,0], Y[1,2], Z[2,0] … X[1,0],

…
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With Loop Interchanging
• Can interchange the 3 loops in any way
• Example: Interchange i and k loops

• For inner loop: Z[k][j] can be loaded into 
register once for each (k,j), reducing the 
number of memory references

double X[N][N], Y[N][N], Z[N][N];

for (k=0; k<N; k++)

for (j=0; j<N; j++)

for (i=0; i<N; i++)

X[i][j] += Y[i][k] * Z[k][j];Z[k][j]X[i][j] Y[i][k]
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Let’s try some Loop Unrolling Instead
double X[N][N], Y[N][N], Z[N][N];

for (i=0; i<N; i++)

for (k=0; k<N; k++)

X[i][j] += Y[i][k] * Z[k][j];

for (j=0; j<N; j++)

Exploits spatial locality  for array Z?

for (k=0; k<N; k+=2)

X[i][j] += Y[i][k]*Z[k][j] + Y[i][k+1]*Z[k+1][j];

Unroll k loop
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Let’s try some Loop Unrolling Instead
double X[N][N], Y[N][N], Z[N][N];

for (i=0; i<N; i++)

for (k=0; k<N; k++)

X[i][j] += Y[i][k] * Z[k][j];

for (j=0; j<N; j++)

Exploits spatial locality for array Z

for (k=0; k<N; k++) {

X[i][j] += Y[i][k]*Z[k][j];

X[I][j+1] += Y[I][k]*Z[k][j+1];

}

Unroll j loopfor (j=0; j<N; j+=2)
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Let’s try some Loop Unrolling Instead
double X[N][N], Y[N][N], Z[N][N];

for (i=0; i<N; i++)

for (k=0; k<N; k++)

X[i][j] += Y[i][k] * Z[k][j];

for (j=0; j<N; j++)

Exploits spatial locality  for array Z

Exploits temporal locality for array Y

Unroll j loop

Blocking or Tiling

Unroll k loop

for (j=0; j<N; j+=2)

for (k=0; k<N; k+=2){

X[i][j] += Y[i][k]*Z[k][j] +Y[i][k+1]*Z[k+1][j];

X[i][[j+1] += Y[i][k]*Z[k][j+1] +Y[i][k+1]*Z[k+1][j+1];

}
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Blocking/Tiling
Idea: Since problem is with accesses to array Z, 
make full use of elements of Z when they are 
brought into the cache

X

0,0 0,0

1,0

0,1

1,1 1,0 1,1

0,1

Y Z

X Y x Z

0,0   0,0x0,0 + 0,1x1,0

1,0   1,0x0,0 + 1,1x1,0
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Blocked Matrix Multiplication
Y Z

K

K

J

for (J=0; J<N; J+=B)

for (K=0; K<N; K+=B)

r += Y[i][k] * Z[k][j];

X[i][j] += r;

for (j=J; j<min(J+B,N); j++){

for (k=K, r=0; k<min(K+B,N); k++)

}

for (i=0; i<N; i++)

48

Revisit Example 1 : with double A[4096]

double A[4096]; 
sum=0.0;

for (i=0; i<4096, i++) 

sum = 0.0;

for (i=0; i<4096, i++) 

sum = sum +A[i];

 The entire array no longer 
fits into the cache – cache 
size: 16KB, array size: 32KB

 After execution of the 
previous loop, the second 
half of the array will be in 
cache

 Analysis: our loop sees 
misses as we just saw

 Called Capacity Misses as 
they would not be misses if 
the cache had been big 
enough
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Some Homework

1. Implementing Matrix Multiplication

Objective: Best programs for multiplying 
1024x1024 double matrices on any 2 
different machines that you normally use.

Techniques: Loop interchange, blocking, etc

Criterion: Execution time

Report: Program and execution times


