Profiler

In software engineering, profiling ("program profiling", "software
profiling") is a form of dynamic program analysis that measures, for
example, the space (memory) or time complexity of a program, the
usage of particular instructions, or the frequency and duration of

function calls. (Wikipedia)
Static Analysis Tools
Dynamic Analysis Tools
Hybrid Analysis Tools

(Source - An Overview of Software Performance
Analysis Tools and Techniques: From GProf to
Dtrace)

Static Analysis Tools

Two methods
— Source Code Instrumentation — data collection or sampling routines are added
¢ Performance slowdown due to instrumented code
¢ Can potentially modify the behaviour of program
— Sampling
Compile Time instrumentation Tools
— Source code instrumented by compiler
— Counters and Monitor Calls inserted
— Generate Function Call Graphs
— gprof
Sampling Tools
— Atregular intervals record state
— Accuracy and runtime depend on Sampling rate
— User level monitoring code (gprof)
— Kernel level monitoring code (oprofile)

30-09-2014

Compile Time Instrumentation Tool

int main()

(

setup_program() ;
close_program() ;
return 0;

)

int main()

{
call _monitor (ID_SETUP_PROGRAM) ;

setup_program() ;

c-l.lmmonxtor(ID_Cwsl:wPROGRAH) !
close_program() ;

colllct_:uulu(l :
return 0;
|

/] Inserted Instrumentation Routine
void call monitor(int func id)

{
call_count_arr(func_id]++;
return 0;

)

Original Application Source Code Instrumented Application Source Code

(Inserted Segments Highlighted in Red)

Sampling Tool

// Main Routine of Sampling Tool
int main(char *app_to_monitor)
{

status = O

// Sertup Timer to Collect Data
setup_timer (TIMER_ RES, "interrupt_routine™):

// Fork the App Being Analyzed
status = fork (app_to_monitor) :

// Wait Until the App Completes
while(wait(status) !'= 0):

// Collect Results of Analysis
collect _results():
return 0

]

// Routine Used to Handle Timer Executions

void interrupt_ routine (int previous_pc)

{
// Update Count for The Calling PC
// Can Relate to Specific Function in Post Analysis
update_count (previous_pc) ;

// Reset Interrupt Routine for Next Time Slice
reset_counter ("interrupt_routine™) ;

retuzn;

Source Code of a Typical Sampling Tool (ST)

30-09-2014

Static Analysis Tools

e Hardware Counter Tools

— Use h/w event counters provided in processors
(e.g. cache misses, number of floating point
instructions etc.)

— Perfsuite (linux based)
e Compound Tools

— ST plus HCT
— vTune (Intel), Code XL(AMD)

gprof

¢ Uses Compile Time Instrumentation and Sampling
Compile source code with —pg

¢ Run the executable, will generate gmon.out

e gprof gmon.out > profiler.output

¢ Flat profile — time spent in each function

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name
33.34 0.02 0.02 7208 0.00 0.00 open
16.67 0.03 0.01 244 0.04 0.12 offtime
16.67 0.04 0.01 8 1.25 1.25 memccpy
16.67 0.05 0.01 7 1.43 1.43 write

30-09-2014

Dynamic Analysis Tools

e Binary level modifications at runtime

* Two types

— Binary Instrumentation

¢ Customized analysis routines inserted at arbitrary points at
runtime

¢ APIs provided by the tool can be used to decide what to
monitor

* Pin
— Probing

¢ Predefined Shared library or kernel routines (Probes) to
collect data

e DTrace

PIN

pin —t pintool — application

pin —t pintool —pid 1234 (attach to a process)
— pin -> instrumentation engine
— pintool -> instrumentation tool

Instrumentation routines — where
instrumentation is inserted (e.g. before instr)

Analysis routines — what to do (e.g. incr
counter)

30-09-2014

30-09-2014

Pintool example

FILE = trace;

// Print a memory write record

VOID RecordMemWrite(VOID = ip, VOID = addr, UINT32 size) {
fprintf(trace,"/p: W %p %d\n", ip, addr, size);

>

// Called for every instruction
VOID Instruction(INS ins, VOID =v) {
// instruments writes using a predicated call,
// i.e. the call happens iff the store is
// actually executed
Instr pointer if (INS_IsMemoryWrite(ins))
(PC) INS_TInsertPredicatedCall(
ins, TPOTNT_BEFORE, AFUNPTR(RecordMemWrite),
TARG_INST_PTR, TARG_MEMORYWRITE_EA,
TARG_MEMORYWRITE_STIZE, TARG_END);
¥ Effective addr of a

mem write

int main(int argc, char =argv[]) {
PIN_Tnit(argec, argv);
trace = fopen("atrace.out", "w");
INS_AddInstrumentFunction(Instruction, 0);
PIN_StartProgram(); // Never returns
return O;

Figure 1. A Pintool for tracing memory writes.

Dynamic Instrumentation

Original code

}

Code cache

Exits point back to Pin

@ 2
l Pin fetches trace starting block 1

and start instrumentation

PLDI'0S 10

Dynamic Instrumentation

Original cod
riginat code Code cache

S~

Pin transfers control into -

l code cache (block 1)

PLDI'0S 1

Dynamic Instrumentation

Original cod
riginat code Code cache

l trace linking

$* %

@
Pin fetches and instrument -

l a new trace

PLDI'0S 12

30-09-2014

30-09-2014

Pin’s Software Architecture

Pintool Q 3 programs (Pin, Pintool, App) in
H same address space:
Pin] |

» User-level only

Instrumentation APIs .
Q Instrumentation APIs:

Virtual Machine (VM) <= > Through which Pintool

S communicates with Pin

IS JIT Compiler Lk O JIT compiler:

_& Cac » Dynamically compile and
<

instrument

Emulation Unit | >

Q Emulation unit:

TS s edecccovesescovecroncsescovesroneses 1% » Handle insts that can’'t be
directly executed (e.g., syscalls)

O Code cache:

Operating System
Hardware

» Store compiled code
PLDI'05 => Coordinated by VM

CodeXL(AMD)

Source — CodeXL User Manual
Available on Windows and Linux
Statistical Sampling Based

Three profile modes
— Time Based Profile (TBP) — to identify ‘hotspots’

— Event Based Profile (EBP) — uses HW Performance
Monitor Counters (PMC). Example: processor clock
cycles, retired instructions, data cache accesses, and
data cache misses

— Instruction Based Sampling (IBS)

CodeXL Usage

* Two modes:
— Execute a CPU Profile Session
— Attach to a process
e Select a CPU profile type
— Time based profile
— Event based profile
— Instruction based sampling

Event Based Profiling

(Assess Performance)

* Retired Instructions

e CPU clock cycles not halted

* Retired branch instructions

e Retired mispredicted branch instructions
e Data cache accesses

* Data cache misses

e L1 DTLB and L2 DTLB misses

e Misaligned accesses

30-09-2014

Event Based Profiling

(Investigate Branching)

Retired Instructions

Retired branch instructions

Retired mispredicted branch instructions
Retired taken branch instructions
Retired near returns

Retired mispredicted near returns
Retired mispredicted indirect branches

Event Based Profiling

(Investigate Data Access)

Retired Instructions

Data cache accesses

Data cache misses

Data cache refills from L2 or Northbridge
L1 DTLB miss and L2 DTLB hit

L1 DTLB and L2 DTLB misses

Misaligned accesses

30-09-2014

Event Based Profiling

(Investigate Instruction Access)

Retired Instructions
Instruction Cache fetches
Instruction Cache misses

L1 ITLB miss and L2 ITLB hits
L1 ITLB miss and L2 ITLB miss

Event Based Profiling

(Investigate L2 Cache Access)

Retired Instructions
Requests to L2 cache
L2 cache misses

L2 fill/writeback

30-09-2014

10

Event Based Profiling

(Cache Line Utilization)
¢ (CLU) measures how much of a cache line is used
(read or written) before it is evicted from the cache.

Event

Description

Cache Line Utilization
Percentage

The cache line utilization percentage for all cache lines on all cores
accessed by this instruction / function / module.

Line Boundary Crossings

The number of accesses to the cache line that spanned two cache lines.
This happens when an unaligned access is made that causes two cache
lines to be touched.

Bytes/L1 Eviction

The number of bytes accessed between cache line evictions.

Accesses/L1 Eviction

The number of accesses (loads plus stores) to a cache line between
evictions.

L1 Evictions The number of times a cache line was evicted where this instruction
depended on the data in the cache line.
Accesses The total number of loads and stores samples for this instruction /

function / module.

Bytes Accessed

The total number of bytes accessed by this instruction / function /
module.

Instruction Based Sampling

¢ Two main categories of pipeline stages:
— Instruction Fetch
— Instruction Execution
¢ IBS Fetch Sampling:
— Select a fetch at the end of a sampling period (certain number of
fetched instructions)
— IBS fetch sample is taken when the selected fetch completes/aborts
¢ The fetch address
¢ Whether the fetch completed or aborted
¢ Whether the fetch missed in the instruction cache (IC)
¢ Whether the fetch missed in the level 1 or level 2 ITLB
¢ The page size of the address translation

¢ The fetch latency, i.e., cycles from when the fetch was initiated to when the
fetch either completed or aborted

30-09-2014

11

Instruction Based Sampling

IBS op Sampling : Each AMDG64 instruction translated into or more
macro ops.

Counts processor cycles/dispatchd ops and periodically selects an op
to be tagged and monitored and IBS sample is generated only if the
op retires

The AMDG64 instruction address for the op
The tag-to-retire time (cycles from when the op was tagged to when the op retired)
The completion-to-retire time (cycles from when the op completed to when the op retired)
Whether the op implements AMD64 branch semantics (a "branch op")
¢ If the branch op was mispredicted
* If the branch was taken
* If the branch was a return
¢ If the return was mispredicted
Whether the op performed a load and/or store operation
¢ If the operation missed in the data cache
¢ If the operation missed in the level 1 or level 2 DTLB
¢ The page size of the level 1 or level 2 address translation
¢ If the operation caused a misaligned access
¢ The DC miss latency (in cycles) if the load operation missed in the data cache
¢ The virtual and physical address of the requested memory location
¢ If the access was made to local or remote memory

30-09-2014

12

