
1

SE-292 High Performance Computing
Profiling and Performance

R. Govindarajan

govind@serc

2

Performance Measurement and Tuning
 Tools to help you measure the performmance

of program
 Determining program execution time

% time a.out
real 0m0.019s
user 0m0.014s
system 0m0.002s

• Gives elapse time, user, and system

 Tools to identify the important parts of your
program for perf. Improvement
Concentrate optimization efforts on those parts

2

3

Amdahl’s Law

 Which part of the program to optimize?

 Amdahl’s Law:

Speedup is limited by the part of program

which does not benefit by the optimization

IOW, Sp ≈ 1/s !

 Implies concentrate on part of the program
where maximum time is spent!

4

Timing
Timing: measuring the time spent in specific

parts of your program
• Examples of `parts’: Functions, loops, …
• Recall: Different kinds of time that can be

measured (real/wallclock/elapsed vs
virtual/CPU)

1. Decide
• which time you are interested in measuring
• at what granularity

2. Find out what mechanisms are available
and their granularity of measurement

3

5

Timing Mechanisms

 gettimeofday

 Real time in seconds and microseconds
since 00:00 1/1/1970

 Q: Overflow of 32b second value?

 getrusage

 times system call

 High resolution timers
 Example: gethrtime

6

Profiling
 Profiler: tool that helps you identify the

`important’ parts of your program to concentrate
your optimization efforts

 Profile: breakup (of execution time) across
different parts of the program

 Can be done by adding statements to your
program (instrumentation) -- so that during
execution, data is gathered, outputted and
possibly processed later

 Automation: where a profiling tool adds those
instructions into your program for you

4

7

Profiling Mechanisms
 Levels of Granularity typically supported
 Function level
 Statement level
 Basic block level: A basic block is a sequence of

contiguous instructions in a program with a single
entry point (the first instruction in the basic block)
and a single exit point (the last instruction in the
basic block)

 Two kinds of profile data
 execution time
 execution counts

 We will look at examples of profiling mechanisms
at the function and basic block level

8

Prof: UNIX Function Level Profiling

 Usage
% cc –p program.c /generates instrumented a.out

% a.out / execution; instrumentation

/ generates data and mon.out

% prof / processing of profile data

 Output gives a function by function breakup
of execution time

 Useful in identifying which functions to
concentrate optimization efforts on

5

9

Output:

%Time Seconds CumSecs #Calls
Name

56.8 0.50 0.50 1000 _baz

27.4 0.24 0.74 1000 _bar

15.9 0.14 0.88 500 _foo

…

0.0 0.00 0.88 1 _main

0.0 0.00 0.88 3 _strcpy

10

Prof: How it Works

 Instrumentation does three things
1. At entry of each function: increment an execution

count for that function

2. At program entry: make a call to system call profil
to get execution times

3. At program exit: write profile data to output file that
can later be processed by prof

 profil(): execution time profiler
 Generates an execution time histogram, execution

time in each function

6

11

Profil: What it does
 One of the parameters in call to profil is a buffer

 Used as an array of counters initialized to 0

 Array elements are associated with contiguous
regions of program text

 During execution, PC value is sampled (once every
clock tick, default: 10 msec); triggered on timer
interrupt

 Corresponding buffer element is incremented

 Later associated with a function; time weight of 10
msec used to estimate CPU times

12

Using prof
 From how it works, we understand that
 Granularity is at best 10 msec
 Generated profile could differ for multiple runs of a

program with same input!
 Could be completely wrong; observe that there

could be a particular function that just happens to
be running each time the timer interrupt occurs

 Some usage guidelines
 Run under light load conditions
 Run a few times and see if results vary a lot
 Note that function execution counts are exact,

while execution times are estimates

