
1

SE-292 High Performance Computing
Profiling and Performance

R. Govindarajan

govind@serc

2

Performance Measurement and Tuning
 Tools to help you measure the performmance

of program
 Determining program execution time

% time a.out
real 0m0.019s
user 0m0.014s
system 0m0.002s

• Gives elapse time, user, and system

 Tools to identify the important parts of your
program for perf. Improvement
Concentrate optimization efforts on those parts

2

3

Amdahl’s Law

 Which part of the program to optimize?

 Amdahl’s Law:

Speedup is limited by the part of program

which does not benefit by the optimization

IOW, Sp ≈ 1/s !

 Implies concentrate on part of the program
where maximum time is spent!

4

Timing
Timing: measuring the time spent in specific

parts of your program
• Examples of `parts’: Functions, loops, …
• Recall: Different kinds of time that can be

measured (real/wallclock/elapsed vs
virtual/CPU)

1. Decide
• which time you are interested in measuring
• at what granularity

2. Find out what mechanisms are available
and their granularity of measurement

3

5

Timing Mechanisms

 gettimeofday

 Real time in seconds and microseconds
since 00:00 1/1/1970

 Q: Overflow of 32b second value?

 getrusage

 times system call

 High resolution timers
 Example: gethrtime

6

Profiling
 Profiler: tool that helps you identify the

`important’ parts of your program to concentrate
your optimization efforts

 Profile: breakup (of execution time) across
different parts of the program

 Can be done by adding statements to your
program (instrumentation) -- so that during
execution, data is gathered, outputted and
possibly processed later

 Automation: where a profiling tool adds those
instructions into your program for you

4

7

Profiling Mechanisms
 Levels of Granularity typically supported
 Function level
 Statement level
 Basic block level: A basic block is a sequence of

contiguous instructions in a program with a single
entry point (the first instruction in the basic block)
and a single exit point (the last instruction in the
basic block)

 Two kinds of profile data
 execution time
 execution counts

 We will look at examples of profiling mechanisms
at the function and basic block level

8

Prof: UNIX Function Level Profiling

 Usage
% cc –p program.c /generates instrumented a.out

% a.out / execution; instrumentation

/ generates data and mon.out

% prof / processing of profile data

 Output gives a function by function breakup
of execution time

 Useful in identifying which functions to
concentrate optimization efforts on

5

9

Output:

%Time Seconds CumSecs #Calls
Name

56.8 0.50 0.50 1000 _baz

27.4 0.24 0.74 1000 _bar

15.9 0.14 0.88 500 _foo

…

0.0 0.00 0.88 1 _main

0.0 0.00 0.88 3 _strcpy

10

Prof: How it Works

 Instrumentation does three things
1. At entry of each function: increment an execution

count for that function

2. At program entry: make a call to system call profil
to get execution times

3. At program exit: write profile data to output file that
can later be processed by prof

 profil(): execution time profiler
 Generates an execution time histogram, execution

time in each function

6

11

Profil: What it does
 One of the parameters in call to profil is a buffer

 Used as an array of counters initialized to 0

 Array elements are associated with contiguous
regions of program text

 During execution, PC value is sampled (once every
clock tick, default: 10 msec); triggered on timer
interrupt

 Corresponding buffer element is incremented

 Later associated with a function; time weight of 10
msec used to estimate CPU times

12

Using prof
 From how it works, we understand that
 Granularity is at best 10 msec
 Generated profile could differ for multiple runs of a

program with same input!
 Could be completely wrong; observe that there

could be a particular function that just happens to
be running each time the timer interrupt occurs

 Some usage guidelines
 Run under light load conditions
 Run a few times and see if results vary a lot
 Note that function execution counts are exact,

while execution times are estimates

