
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान
बंगलौर, भारत

Supercomputer Education and Research Centre (SERC)

SE 292: High Performance Computing [3:0][Aug:2014]

Concurrent Programming

Adapted from “Intro to Concurrent Programming & Parallel Arch.”, Sathish Vadhiyar, SE292 (Aug:2013),
“Operating Systems Concepts”, Silberschatz, Galvin & Gagne, 2005 & Computer Systems: A
Programmer's Perspective", by R.E. Bryant and D. O'Hallaron, 2003

Yogesh Simmhan

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Concurrent Programming

• Until now: execution involved one flow of
control through program

• Concurrent programming is about programs
with multiple flows of control

• For example: a program that runs as multiple
processes cooperating to achieve a common
goal

• To cooperate, processes must somehow
communicate

2

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Inter Process Communication (IPC)

1. Using files
• Parent process creates 2 files before forking child process
• Child inherits file descriptors from parent, and they share

the file pointers
• Can use one for parent to write and child to read, other for

child to write and parent to read

2. OS supports something called a pipe
• Producer writes at one end (write-end) and consumer reads

from the other end (read-end)
• corresponds to 2 file descriptors (int fd[2])
• Read from fd[0] accesses data written to fd[1] in FIFO order

and vice versa
• Used with fork - parent process creates a pipe and uses it to

communicate with a child process

3

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Other IPC Mechanisms
3. Processes could communicate through

variables that are shared between them
• Shared variables, shared memory; other

variables are private to a process

• Special OS support for program to specify
objects that are to be in shared regions of
address space

• Posix shared memory – shmget, shmat

4. Processes could communicate by sending
and receiving messages to each other

• Special OS support for these messages
4

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

More Ideas on IPC Mechanisms
5. Sometimes processes don’t need to

communicate explicit values to cooperate
• They might just have to synchronize their

activities

• Example: Process 1 reads 2 matrices, Process 2
multiplies them, Process 3 writes the result
matrix

• Process 2 should not start work until Process 1
finishes reading, etc.

• Called process synchronization

• Synchronization primitives
• Examples: mutex lock, semaphore, barrier

5

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Programming With Shared
Variables
• Consider a 2 process program in which both

processes increment a shared variable
shared int X = 0;

P1: P2:

X++; X++;

• Q: What is the value of X after this?
• Want it to be X(P1) = 1 and X(P2) = 2, or vice versa

• But: X++ compiles into something like
LOAD R1, 0(R2)

ADD R1, R1, 1

STORE 0(R2), R1

6

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Problem with shared variables
• Final value of X could be 1!

P1 loads X into R1, increments R1
LOAD R1, 0(R2)
ADD R1, R1, 1

P2 loads X into register before P1 stores new value into X
LOAD R1, 0(R2)
ADD R1, R1, 1

Net result: P1 stores 1, P2 stores 1
STORE 0(R2), R1
STORE 0(R2), R1

• Race Condition – When result depends on exec order
• Need to synchronize 2 or more processes that try to

update shared variable
• Critical Section: part of program where a shared

variable is accessed 7

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Critical Section Problem:
Mutual Exclusion

• Must synchronize processes so that they access
shared variable one at a time in critical section;
called Mutual Exclusion (Mutex)

• Mutex Lock: a synchronization primitive
• AcquireLock(L)

• Done before critical section of code

• Returns when safe for process to enter critical section

• ReleaseLock(L)
• Done after critical section

• Allows another process to acquire lock

8

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Implementing a Lock

int L=0; /* 0:lock available */

AcquireLock(L):

while (L==1); /* BUSY WAITING */

L = 1;

ReleaseLock(L):

L = 0;

9

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Why this implementation fails

10

while (L == 1);

L = 1;

Process 1 Process 2
LW R1 with 0

LW R1 with 0

BNEZ

ADDI

SW

Enter CS

BNEZ

ADDI

SW

Enter CS

wait: LW R1, Addr(L)

BNEZ R1, wait

ADDI R1, R0, 1

SW R1, Addr(L)

time

Assume that lock L is currently

available (L = 0) and that 2

processes, P1 and P2 try to acquire

the lock L

Context Switch

Context Switch

IMPLEMENTATION ALLOWS PROCESSES

P1 and P2 TO BE IN CRITICAL SECTION

TOGETHER!

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Busy Wait Lock Implementation

• Hardware support will be useful to implement a
lock

• Example: Test&Set instruction

Test&Set Lock:
tmp = Lock

Lock = 1

Return tmp

11

Where these 3 steps happen

atomically or indivisibly.

i.e., all 3 happen as one operation

(with nothing happening in between)

Atomic Read-Modify-Write (RMW)

instruction

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Busy Wait Lock with Test&Set
AcquireLock(L)

while (Test&Set(L)) ;

ReleaseLock(L)

L = 0;

• Consider the case where P1 is currently in a critical
section, P2-P10 are executing AcquireLock: all are
executing the while loop

• When P1 releases the lock, by the definition of
Test&Set exactly one of P2-P10 will read the new lock
value of 0 and set L back to 1
• Other processes will continue to read this new value of 1

12

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

More on Locks

• Other names for this kind of lock
• Mutex

• Spin wait lock

• Busy wait lock

• Can have locks where instead of busy
waiting, an unsuccessful process gets
blocked by the operating system

13

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Semaphore

• A more general synchronization mechanism

• Operations: P (wait) and V (signal)

• P(S)
• if S is nonzero, decrements S and returns
• Else, suspends the process until S becomes nonzero,

when the process is restarted
• After restarting, decrements S and returns

• V(S)
• Increments S by 1
• If there are processes blocked for S, restarts exactly one

of them

14

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Critical Section Problem &
Semaphore
• Semaphore S = 1;

• Before critical section: P(S)

• After critical section: V(S)

• Semaphores can do more than mutex locks
• Initialize S to 10 and 10 processes will be allowed to

proceed

• P1:read matrices; P2: multiply; P3: write product

• Semaphores S1=S2=0;

• End of P1: V(S1), beginning of P2: P(S1) etc

15

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Deadlock

Consider the following process:
P1: lock (L); lock(L);

• P1 is waiting for something (release of lock
that it is holding) that will never happen

• Simple case of a general problem called
deadlock

• Cycle of processes waiting for resources held
by others while holding resources needed by
others

16

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Classical Problems

Producers-Consumers Problem
• Bounded buffer problem

• Producer process makes things and puts them
into a fixed size shared buffer

• Consumer process takes things out of shared
buffer and uses them

Must ensure that producer doesn’t put into full
buffer or consumer take out of empty buffer

While treating buffer accesses as critical section

17

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Producers-Consumers
Problem

shared Buffer[0 .. N-1]

Producer: repeatedly
Produce x

Buffer[i++] = x

Consumer: repeatedly

y = Buffer[- - i]

Consume y

18

; if (buffer full) wait for consumption

; signal consumer

If (buffer empty) wait for production;

; signal producer

Dining Philosophers Problem
• N philosophers sitting around a circular table

with a plate of food in front of each and a fork
between each 2 philosophers

• Philosopher does: Repeatedly
 Eat (using 2 forks)

 Think

• Problem:
 Avoid deadlock

 Be fair

19

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

#define N 5 /* Number of philosphers */
#define RIGHT(i) (((i)+1) %N)
#define LEFT(i) (((i)==N) ? 0 : (i)+1)
typedef enum { THINKING, HUNGRY, EATING }
phil_state;
phil_state state[N];
semaphore mutex =1;
semaphore s[N]; /* one per philosopher, all 0 */

void philosopher(int process) {
while(1) {

think();
get_forks(process);
eat();
put_forks(process);

}
} www.isi.edu/~faber/cs402/notes/lecture8.pdf

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

void test(int i) {
if (state[i] == HUNGRY &&
state[LEFT(i)] != EATING &&
state[RIGHT(i)] != EATING){
state[i] = EATING; V(s[i]);

}
}

void get_forks(int i) {
P(mutex);
state[i] = HUNGRY;
test(i);
V(mutex);
P(s[i]);

}

void put_forks(int i) {
P(mutex);
state[i]= THINKING;
test(LEFT(i));
test(RIGHT(i));
V(mutex);

}

www.isi.edu/~faber/cs402/notes/lecture8.pdf

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

THREADS

Thread
• The basic unit of CPU utilization

• Thread of control in a process

• `Light weight process’ (LWP)

• Weight related to
• Time for creation (e.g. 30x faster than Process)

• Time for context switch (e.g. 5x faster)

• Size of context

• Recall context of process

23

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Threads and Processes
• Thread context

• Thread id, Stack, Stack Pointer, PC, Registers

• So, thread context switching can be fast

• Many threads in same process that share
parts of process context
• Virtual address space (other than stack)

• So, threads in the same process share
variables that are not stack allocated

• User (process) can manage synchronization
of threads

24

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Threads and Sharing

• Shares with other threads of a process – code
section, data section, open files and signals

25

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Threads

• Benefits – responsiveness, communication,
parallelism and scalability

• Types – user threads and kernel threads

• Multithreading models
• Many-one: efficient; but entire process will

block if a thread makes a blocking system call

• One-to-one: e.g. Linux. Parallelism; but can be
heavy weight

• Many-to-many: balance between the above two
schemes

26

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Thread Implementation

• Can be supported in the OS or by a library

• Pthreads: POSIX thread library – a standard for
defining thread creation and synchronization
• int pthread_create

• pthread_t *thread, const pthread_attr_t
*attr, void *(*start_routine), void *arg

• pthread_attr

• pthread_join

• pthread_exit

• pthread_detach

• Do “man –k pthreads”

27See Sec 12.3-12.5, Bryant

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Sec 12.3, Bryant

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Synchronization Primitives
Mutex locks

int pthread_mutex_lock(pthread_mutex_t
*mutex)

If the mutex is already locked, the calling thread
blocks until the mutex becomes available. Returns
with the mutex object referenced by mutex in the
locked state with the calling thread as its owner.

pthread_mutex_trylock
pthread_mutex_unlock

Semaphores
sem_init
sem_wait
sem_post

29

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Pthread scheduling

• Process contention scope – scheduling user-level
threads among a set of kernel threads.

• System contention scope – scheduling kernel
threads for CPU.

• Functions for setting the scope
• pthread_attr_setscope,

• pthread_attr_getscope

• Can use PTHREAD_SCOPE_PROCESS for PCS and
PTHREAD_SCOPE_SYSTEM for SCS

30

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Thread Safety
• A function is thread safe if it always produces

correct results when called repeatedly from
concurrent multiple threads

• Thread Unsafe functions
• That don’t protect shared variables

• That keep state across multiple invocations

• That return a pointer to a static variable

• That call thread unsafe functions

• Races
• When correctness of a program depends on one thread

reaching a point x before another thread reaching a
point y

31

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Recommended Reading
• Silberschatz
• Chapter 6: Process Synchronization
• Chapter 4: Threads

•Bryant: Chapter 12.3—12.5, Concurrent
Threads

Schedule
• Wed 22 Oct, 8AM: Parallelization

• Tue, Thu 28 & 30 Oct: Parallel Architectures (RG)

• Substitute Classes: Sat 1 Nov, Wed 5 Nov, Sat 8
Nov: MPI

