
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान
बंगलौर, भारत

Supercomputer Education and Research Centre (SERC)

Adapted from:

o “MPI-Message Passing Interface”, Sathish Vadhiyar, SE292 (Aug:2013),

o INF3380: Parallel programming for scientific problems, Lecture 6, Univ of Oslo,

o 12.950: Parallel Programming for Multicore Machines, Evangelinos, MIT,

o http://www.mpi-forum.org/docs/docs.html

SE 292: High Performance Computing [3:0][Aug:2014]

Message Passing Interface
MPI

Yogesh Simmhan

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Midterm 3 Topics
Thu 13 Nov 8-930AM

Lectures on the following topics, and:

Concurrent Programming

• Bryant, 2011: Ch.12.3—12.5

• Silberschatz, 7th Ed.: Ch.4 & Ch.6

Parallelization

• Grama, 2003: Ch. 3.1, 3.5; 5.1—5.6

Parallel Architectures

100 points (10% weightage)

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Assignment 2 Posted

• Due in 1 Week

• 7AM Tue Nov 18 by email

Substitute Class

• Fri 14 Nov, 830AM

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Message Passing Principles

• Used for distributed memory programming

• Explicit communication

• Implicit or explicit synchronization

• Programming complexity is high

• But widely popular

• More control with the programmer

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

MPI Introduction
• MPI is a library standard for programming

distributed memory using explicit message passing
in MIMD machines.

• A standard API for message passing communication
and process information lookup, registration,
grouping and creation of new message datatypes.

• Collaborative computing by a group of individual
processes

• Each process has its own local memory

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

MPI Introduction

• Need for a standard

>> portability

>> for hardware vendors

>> for widespread use of concurrent computers

• MPI implementation(s) available on almost every
major parallel platform (also on shared-memory
machines)

• Portability, good performance & functionality

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

MPI Introduction
• 1992-94 the Message Passing Forum defines a standard

for message passing (targeting MPPs)

• Evolving standards process:

• 1994: MPI 1.0: Basic comms, Fortran 77 & C bindings

• 1995: MPI 1.1: errata and clarifications

• 1997: MPI 2.0: single-sided comms, I/O, process
creation, Fortran 90 and C++ bindings, further
clarifications, many other things. Includes MPI-1.2.

• 2008: MPI 1.3, 2.1: combine 1.3 and 2.0, corrections &
clarifications

• 2009: MPI 2.2: corrections & clarifications

• 2013: MPI 3.0 released

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

MPI contains…

• Point-Point (1.1)
• Collectives (1.1)
• Communication contexts (1.1)
• Process topologies (1.1)
• Profiling interface (1.1)
• I/O (2)
• Dynamic process groups (2)
• One-sided communications (2)
• Extended collectives (2)
• About 125 functions; Mostly 6 are used

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

MPI Implementations
• MPICH (Argonne National Lab)

• LAM-MPI (Ohio, Notre Dame, Bloomington)

• LAM-MPI

• Cray, IBM, SGI

• MPI-FM (Illinois)

• MPI / Pro

(MPI Software Tech.)

• Sca MPI (Scali AS)

• Plenty others…

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

MPI Communicator
• communication universe for a

group of processes

• MPI COMM WORLD – name of
the default MPI communicator,
i.e., the collection of all
processes

• Each process in a communicator
is identified by its rank

• Almost every MPI command
needs to provide a
communicator as input
argument

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

MPI process rank
• Each process has a unique rank, i.e. an integer

identifier, within a communicator
• The rank value is between 0 and #procs-1
• The rank value distinguishes one process from another

#include <mpi.h>

...

int size, my_rank;

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

if (my_rank==0) {

...

}

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

6 Key MPI Commands
• MPI_Init - initiate an MPI computation

• MPI_Finalize - terminate the MPI computation and
clean up

• MPI_Comm_size - how many processes participate in
a given MPI communicator?

• MPI_Comm_rank - which one am I? (A number
between 0 and size-1.)

• MPI_Send - send a message to a particular process
within an MPI communicator

• MPI_Recv - receive a message from a particular
process within an MPI communicator

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Example
#include <stdio.h>
#include <mpi.h>
int main (int nargs, char** args) {
int size, my_rank;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
printf("Hello world, I’ve rank %d out of %d

procs.\n", my_rank, size);
MPI_Finalize ();
return 0;

} Compile: mpicc hello.c

Run: mpirun -np 4 a.out

Output:

Hello world, I’ve rank 2 out of 4 procs.

Hello world, I’ve rank 1 out of 4 procs.

Hello world, I’ve rank 3 out of 4 procs.

Hello world, I’ve rank 0 out of 4 procs.

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Communication Primitives

•Communication scope
•Point-point communications
•Collective communications

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Point-Point Communications

MPI_SEND(buf, count, datatype, dest, tag, comm)

Message
Rank of the
destination

Message
identifier

Communication
context

This blocking send function returns when the data has
been delivered to the system and the buffer can be
reused. The message may not have been received by
the destination process.

An MPI message is an array of data elements "inside an envelope"
Data: start address of the message buffer, counter of elements in
the buffer, data type
Envelope: source/destination process, message tag, communicator

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Point-Point Communications

MPI_RECV(buf, count, datatype, source, tag,
comm, status)

• This blocking receive function waits until a matching
message is received from the system so that the
buffer contains the incoming message.

• Match of data type, source process (or MPI ANY
SOURCE), message tag (or MPI ANY TAG).

• Receiving fewer datatype elements than count is ok,
but receiving more is an error

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Point-Point Communications

• The source or tag of a received message may not be
known if wildcard values were used in the receive
function. In C, MPI_Status is a structure that
contains further information.

MPI_GET_COUNT(status, datatype, count)
status.MPI_SOURCE
status.MPI_TAG

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

A Simple Example
comm = MPI_COMM_WORLD;

rank = MPI_Comm_rank(comm, &rank);

for(i=0; i<n; i++) a[i] = 0;

if(rank == 0){

MPI_Send(a+n/2, n/2, MPI_INT, 1, tag, comm);

}

else{

MPI_Recv(b, n/2, MPI_INT, 0, tag, comm, &status);

}

/* process array a */

/* do reverse communication */

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Communication Scope
• Explicit communications

• Each communication associated with
communication scope

• Process defined by
• Group
• Rank within a group

Message label by
• Message context
• Message tag

A communication handle called Communicator
defines the scope

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Communicator

• Communicator represents the communication
domain

• Helps in the creation of process groups

• Can be intra or inter (more later).

• Default communicator – MPI_COMM_WORLD
includes all processes

• Wild cards:
• The receiver source and tag fields can be wild carded –

MPI_ANY_SOURCE, MPI_ANY_TAG

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Buffering and Safety
The previous send and receive are blocking. Buffering

mechanisms can come into play.

Safe buffering:

Process 0 Process 1

MPI_Send

MPI_Recv

…………..

MPI_Recv

MPI_Send

…………..

MPI_Recv

MPI_Send

…………..

MPI_Recv

MPI_Send

…………..

MPI_Send

MPI_Recv

…………..

MPI_Send

MPI_Recv

…………..

OK

Leads to deadlock

May or may not
succeed. Unsafe

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Type of P2P Communication
• Blocking comms: Block until completed (send stuff on

your own)

• Non-blocking comms: Return without waiting for
completion (give them to someone else)

• Forms of Blocking Sends:
o Synchronous MPI_Ssend: message gets sent only when it is

known that someone is already waiting at the other end
(think fax)

o Buffered MPI_Bsend: message gets sent and if someone is
waiting for it so be it; otherwise it gets saved in a temporary
buffer until someone retrieves it. (think mail)

o Ready MPI_Rsend: Like synchronous, only there is no ack that
there is a matching receive at the other end, just a
programmer's assumption! (Use it with extreme care)

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Blocking Send Performance
• Synchronous sends offer the highest data rate (AKA

bandwidth) but the startup cost (latency) is very
high, and they run the risk of deadlock.

• Buffered sends offer the lowest latency but:
• suffer from buffer management complications

• have bandwidth problems because of the extra copies
and system calls

• Ready sends should offer the best of both worlds
but are prone to cause trouble. Avoid!

• Standard sends usually carefully optimized by the
implementors. For large message sizes they can
always deadlock.

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Message passing restrictions
• Order is preserved. For a given channel (sender,

receiver, communicator) message order is enforced:

• If P sends to Q, messages sa and sb in that order,
that is the order they will be received at B, even if
sa is a medium message sent with MPI_Bsend and
sb is a small message sent with MPI_Send.
Messages do not overtake each other.

• If the corresponding receives ra and rb match both
messages (same tag) again the receives are done in
order of arrival.

• This is actually a performance drawback for MPI
but helps avoid major programming errors.

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Non-blocking communications

• A post of a send or recv operation followed by
complete of the operation
MPI_ISEND (buf, count, datatype, dest, tag,
comm, request)
MPI_IRECV (buf, count, datatype, dest, tag,
comm, request)
MPI_WAIT (request, status)
MPI_TEST (request, flag, status)
MPI_REQUEST_FREE (request)

• A post-send returns before the message is
copied out of the send buffer

• A post-recv returns before data is copied into
the recv buffer

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Non-blocking
• Call MPI_Isend | MPI_Irecv, store the request

handle, do some work to keep busy and then call
MPI_Wait with the handle to complete the send.

• MPI_Isend | MPI_Irecv produces the request
handle, MPI_Wait consumes it.

• Efficiency depends on the implementation

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Buffering and Safety

Process 0 Process 1

MPI_Send(1)

MPI_Send(2)

…………..

MPI_Irecv(2)

MPI_Irecv(1)

…………..

MPI_Isend

MPI_Recv

…………..

MPI_Isend

MPI_Recv

………

Safe

Safe

To avoid deadlock we need to interlace nonblocking sends

with blocking receives, or nonblocking receives with

blocking sends; nonblocking calls always precede the

blocking ones.

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Non-blocking communications

• One or none completed
MPI_WAITANY (count, request[], index, status)

MPI_TESTANY (count, request[], index, flag,
status)

• All are completed
MPI_WAITALL (count, request[], status[])

MPI_TESTALL (count, request[], flag, status[])

• Return after some time, when “some” are
completed

MPI_WAITSOME (incount, request[], outcount,
index[], status[])

MPI_TESTSOME (incount, request[], outcount,
index[], status[])

Communication Modes

Mode Start Completion

Standard (MPI_Send) Before or

after recv

Before recv (buffer) or

after (no buffer)

Buffered (MPI_Bsend)

(Uses MPI_Buffer_Attach)

Before or

after recv

Before recv

Synchronous

(MPI_Ssend)

Before or

after recv

Particular point in recv

Ready (MPI_Rsend) After recv After recv

Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान
बंगलौर, भारत

Supercomputer Education and Research Centre (SERC)

Collective
Communications

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Broadcast
MPI_Bcast (void *buf, int cnt,
MPI_Datatype type, int root, MPI_Comm
comm)

• root has to be the same on all procs, can be nonzero

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Gather
MPI_Gather (void *sendbuf, int sendcnt,
MPI_Datatype sendtype, void *recvbuf,
int recvcnt, MPI_Datatype recvtype, int
root, MPI_Comm comm)

• Make sure recvbuf is large enough on root where it
matters, elsewhere it is ignored

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

All Gather

MPI_Allgather (void *sendbuf, int
sendcnt, MPI_Datatype sendtype, void
*recvbuf, int recvcnt, MPI_Datatype
recvtype, MPI_Comm comm)

• Can be thought of as an MPI_Gather followed by an
MPI_Bcast, with an unspecified root process

• Make sure recvbuf is large enough on all procs

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Scatter
MPI_Scatter (void *sendbuf, int
sendcnt, MPI_Datatype sendtype, void
*recvbuf, int recvcnt, MPI_Datatype
recvtype, int root, MPI_Comm comm)

• Make sure recvbuf is large enough on all procs,
sendbuf matter only on root

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Reduce
MPI_Reduce (void *sendbuf, void
*recvbuff, int cnt, MPI_Datatype type,
MPI_Op op, int root, MPI_Comm comm)

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

All Reduce

MPI_Allreduce (void *sendbuf, void
*recvbuff, int cnt, MPI_Datatype type,
MPI_Op op, MPI_Comm comm)

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Example: Matrix-vector
Multiply

A b x
=

Communication:

All processes should gather all elements of b.

Slice present in
one process

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Example: Row-wise Matrix-
Vector Multiply

MPI_Comm_size(comm, &size);

MPI_Comm_rank(comm, &rank);

nlocal = n/size ;

MPI_Allgather(local_b, nlocal, MPI_DOUBLE, b, nlocal,
MPI_DOUBLE, comm);

for(i=0; i<nlocal; i++){

x[i] = 0.0;

for(j=0; j<n; j+=)

x[i] += a[i*n+j]*b[j];

}

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Example: Column-wise Matrix-
vector Multiply

A b x
=

Dot-products corresponding to each element of x will be parallelized

Steps:

1. Each process computes its contribution to x

2. Contributions from all processes are added and stored in
appropriate process.

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Example: Column-wise Matrix-
Vector Multiply

MPI_Comm_size(comm, &size);
MPI_Comm_rank(comm, &rank);
nlocal = n/size;

/* Compute partial dot-products */
for(i=0; i<n; i++){
px[i] = 0.0;
for(j=0; j<nlocal; j+=)
px[i] += a[i*nlocal+j]*b[j];

}

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Collective Communications –
Reduce, Allreduce

A0
p
r
o
c
e
s
s
o
r
s

data

A1 A2
A0+B0+C0

Reduce

B0

C0

B1 B2

C1 C2

A1+B1+C1 A2+B2+C2

A0 A1 A2
A0+B0+C0

AllReduce

B0

C0

B1 B2

C1 C2

A1+B1+C1 A2+B2+C2

A0+B0+C0

A0+B0+C0

A1+B1+C1

A1+B1+C1

A2+B2+C2

A2+B2+C2

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Collective Communications –
Scatter & Gather

A0
p
r
o
c
e
s
s
o
r
s

data

A1 A2 A3 A4 A0

A1

A2

A3

A4

Scatter

Gather

MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)
MPI_SCATTERV(sendbuf, array_of_sendcounts, array_of_displ, sendtype, recvbuf,
recvcount, recvtype, root, comm)

MPI_GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)
MPI_GATHERV(sendbuf, sendcount, sendtype, recvbuf, array_of_recvcounts,
array_of_displ, recvtype, root, comm)

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Example: Column-wise Matrix-
Vector Multiply

/* Summing the dot-products */

MPI_Reduce(px, fx, n, MPI_DOUBLE,
MPI_SUM, 0, comm);

/* Now all values of x is stored in
process 0. Need to scatter them */

MPI_Scatter(fx, nlocal, MPI_DOUBLE, x,
nlocal, MPI_DOUBLE, 0, comm);

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Or…

for(i=0; i<size; i++){

MPI_Reduce(px+i*nlocal, x, nlocal,
MPI_DOUBLE, MPI_SUM, i, comm);

}

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Collective Communications

• Only blocking; standard mode; no tags

• Simple variant or “vector” variant

• Some collectives have “root”s

• Different types
• One-to-all

• All-to-one

• All-to-all

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Collective Communications -
Barrier

MPI_BARRIER(comm)

A return from barrier in one process tells the process
that the other processes have entered the barrier.

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Barrier Implementation

• Butterfly barrier by Eugene Brooks II

• In round k, i synchronizes with i 2k pairwise.

• Worstcase – 2logP pairwise synchronizations by a
processor

+

0 1 2 3 4 5 6 7

Stage 0

Stage 1

Stage 2

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Collective Communications -
Broadcast

A A

A

A

A

A

p
r
o
c
e
s
s
o
r
s

MPI_BCAST(buffer, count, datatype, root, comm)

Can be implemented
as trees

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Collective Communications –
AlltoAll

A0
p
r
o
c
e
s
s
o
r
s

data

A1 A2 A3 A4 A0

A1

A2

A3

A4

AlltoAll

MPI_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

B0

C0

E0

D0

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

E1 E2 E3 E4

MPI_ALLTOALLV(sendbuf, array_of_sendcounts, array_of_displ, sendtype,
array_of_recvbuf, array_of_displ, recvcount, recvtype, comm)

B0

B1

B2

B3

B4

C0

C1

C2

C3

C4

D0

D1

D2

D3

D4

E0

E1

E2

E3

E4

Supercomputer Education and Research Centre (SERC)Indian Institute of Science | www.IISc.in

Collective Communications –
ReduceScatter, Scan

A0

p
r
o
c
e
s
s
o
r
s

data

A1 A2
A0+B0+C0

ReduceScatter
B0

C0

B1 B2

C1 C2

A1+B1+C1

A2+B2+C2

A0 A1 A2

A0

scanB0

C0

B1 B2

C1 C2

A1 A2

A0+B0

A0+B0+C0

A1+B1

A1+B1+C1

A2+B2

A2+B2+C2

MPI_REDUCESCATTER(sendbuf, recvbuf, array_of_recvcounts,
datatype, op, comm)

MPI_SCAN(sendbuf, recvbuf, count, datatype, op, comm)

