Supercomputer Education and Research Centre (SERC)

SE 292: High Performance Computing [3:0][Aug:2014]

Shared Memory Parallelism
using OpenMP

Yogesh Simmhan

Adapted from:

“MPI-Message Passing Interface”, Sathish Vadhiyar, SE292 (Aug:2013),
OpenMP C/C++ standard (openmp.org)

OpenMP tutorial (http://www.lInl.gov/computing/tutorials/openMP/#Introduction)
OpenMP sc99 tutorial presentation (openmp.org)

Dr. Eric Strohmaier (University of Tennessee, CS594 class, Feb 9, 2000)

An Introduction Into OpenMP, Ruud van der Pas © Sun Microsystems, 2005

A “Hands-on” Introduction to OpenMP, Mattson & Meadows, SC08

O O O O O O O


http://www.llnl.gov/computing/tutorials/openMP/#Introduction

Indian Institute of Science | www.IISc.in ducation and Research Centre (SER(C)

Introduction

* An API for multi-threaded shared memory
parallelism

* A specification for a set of compiler
directives, library routines, and environment
variables — standardizing pragmas

* Both fine-grain and coarse-grain parallelism
* Much easier to program than MPI



Indian Institute of Science | www.IISc.in Juter Education and Research Centre (SERC]

Introduction

* Mainly supports loop-level parallelism
* Follows fork-join model

* The number of threads can be varied from
one region to another

* Based on compiler directives



Execution Model

* Begins as a single thread

called master thread Fork and Join Model

Mast:
* Fork: When parallel construct Thresd
is encountered, team of _— * * * "threads"
araiie !’EQJOH
threads are created

e Statements in the parallel

region are executed in parallel | ** * * * Worker
Parallel region

e Join: At the end of the parallel rhreads
region, the team threads 1
synchronize and terminate



1L Indian Institute of Science | www.IIS¢ Supercomputer Education and Research Centre (SERC)

[y

Definitions

* Construct — statement containing directive and
structured block

* Directive - #pragma <omp id> <other text>
* Based on C #pragma directives

#pragma omp directive-name [clause [,
clause] ..] new-Ll1ine

Example:

#pragma omp parallel default(shared)
private(beta,pi)



[

: | Indian Institute of Science | www.IIS¢ Supercomputer Education and Research Centre (SERC)

E.g. Matrix Vector Product

#pragma omp parallel for default(none) \
private(i,j,sum) shared(m,n,a,b,c)

for (1=0; 1<m; 1i++)

ﬁj

{
sum = 0.0; N |
for (3=0; jfln:_:l++)‘ = — %
sum += b[i] [j1*c[7]; -
al[i] = sum;
i
}
Thread ID 0 Thread ID 1
for (i=0,1,2,3,4) for (i=5,6,7.,8,9)
i = '0' i = 5
sum = X b[i=01[§]1*c[j] sum = X b[i=5][j]1*c[]j]
a[0] = sum a[f] = sum
:i. = l i = 6
sum = % b[i=1]1[j]1*c[]] sum = % b[i=6][j1*c[]]

al[l] = sum a[6] = sum



parallel construct

#pragma omp parallel [clause [, clause] ..] new-Lline

structured-block

Clause: 1 £ (scalar-expression)
private (variable-list)
firstprivate (variable-list)
default (shared | none)
shared (variabie-list)
copyin (variable-list)
reduction (operator s variable-list)

num threads (integer-cxpression)



Indian Institute of Science | www.IISc.in or Education and Research Centre (SERC)
Parallel construct

» Parallel region executed by multiple threads

* If num_threads, omp_set_num_threads(),
OMP_SET _NUM_THREADS not used, then number of
created threads is implementation dependent

* Number of physical processors hosting the thread also
implementation dependent

* Threads numbered from 0 to N-1

* Nested parallelism by embedding one parallel construct
inside another



Lt
&
|

%\’ Indian Institute of Science | www.IISc Supercomputer Education and Research Centre (SERC)

T

Parallel construct - Example

#include <omp.h>

main ()

{

int nthreads, tid;

#pragma omp parallel private(nthreads, tid)

{
printf("Hello World \n);



1,‘

| * Indian Institute of Science | www.IISc.in Jercomputer Education and Research Centre (SERC)

#pragma omp parallel if (n>limit) default(none) \

shared(n,a,b,c,x,y,2) private(f,i,scale) “IIIIIIIIIIIIIIIIIIIIIIIII.I.
{
£f=1.0; Statement is executed
1" by all threads

#pragma omp for nowait

parallel loop

for (i=0; i<n; i++) (work will be distributed)

z[i] = x[1] + yI[i]; °
*IIIIIIIIIIIIII E
Q)
: M
#pragma omp for nowait UL :
for (i=0; i<n; i++) parallel loop 8,
a[i] = b[i] + c[il: g (work will be distributed) 9
*Il.IlIIIIIIIIIIIIII;E
#pragma omp barrier <¢== synchronization

Statement is executed

scale = sum(a,0,n) + sum(z,0,n) + £; <77 g a

S

A

} /*¥-- End of parallel region --%*/



Indian Institute of Science | www.IISc.in ducation and Research Centre (SER(C)

When to use OpenMP?

* The compiler may not be able to do the
parallelization in the way you like to see it:

* A loop is not parallelized
* The data dependency analysis is not able to determine
whether it is safe to parallelize or not
* The granularity is not high enough
* The compiler lacks information to parallelize at the
highest possible level

* This is when explicit parallelization through
OpenMP directives and functions comes into the
picture



Indian Institute of Science | www.IISc.in ucation and Research Centre (SERC]

Terminology

 OpenMP Team = Master + Workers

* A Parallel Region is a block of code executed by all
threads simultaneously
* The master thread always has thread ID O

* Thread adjustment (if enabled) is only done before entering a
parallel region

* Parallel regions can be nested, but support for this is
implementation dependent

* An "if" clause can be used to guard the parallel region; in case
the condition evaluates to "false", the code is executed
serially

* A work-sharing construct divides the execution of the
enclosed code region among the members of the team;
in other words: they split the work



{1 Indian Institute of Science | www.IISc: Supercomputer Education and Research Centre (SERC)

Types of constructs, Calls, Variables

* Work-sharing constructs

e Synchronization constructs

* Data environment constructs

e Library calls, environment variables



Work sharing construct

* For distributing the execution among the threads that
encounter it

* 3types—for, sections, single

l masfter thread l master thread l master thread
FORK FORK FORK

- - -

l master thread l master thread l master thread



for construct

* For distributing the iterations among the threads

#pragma omp for [clause [, clause] ..]
new-Ll1ine
for-Loop

C I ause: private {oariable-list)
firstprivate (variable-list)
lastprivate (variahie-list)
reduction (operator: variable-list)
ordered
schedule (kind[, chunk size])

nowalt



Indian Institute of Science | www.IISc.in ducation and Research Centre (SER(C)

for construct

* Restriction in the loop structure so the
compiler can determine number of iterations

* e.g. no branching out of loop

* The assighnment of iterations to threads
depend on the schedule clause

* Implicit barrier at the end of for if not
nowait



Indian Institute of Science | www.IISc.in uter Education and Research Centre (SERC)

schedule clause

1. schedule(static, chunk size) -
iterations/chunk_size chunks distributed in
round-robin

2. schedule(runtime) — decision at
runtime. Implementation dependent



;Indmn Institute of Science | www.IISc.in mputer Education and Research Centre (SERC)

T

for - Example

include <omp.h>
#define CHUNKSIZE 100
#define N 1000

main () {
int i, chunk; float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++)
a[i] = b[i] =1 * 1.0;

chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk) nowait
for (i=0; 1 < N; i++)
c[i] = a[i] + b[i];
} /* end of parallel section */

¥



Synchronization directives

¥pragma omp master new-line
structured-block
fpragma omp critical [ (name) | new-line

structured-block

fpragma omp barrier new-line

fpragma omp atomic wew-line

cXPr ssion-stmit

Hpragma omp f£lush [ {oariable-list) | wew-line

fpragma omp ordered neu-line
structured-block



{1 Indian Institute of Science | www.IISe Supercomputer Education and Research Centre (SERC)

critical - Example

#include <omp.h>
main() {
int Xx;
X = 0;
#pragma omp parallel shared(x)
{
#pragma omp critical
X =X + 1;



-1/ Indian Institute of Science | www.II Supercomputer Education and Research Centre (SERC)

atomic - Example

fpragma omp parallel for sharedix, y, index, n)
for (1=0; 1<n; 1++) {
fipragma omp atomic
X[index([1]] += workl(1):
y[1] += work2(i);:

}



T

{1 Indian Institute of Science | www.lISc Supercomputer Education and Research Centre (SERC)

[y

Data Scope Attribute Clauses

Most variables are shared by default

Data scopes explicitly specified by data scope attribute
clauses

Clauses:

. private

. firstprivate

. lastprivate

. Shared

. default

. reduction

. copyin

. copyprivate

O~NO O1T D WN B



T

*,;@Indlan Institute of Science | www.ITSCERSSSN | 1o [ [N g GO EQ I RE S (U EE (M 2]

private, firstprivate & lastprivate

private (variable-Ll1ist)
* variable-list private to each thread

* A new object with automatic storage duration allocated for
the construct

firstprivate (variable-Llist)

* The new object is initialized with the value of the old object
that existed prior to the construct

lastprivate (variable-list)

* The value of the private object corresponding to the last
iteration or the last section is assigned to the original object



5

5 Indian Institute of Science | www.II$ Supercomputer Education and Research Centre (SERC)

private - Example

int a;
vold £(int n) {
a = 0;

fpragma omp parallel for private({a)
for (int 1=1; 1<n; 1++) {

a = 1;

gii, n);
dia) ; // Private copy of “a”

vold g{int k, int n) {

hik,a); //The glecbal “a”, not the private "a” in f



Indian Institute of Science | www.IISc.in ducation and Research Centre (SER(C)

Private variables

* Private variables are undefined on entry and exit of
the parallel region

* The value of the original variable (before the
parallel region) is undefined after the parallel
region |

* A private variable within a parallel region has no
storage association with the same variable outside

of the region

e Use the first/last private clause to override this
behaviour



ﬁ%‘{*%f

- |- Indian Institute of Science | www.IIS

Supercomputer Education and Research Centre (SERC)

lastprivate - Example

main ()
{
A= 10;

#pragma omp parallel
{

#pragma omp for private(i) firstprivate(A) lastprivate(B)...
for (i=0; i<n; i++)

{

B ;.A + i /*-- A undefined, unless declared
firstprivate --*/

C = B: /*-- B undefined, unless declared
' lastprivate --*/

} /*-- End of OpenMP parallel region --*/

}



shared, default, reduction

shared(variable-L1ist)
default(shared | none)

» Specifies the sharing behavior of all of the variables visible
in the construct

* none: No implicit defaults. Have to scope all variables
explicitly.

 shared: All variables are shared. Default behaviour in
absence of an explicit “default” clause.

Reduction(op:variable-List)
* Private copies of the variables are made for each thread

* The final object value at the end of the reduction will be
combination of all the private object values

 reduction (+:sum)



1 Indian Institute of Science | www.IIS Supercomputer Education and Research Centre (SERC)

default - Example

int x, v, z[1000];
¥pragma omp threadprivate(x)

vold fun{int a) {
const int o = 1;
int 1 = 0O;

fpragma omp parallel default(none) privatei{a) shared(z)

{
int jJ = omp get num threadi);
f/0 K. - 7 18 declared within parallel regicn
a = z[]];
X = Cy
z[1] = ¥;



FI%

4, Indian Institute of Science | www.IIS Supercomputer Education and Research Centre (SER(C)

Reading

e openmp.org
* Try out OpenMP samples on workstation/cluster



1" Indian Institute of Science | www.IISci Supercomputer Education and Research Centre (SERC)

Library Routines (API)

* Querying function (number of threads etc.)
* General purpose locking routines

* Setting execution environment (dynamic threads,
nested parallelism etc.)



Indian Institute of Science | www.IISc.in or Education and Research Centre (SERC)

API

« OMP_SET_NUM_THREADS(num_threads)

« OMP_GET_NUM_THREADS()

* OMP_GET_MAX_THREADS()

« OMP_GET_THREAD NUM()

* OMP_GET_NUM_PROCS()

e OMP_IN_PARALLEL() ... in a parallel construct?

e OMP_SET_DYNAMIC(dynamic_threads) ... Allow dynamic # of
threads across parallel blocks

« OMP_GET_DYNAMIC()
« OMP_SET_NESTED(nested)
« OMP_GET NESTED()



Indian Institute of Science | www.IISc.in er Education and Research Centre (SER(C)

Master & Single

* The master construct denotes a block should only be executed by

the master thread. Other threads just skip it

#pragma omp parallel

{
do_many things();
#pragma omp master
{ exchange_boundaries(); }
#pragma omp barrier // Barrier has to be forced. Not default.
do_many other_things();

* The single construct denotes a block of code that is executed by

only one thread (may not be master). A barrier is implied.
#pragma omp parallel
{
do_many_things();
#pragma omp single
{ exchange_boundaries(); } // Barrier is implied.
do_many other_things();

}



- Indian Institute of Science | www.IISc.in rcomputer Education and Research Centre (SER(C)

API(Contd..)

 omp_init_lock(omp_lock_t *lock)
 omp_init_nest_lock(omp_nest lock t *lock)

* omp_destroy lock(omp_lock t *lock)
 omp_destroy nest_lock(omp_nest_lock_t *lock)
 omp_set_lock(omp_lock_t *lock)
 omp_set_nest_lock(omp_nest_lock _t *lock)
 omp_unset_lock(omp_lock_t *lock)

* omp_unset_nest__ lock(omp _nest _lock_t *lock)
« omp_test_lock(omp_lock_t *lock)
 omp_test_nest_lock(omp_nest_lock_t *lock)

* omp_get_wtime()
* omp_get_wtick()



Indian Institute of Science | www.IISc.in er Education and Research Centre (SER(C)

Lock details

* Simple locks and nestable locks

* Simple locks are not locked if they are already in a
locked state

* Nestable locks can be locked multiple times by the
same thread

* Simple locks are available if they are unlocked

* Nestable locks are available if they are unlocked or
owned by a calling thread



1??;&}%

%], Indian Institute of Science | www.IIS¢ Supercomputer Education and Research Centre (SERC)

Example - Lock functions

#include <omp.h>
int main(}

{

omp leck t lck;
int 1d;

omp init lock(&lck);
fpragma omp parallel sharedilck) privateiid)

{

1d = omp get thread num();

omp set lock(&lck);
printf ("My thread 14 1= =d.‘\n", 1d);

// only one thread at a time can execute this printf
omp unset locki&lck);

while (! omp test lock(&lck)) {
gkip (1d) ; /* we do not yet have the lock,
go we must do something else */
}

work(id) ; /* we now have the lock
and can do the work */
omp unset lock(&lck);

}

omp destroy locki&lck):

}



ey

-] Indian Institute of Science | www.IISc Supercomputer Education and Research Centre (SERC)

Example — Nested lock

#include <omp.h>
typedef struct {int a,b; omp nest leck t lck;} palr;

vold incr a(palr *p, 1int a)

{
/{ Called only from lncr palr, no need to lock.
p-=a += a;
¥ vold incr pair(pair *p, int a, int b)
{
vold incr bipalr *p, 1int b) omp set nest lock(&p->1lck];
{ incr a(p, al;
/¢ Called both from incr palr and elsewhere, iner bip, b);
/¢ 8o need a nestable lock. omp unset nest lock(&p->lck};
}
omp set nest locki&p-=lck);
p-=b += b; vold f(palr *p)
omp unset nest lock{&p-=lck); {
} extern int workl(), work2(), work3();
#pragma omp parallel sections
{

Hpragma omp section

incr pair(p, workl{}), work2()}:
#pragma omp section

incr bip, work3{)};:



1 Indian Institute of Science | www.lISc.in )ercomputer Education and Research Centre (SERC)

Hybrid Programming - Combining
MPI and OpenMP benefits

 MPI
- explicit parallelism, no synchronization problems

- suitable for coarse grain
* OpenMP

- easy to program, dynamic scheduling allowed

- only for shared memory, data synchronization problems
 MPI/OpenMP Hybrid

- Can combine MPI data placement with OpenMP fine-grain
parallelism

- Suitable for cluster of SMPs (Clumps)
- Can implement hierarchical model



