

SE 292: High Performance Computing [3:0][Aug:2014]

File Systems

Yogesh Simmhan

Adapted from:

• *"File Systems", Sathish Vadhiyar, SE292 (Aug:2013),*

• *"Storage: Where it's come from and is going", Christos Papadopoulos*

File Systems

What is a file?

- Storage that continues to exist beyond lifetime of program (persistent)
- Named sequence of bytes stored on disk

Indian Institute of Science | www.IISc.in

Supercomputer Education and Research Centre (SERC)

Moving-head Disk Mechanism (HDD)

3

About HDD

- Platter: metal disk covered with magnetic material
- Multiple platters rotating together on common spindle
- Read/write head: electromagnet used to read/write
- Tracks: concentric circular recording surfaces
- Sector/block: unit of track that is read/written
- Head associated with disk arm, attached to actuator
- Cylinder: all tracks associated with a given actuator position
- Our view of disk: linear address space of fixed size sectors/blocks numbered from 0 up

Supercomputer Education and Research Centre (SERC)

HDD vs SSD

Solid State Drives (SSD)

- Technology is used in USB Flash Drives
- Use integrated chips (IC) for storage
 - Why?

Indian Institute of Science www.IISc.in

- SSD board contains number of NAND ICs used to store data
- SDD board also contains support channels, ~one per NAND IC
 - Allows the controller to communicate with each IC
- Speed of SSD comes from parallel access to each NAND IC

OS

File System

/ Chipset

SSD vs HDD Performance

Drive	Read (MB/s)	Write (MB/s)	Size (GB)	Cost per drive	Cost per GB	Cost per MB/s
512GB SSD	584	551	512	\$469	\$0.92	Ş0.41
256GB SSD	650	551	256	\$230	\$0.90	Ş0.19
128GB SSD	646	362	128	\$130	\$1.02	\$0.13
240GB SSD	533	549	240	\$240	\$1.00	Ş0.22
120GB SSD	531	538	120	\$129	\$1.08	\$0 . 12
60GB SSD	519	523	60	\$84.50	\$1.41	\$0.08
1TB SATA	158	137	1000	\$86	\$0.09	\$0.29

http://www.advancedclustering.com/hpc-cluster-blog-ssd-vs-hdd/

SSD

- Pros
 - Almost instantaneous read and write times
 - The ability to read or write in multiple locations at once
 - The speed of the drive scales extremely well with the number of NAND ICs on board
 - No moving parts

- Cons
 - To erase the value in flash memory the original voltage must be reset to neutral
 - We have to delete an entire block to release it
 - Can only be erased 10,000 times before it goes bad
 - Writes can be slower, SSD lifetime can be low.
 - 10x costlier than HDD

Other Disk Components

- Disk drive is connected to computer by I/O bus
- Data transfers on bus carried by special processors

 host controller on the host side, disk controller on the disk side

Disk Performance

- Transfer rate
 - Rate of data flow between disk drive and computer (few megabytes per sec)
 - Data transferred from memory to disks in units of blocks. Each block consists of sectors.
 - EIDE/(P)ATA: 3-167MB/s
 - SATA: 150-600MB/s

Disk Performance

- Seek time/latency time to move HDD disk arm to desired cylinder (few milliseconds)
- Rotational time/latency time for the sector in the track to rotate and position and under the head (few milliseconds)

Disk Attachment

- Can be host-attached DVD, CD, hard disk by special buses and protocols
 - Protocols SATA, SCSI (difference in terms of number of disk drives, address space, speed of transfers)
- Network-Attached NFS
- Storage Area Network

- To prevent storage traffic interfering with other network traffic
- Specialized network
- Has flexibility regarding connecting storage arrays and hosts

Operations on Files

- fd = open (name, operation)
- fd = create (name, mode)
- status = close(fd)
- bytecount = read (fd, buffer, bytecount)
- bytecount = write (fd, buffer, bytecount)
- offset = lseek (fd, offset, whence)
- status = link (oldname, newname)
- status = unlink (name)
- status = stat (name, buffer)
- status = chown (name, owner, group)
- status = chmod (name, mode)

Common File Access Patterns

- Sequential access: bytes of file are read in order from start to finish
- Random access: bytes of file are read in some (random) order

File System Design Issues

- Disk management: efficient use of disk space
- Name management: how users select files for use
- Protection: of files from users

Disk Management

Issues

Indian Institute of Science | www.IISc.in

- 1. Allocation: How are disk blocks associated with a file?
- Arm scheduling: Which disk I/O request should be sent to disk next?
 FCFS, Shortest Seek Time First (SSTF), Scan, C-Scan

File Descriptor: OS structure that describes which blocks on disk represent a file

Indian Institute of Science | www.IISc.in

Supercomputer Education and Research Centre (SERC)

Disk Block Allocation: Contiguous

File is stored in contiguous blocks on disk

• File descriptor: first block address, file size

File 1: Size 4 blocks; Blocks 17, 18, 19, 20 File 2: Size 6 blocks; Blocks 94, 95, 96, 97, 98, 99

> File 1: Start 17 Size 4 File 2: Start 94 Size 6

Indian Institute of Science | www.IISc.in

Supercomputer Education and Research Centre (SERC)

Disk Block Allocation: Linked

Each block contains disk address of next file block

• File descriptor: first block address

File 1: Size 4 blocks; Blocks 17, 84, 14, 99

File 1: Start 17

FAT system

• File Allocation Table

- A form of indexed allocation
- A portion of disk used for FAT

directory entry

Indian Institute of Science | www.IISc.in

Supercomputer Education and Research Centre (SERC)

Disk Block Allocation: Indexed

File Index is an array containing addresses of 1st, 2nd, etc block of file

- File descriptor: index
- File 1: Size 4 blocks; Blocks 17, 84, 14, 99

Problem: size of the index?

Some schemes?

19

Indian Institute of Science | www.IISc.in

Supercomputer Education and Research Centre (SERC)

UNIX Version of Indexed Allocation

Supercomputer Education and Research Centre (SERC)

Combined Scheme: UNIX (4K bytes per block)

- Pointers can occupy significant space
- Performance can be improved disk controller cache, buffer cache

Name Management

Indian Institute of Science | www.IISc.in

Issues: How do users refer to files? How does OS find file, given a name?

- Directory: mapping between file name and file descriptor
- Could have a single directory for the whole disk, or a separate directory for each user
- UNIX: tree structured directory hierarchy
 - Directories stored on disk like regular files
 - Each contains (filename, i-number) pairs
 - Each contains an entry with name . for itself (..)
 - Special (nameless) directory called the root

MTech Projects@DREAM:Lab

- Big Data Platforms and Infrastructure
 - Graph programming models, analytics, algorithms
 - Apache Giraph/Google Pregel/GoFFish
 - Stream and Complex event processing platforms
 - Apache/Twitter Storm, Internet of Things Apps
- Cloud Computing

- Dynamic & Adaptive Job Scheduling on Clouds
- Amazon EC2, OpenStack Cloud
- Commodity Private Cloud
 - 224 Core AMD Opteron Cluster, 24 nodes*8 cores
 - SSD, HDD, GbE
 - Hadoop, Giraph, Storm, OpenStack Cloud, PBS, ...

Protection

Objective: to prevent accidental or intentional misuse of a file system

- Aspects of a protection mechanism
 - User identification (authentication)
 - Authorization determination: determining what the user is entitled to do
 - Access enforcement
- UNIX
 - 3 sets of 3 access permission bits in each descriptor

File System Structure

- Layered file structure consisting of following layers (top to bottom)
- Logical file system

- contains inodes or file control block a FCB contains information about file including ownership, permission, location
- File organization
 - Translation between logical and physical blocks
- Basic file system
 - manages buffers and caches
- I/O control
 - contains device driver
- Devices

File System Implementation

- In disks FCB (contains pointers to blocks)
- In memory system-wide open file table, perprocess file table (thus 2 tables)
- Operations on file using pointer to an entry in perprocess file table
- Entry is referred as file descriptor

In-Memory File System Structures

File Read

UNIX I/O Kernel Structure

Life Cycle of An I/O Request

29

File System Performance Ideas

• Caching or buffering

- System keeps in main memory a disk cache of recently used disk blocks
- Could be managed using an LRU like policy
- Pre-fetching
 - If a file is being read sequentially, a few blocks can be read ahead from the disk

Memory Mapped Files

- Traditional open, /lseek/read/write/close are inefficient due to system calls, data copying
- Alternative: map file into process virtual address space
- Access file contents using memory addresses
- Can result in page fault if that part not in memory
- Applications can access and update in the file directly and in-place (instead of seeks)
- System call: mmap(addr,len,prot,flags,fd,off)
- Some OS's: cat, cp use mmap for file access

Asynchronous I/O

- Objective: allows programmer to write program so that process can perform I/O without blocking
- Eg: SunOS aioread, aiowrite library calls
 - Aioread(fd, buff, numbytes, offset, whence, result)
 - Reads numbytes bytes of data from fd into buff from position specified and offset
 - The buffer should not be referenced until after operation is completed; until then it is in use by the OS
 - Notification of completion may be obtained through aiowait or asynchronously by handling signal SIGIO

Blocking – process moved from ready to wait queue. Execution of application is suspended.

I/O

 Non-blocking – overlapping computation and I/O. Using threads.

Two I/O Methods

DMA (Direct Memory Access)

- It is wasteful for the CPU to engage in I/O between device and memory
- Many systems have special purpose processor called DMA controller
- CPU writes "I/O details" to memory

- Sends this address to DMA controller
- Thereafter, DMA engages in transfer of data between device and memory
- Once complete, DMA controller informs (interrupts) CPU

Indian Institute of Science | www.IISc.in

Supercomputer Education and Research Centre (SERC)

Six Step Process to Perform DMA Transfer

RAID

- Redundant Array of Independent Disks (RAIDS) multiple disks to improve performance and reliability
- Reliability
 - MTBF (Mean Time Between Failure) decreases with more disks
 - Hence data has to be redundantly stored
- Performance
 - Can be used to increase simultaneous access and transfer rate (striping)

Reading

- File System interface, implementation & mass storage, Silberschatz 7th Ed.
 - Chapter 10,
 - Chapter 11.1-11.4, 11.6
 - Chapter 12.1-12.4,12.7

SE252: Intro to Cloud Computing

1. Cloud computing as a technology

- How to use Cloud tools, APIs, SDKs?
- Access to Amazon AWS laaS Cloud
- 2. Cloud computing as a distributed systems environment
 - Why cloud computing works?
 - How to design applications for Clouds?
- 3. Cloud computing as a research topic
 - What are the gaps and emerging ideas?

SE252: Intro to Cloud Computing

- 3:1 Course...Programming intensive, Java strongly suggested
- Learning Outcomes

- Parallel and Distributed Systems Context
- Cloud Virtualization, Abstractions and Enabling Technologies
- Algorithms and Big Data Programming for Cloud Applications
- Application Execution Models on Clouds:
- Performance, scalability and consistency on Clouds
- Project, Research Writing