A Lightweight Framework for Meeting Group Identification Using Smartphones

Bivas Mitra

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Collaborators:

Snigdha Das Soumyajit Chatterjee Dr. Sandip Chakraborty

1. Snigdha Das, Soumyajit Chatterjee, Sandip Chakraborty, Bivas Mitra, "GroupSense: A Lightweight Framework for Group Identification using Smartphones," IEEE Transaction on Mobile Computing.

 Snigdha Das, Soumyajit Chatterjee, Sandip Chakraborty, Bivas Mitra, "An Unsupervised Model for Detecting Passively Encountering Groups from WiFi Signals," in Proceedings of IEEE GlobeCom, Abu Dhabi, UAE, Dec 9-13, 2018. What is a Meeting Group?

Colocation

Motivation

- ➤ Understanding the user behaviour, studying group is essential^[JLMB15]
- Team formation among the individuals are the key factors behind organizational efficiency
- > **Performance** of students in institution impacted by the groups
- Pre-defined vs instantaneous groups

Challenges in Meeting group detection

Colocation

- Conceptualized as localization problem
 - Retrieving highly precise location information is challenging

- For informal group capture, deployment of fixed infrastructure is an overhead
- Capturing the indoor scenario with the only GPS is a challenging due to the low coverage
- Pre-trained information almost unavailable for instantaneous group members

Objective

- Developing a Framework for Group Identification using Smartphones
- Lightweight
- Unsupervised—able to detect instantaneous groups

- *1. Snigdha Das*, Soumyajit Chatterjee, Sandip Chakraborty, Bivas Mitra, "GroupSense: A Lightweight Framework for Group Identification using Smartphones," IEEE Transaction on Mobile Computing.
- 2. Snigdha Das, Soumyajit Chatterjee, Sandip Chakraborty, Bivas Mitra, "An Unsupervised Model for Detecting Passively Encountering Groups from WiFi Signals," in Proceedings of IEEE GlobeCom, Abu Dhabi, UAE, Dec 9-13, 2018.

Meeting Group: Primary Indicators Selection

Pilot Study: Setup

# of participants	6		
Study duration	2 weeks		
Sensor used	WiFi and Microphone		
Devices used	2 Moto X, 1 Moto G 2nd Gen, 2 OnePlus3, 1 Samsung Note5		
Group Duration	> 15 minute		

Group ID	Member IDs	Location	Primary Speaker	
G_1	U_1, U_3, U_4	SMR Lab	U_4	
G_2	U_2, U_5, U_6	Class C-118	U_2	
G_3	U_1, U_2, U_3, U_4	Cafeteria	U_3	
G_4	U_{2}, U_{5}	SMR Lab	U_5	
G_5	U_1, U_2, U_3, U_4	Way to Cafeteria	U_4	
G_6	U_1, U_2, U_3	Outdoor Roadside	U_1	
G_7	U_4, U_5, U_6	Outdoor Roadside	U_4	

Microphone as Context Indicator

U₄

G₃

U4 and U1 exhibit similarity

No clear discrimination between U1 and U5

Audio Similarity & Dissimilarity in Same & Different Group

WiFi Similarity & Dissimilarity in **Same & Different Build**

Audio Similarity & Dissimilarity in **Same & Different Build**

User Mobility & Environmental Noise

> Overlapping WiFi APs using Jaccard Coefficient

$$\mathcal{J}_{ij}^{t} = \frac{|\mathbb{B}_{i}^{t} \cap \mathbb{B}_{j}^{t}|}{|\mathbb{B}_{i}^{t} \cup \mathbb{B}_{j}^{t}|}$$
$$\mathbb{B}_{i}^{t} = \{\mathcal{B}_{i_{1}}^{t}, \mathcal{B}_{i_{2}}^{t}, \dots, \mathcal{B}_{i_{m}}^{t}\}$$

vector of WiFi APs scanned by the subject u_i at time t

Higher coefficient index implies nearby subjects ((1))

((1))

> WiFi Signal Strength

Gain factor

 $g_{ij}^{t} = \frac{1}{|\mathbb{I}_{ij}^{t}|} \sum_{\substack{(\mathcal{SS}_{i_{k}}^{t}, \mathcal{SS}_{j_{k}}^{t}) \in \mathbb{I}_{ij}^{t} \\ \mathbb{SS}_{i}^{t} = \{\mathcal{SS}_{i_{1}}^{t}, \mathcal{SS}_{i_{2}}^{t}, \dots, \mathcal{SS}_{i_{m}}^{t}\}} ((\mathcal{SS}_{i_{k}}^{t} - \mathcal{SS}_{j_{1}}^{t}) - (\mathcal{SS}_{j_{k}}^{t} - \mathcal{SS}_{j_{1}}^{t}))$

vector of signal strength of WiFi APs scanned by the subject u_i at time t

 \mathbb{I}_{ij}^t : set of **overlapping APs** scanned by the subjects u_i , u_j

((1))**Device independent** feature

> **Proximity** Feature

$$\mathcal{F}_{ij}^t = \frac{\mathcal{J}_{ij}^t}{g_{ij}^t}$$

-+

→ Jaccard similarity improves with the higher degree of shared APs

→ Gain factor reduces with the proximity of the subjects

Measuring Acoustic Context

> Time Drift Adjustment

Measuring Acoustic Context

> Audio **Tone** Extraction (complex cepstrum)

Single Speaker Multiple Groups Scenario Similarity with Speaker U₁

Measuring Acoustic Context

> Audio **Tone** Extraction

Multiple Speaker Multiple Groups Scenario Similarity among non-Speaker

Design of GroupSense Model

 \mathcal{F}^t : Proximity Feature, \mathcal{C}^t : Acoustic Context Feature

Community Detection

Community Detection

Data Collection Framework

Data Collection

Smartphone Android App

# of participants	40	
Study duration	6 months	
Sensor used	WiFi, Microphone, Accelerometer	
Devices used	Samsung, OnePlus3, MotoX, MotoG, Hexiwear	
Group Duration	> 10 minute	

Ground Truth Data Collection App

Start time of a meeting

End time of a meeting

Meeting venue

Details of other participants of meeting

Performance Evaluation: Scenarios

S1 (Indoor: Two groups at neighboring rooms) S2 (Indoor: Three groups at different rooms at the same department)

S3 (Outdoor: Cafeteria meetings)

Performance Evaluation: Scenarios

S4 (Indoor: Large single group) **S5** (Indoor: Two different groups at a large lab)

S6 (Indoor: Two roaming groups) **S7** (Outdoor: Two roaming groups)

Baselines

➤ Next2Me^[BE17]

- Sensor used: WiFi, Microphone
- Features: Manhattan distance of RSSI, audio frequency
- Method used: Thresholding, Jaccard Similarity
- ➤ AudioMatch^[CSC15]
 - Sensor used: GPS, Microphone
 - Features: location, STFT
 - Method used: DBScan, Hamming Distance

[BE17] Jon Baker and Christos Efstratiou. "Next2me: Capturing social interactions through smartphone devices using wifi and audio signals". In EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous), November 2017.

[CSC15] Paolo Casagranda, Maria Luisa Sapino, and K Selcuk Candan. "Audio assisted group detection using smartphones". In Proceedings of IEEE Conference on Multimedia & Expo Workshops, pages 1–6, 2015.

System Performance

ID	Next2Me		GroupSense		AudioMatch	
	F ₁ Score	Modularity	F ₁ Score	Modularity	F ₁ Score	Modularity
S1	1.0000	0.1124	1.0000	0.2879	0.7273	0.0000
S2	0.9000	0.2030	1.0000	0.1760	0.6667	0.0000
S 3	0.5333	0.1261	1.0000	0.3642	0.7273	0.0000
S4	0.8326	0.0772	1.0000	0.0000	1.0000	0.0000
S5	0.8571	0.0732	1.0000	0.3801	0.7273	0.0000
S6	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000
S 7	0.5833	0.1942	0.6500	0.0976	0.8333	0.0000
ALL	0.7971 (+0.1874)	0.0866	0.9421 (+0.1323)	0.2114	0.8212 (+0.1377)	0.0000

On an average **F**₁-**Score** is more than **90%** for GroupSense

System insights

F1-Score converges to 1.0 when the modularity is more than 0:35.

Hence a group is detected with high accuracy when the cohesiveness is also high.

We plot F1-Score with respect to the weight (w) of the audio feature.

Indicating that both the features are important for correct detection of meeting groups

Summary

- Developed GroupSense, a smartphone based methodology to infer various meeting groups
- Developed a novel unsupervised methodology to process the context information for inferring the groups
- > **Device independence** and **lightweight** computable system

What is Group Role?

Motivation

- Members are not equally participated in group
- Group participation information important for analysing the group as well as group members
- Individual members' role infers the importance of the group formation

