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Facebook:
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• I lead the project from IIT Madras (U Cambridge earlier) with 
collaborators from 

‣ Academia: University of Cambridge, UK & INRIA, Paris, France

‣ Companies: Jane Street, Tarides, OCaml Labs, Segfault Systems

• Expected to hit mainline in mid 2020

• In this talk,

‣ Adding a concurrent GC to OCaml without destroying baseline performance

‣ Opportunities and Impact of open (source) research

Stephe Dolan, Leo White, Anil Madhavapeddy, Daniel Hillerstrom, Tom Kelly, Sadiq Jaffer, Sunil 
Nimmagadda, Damien Doligez, Xavier Leroy, David Allsopp, Anmol Sahoo, Gemma Gordon 
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Multicore OCaml GC: Desiderata
• Code backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Do not slow down existing programs

• Minimise pause times

✦ Latency is more important than throughput

• Performance predictability and stability

✦ Slow and stable better than fast but 
unpredictable 

• Minimize knobs

✦ 90% of programs should run at 90% peak 
performance by default



Outline
• Difficult to appreciate GC choices in isolation

• Begin with a GC for a sequential purely functional language

✦ Gradually add mutations, parallelism and concurrency
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• Pros

✦ Simple

✦ Can perform the GC incrementally

✤ …|—mutator—|—mark—|—mutator—|—mark—|—mutator—|—sweep—|…

✤ Minimise GC pause times!

• Cons

✦ Need to maintain free-list of objects => allocations overheads + fragmentation

stackregisters heap

A

B

DA

mark stack

B

D
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Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters
frontier

• Minor heap collected by copying collection

✦ Roots are registers and stack

✦ Survivors promoted to major heap

• Only touches live objects. Typically, < 10% of total. (c.f mark-and-sweep)

• Purely functional => no major to minor pointers
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Mutations
• OCaml does not prohibit mutations

✦ Mutable references,  Arrays…

• Encourages it with syntactic support!

✦ Mutations are pervasive in real-world code

type client_info = 
  { addr: Unix.inet_addr; 
    port: int; 
    user: string; 
    credentials: string; 
    mutable last_heartbeat_time: Time.t; 
    mutable last_heartbeat_status: string; 
  }

let handle_heartbeat cinfo time status = 
  cinfo.last_heartbeat_time <- time; 
  cinfo.last_heartbeat_status <- status



Mutations

more functionalless functional
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Mutations — Minor GC
• Old objects might point to young objects

• Must know those pointers for minor GC

✦ (Naively) scan the major GC for such pointers

• Intercept mutations with write barrier
(* Before r := x *)
let write_barrier (r, x) =
  if is_major r && is_minor x then
    remembered_set.add r

• Remembered set

✦ Set of major heap addresses that point to minor heap

✦ Used as root for minor collection

✦ Cleared after minor collection.

minor heap

major heap
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Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA

B

• Deletion/Yuasa/snapshot-at-beginning prevents 2

(* Before r := x *)
let write_barrier (r, x) =
  if is_major r && is_minor x then
    remembered_set.add r
  else if is_major r && is_major x then
    mark(!r)

✦ Amount of marking work in a cycle is fixed (snapshot-at-
the-beginning barrier.
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• Domain.spawn : (unit -> unit) -> unit

• Invariant: Minor heap objects are only accessed by owning domain

• Doligez-Leroy POPL’93

✦ No pointers between minor heaps

✦ No pointers from major to minor heaps

• Before r := x, if is_major(r) && is_minor(x), then promote(x).

• Too much promotion. Ex: work-stealing queue

major heap

domain n

minor heap(s)

domain 0 …

fast bump pointer 
allocation

collect 
independently?
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major heap

domain n

minor heap(s)

• Weaker invariant

✦ No pointers between minor heaps

✦ Objects in foreign minor heap are not accessed directly

• Read barrier. If the value loaded is 

✦ integers, object in shared heap or own minor heap => continue

✦ object in foreign minor heap => Read fault (Interrupt + promote)

domain 0 …
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Efficient Read Barrier Check
• Given an address x, quickly compute is_remote_minor(x)

# %rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
# ZF set => foreign minor

Deep dive into Multicore OCaml Garbage Collector
http://kcsrk.info/multicore/gc/2017/07/06/multicore-ocaml-gc/

http://kcsrk.info/multicore/gc/2017/07/06/multicore-ocaml-gc/
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Parallelism — Major GC
• OCaml’s GC is incremental

✦ Incrementality minimises GC pauses

✦ Parallel (stop-the-world) collectors is not an option due to latency concerns

• Multicore OCaml’s GC should be concurrent (and incremental)

Mutator GC Mutator GC

Mutator GC Mutator GC

Mutator GC Mutator GC

Mutator GC Mutator GC

Domain 0

Domain 1

Domain 2
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• Fibers: vm-threads, linear delimited continuations

• Stack segments managed on the heap

• Every fiber has a unique reference from a continuation object

✦ Fibers freed when continuations are swept

• No write barriers on fiber stack operations (push & pop)

✦ Handle major and minor GC interactions specially
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Concurrency — Minor GC
• Fibers may point to minor heap objects

✦ which fibers to scan among 1000s? (no write barriers on fiber stacks)

• Fresh continuation object for every fiber suspension

✦ Continuation in minor heap => fiber suspended in current minor cycle

minor heap 
(domain x)

major heap

Linear fiber heap 
(domain x)

Cont

fiberCont’
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• Marking is racy
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• (Multicore) OCaml uses yuasa/deletion barrier

✦ Fiber stack pop is a deletion (but no write barrier)

• Mutator before switching to unmarked fiber, completes marking the fiber

• Marking is racy

✦ For fibers, race between mutator (context switch) and gc (marking) unsafe
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http://bench.ocamllabs.io/comparison/?exe=6+L+master&ben=1,2,110,111,5,6,7,9,8,10,12,11,15,16,17,13,14,20,21,22,18,19,25,26,27,23,24,30,31,32,28,29,33,152,151,37,112,113,114,115,116,117,118,119,120,122,121,123,124,125,126,127,54,154,155,153,157,158,156,161,162,163,164,159,160,167,168,169,170,165,166,172,171,174,173,86&env=2&hor=true&bas=12+L+trunk&chart=normal+bars
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✦ Multicore http server, model-checker, mathematical kernels…

✦ Intel Core i9 (x86_64), 8 domains (parallel threads)

• Latency is our primary concern

✦ Minor GC pause times (trunk & multicore) = ~1-2 ms

✦ Avg. 50th percentile pause times = ~4 ms (1-2 ms on trunk)
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✦ Multicore benchmarking CI: micro and macro

• Parallel Benchmarks

✦ Multicore http server, model-checker, mathematical kernels…

✦ Intel Core i9 (x86_64), 8 domains (parallel threads)

• Latency is our primary concern

✦ Minor GC pause times (trunk & multicore) = ~1-2 ms

✦ Avg. 50th percentile pause times = ~4 ms (1-2 ms on trunk)

✦ Avg. 95th percentile pause times = ~7 ms (3-4 ms on trunk)

• Throughput is easier => add more domains
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Open (source) research
• Open-source r&d multiples research impact

✦ Not just throwing code over the wall

Multicore 
OCaml

• Open-source r&d is reproducible => furthers science

✦ More users => more citations ~=> greater impact.
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• All of the software and tools are freely available and actively 
maintained

• Research Opportunities

1. Analysis of performance regressions in OCaml

✤ How have new features have impacted overall performance?

✤ Root cause analysis based on commit history & performance.

2. Machine learning to tune GC knobs

✤ Conjecture: GC knobs are optimised for average case, where as real 
deployments have only a few important performance sensitive programs

✤ Dimensionality reduction

3. Concurrency testing and verification for Multicore OCaml



Questions?
https://github.com/ocamllabs/ocaml-multicore

http://kcsrk.info

https://github.com/ocamllabs/ocaml-multicore
http://kcsrk.info

