
Retrofitting a Concurrent GC
onto OCaml

KC Sivaramakrishnan
Assistant Professor, CSE

@kc_srk

OCaml
industrial-strength, pragmatic, functional programming language

OCaml
industrial-strength, pragmatic, functional programming language

Hindley-Milner Type Inference

Powerful module system

OCaml
industrial-strength, pragmatic, functional programming language

Hindley-Milner Type Inference

Powerful module system

• Functional core with imperative and
object-oriented features

• Native (x86, ARM, …), JavaScript, JVM

OCaml
industrial-strength, pragmatic, functional programming language

Hindley-Milner Type Inference

Powerful module system

• Functional core with imperative and
object-oriented features

• Native (x86, ARM, …), JavaScript, JVM

The Coq Proof Assistant

Facebook:

Microsoft: Project Everest

OCaml
industrial-strength, pragmatic, functional programming language

Hindley-Milner Type Inference

Powerful module system

• Functional core with imperative and
object-oriented features

• Native (x86, ARM, …), JavaScript, JVM

The Coq Proof Assistant

Facebook:

Microsoft: Project Everest

No multicore support!

Multicore OCaml

Multicore OCaml
• Native support for concurrency and parallelism in OCaml

Multicore OCaml
• Native support for concurrency and parallelism in OCaml

• I lead the project from IIT Madras (U Cambridge earlier) with
collaborators from

‣ Academia: University of Cambridge, UK & INRIA, Paris, France

‣ Companies: Jane Street, Tarides, OCaml Labs, Segfault Systems

Multicore OCaml
• Native support for concurrency and parallelism in OCaml

• I lead the project from IIT Madras (U Cambridge earlier) with
collaborators from

‣ Academia: University of Cambridge, UK & INRIA, Paris, France

‣ Companies: Jane Street, Tarides, OCaml Labs, Segfault Systems

• Expected to hit mainline in mid 2020

Multicore OCaml
• Native support for concurrency and parallelism in OCaml

• I lead the project from IIT Madras (U Cambridge earlier) with
collaborators from

‣ Academia: University of Cambridge, UK & INRIA, Paris, France

‣ Companies: Jane Street, Tarides, OCaml Labs, Segfault Systems

• Expected to hit mainline in mid 2020

Stephe Dolan, Leo White, Anil Madhavapeddy, Daniel Hillerstrom, Tom Kelly, Sadiq Jaffer, Sunil
Nimmagadda, Damien Doligez, Xavier Leroy, David Allsopp, Anmol Sahoo, Gemma Gordon

and many other open source contributors

Multicore OCaml
• Native support for concurrency and parallelism in OCaml

• I lead the project from IIT Madras (U Cambridge earlier) with
collaborators from

‣ Academia: University of Cambridge, UK & INRIA, Paris, France

‣ Companies: Jane Street, Tarides, OCaml Labs, Segfault Systems

• Expected to hit mainline in mid 2020

• In this talk,

‣ Adding a concurrent GC to OCaml without destroying baseline performance

‣ Opportunities and Impact of open (source) research

Stephe Dolan, Leo White, Anil Madhavapeddy, Daniel Hillerstrom, Tom Kelly, Sadiq Jaffer, Sunil
Nimmagadda, Damien Doligez, Xavier Leroy, David Allsopp, Anmol Sahoo, Gemma Gordon

and many other open source contributors

Multicore OCaml GC: Desiderata

Multicore OCaml GC: Desiderata
• Code backwards compatibility

✦ Do not break existing code

Multicore OCaml GC: Desiderata
• Code backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Do not slow down existing programs

Multicore OCaml GC: Desiderata
• Code backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Do not slow down existing programs

• Minimise pause times

✦ Latency is more important than throughput

Multicore OCaml GC: Desiderata
• Code backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Do not slow down existing programs

• Minimise pause times

✦ Latency is more important than throughput

• Performance predictability and stability

✦ Slow and stable better than fast but
unpredictable

Multicore OCaml GC: Desiderata
• Code backwards compatibility

✦ Do not break existing code

• Performance backwards compatibility

✦ Do not slow down existing programs

• Minimise pause times

✦ Latency is more important than throughput

• Performance predictability and stability

✦ Slow and stable better than fast but
unpredictable

• Minimize knobs

✦ 90% of programs should run at 90% peak
performance by default

Outline
• Difficult to appreciate GC choices in isolation

• Begin with a GC for a sequential purely functional language

✦ Gradually add mutations, parallelism and concurrency

B

Sequential purely functional

stackregisters heap

A

C

D

E

B

Sequential purely functional

• Stop-the-world mark and sweep

stackregisters heap

A

C

D

E

B

Sequential purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked)

stackregisters heap

A

C

D

E

B

Sequential purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked)

• White —> Grey (mark stack) —> Black

stackregisters heap

A

C

D

E

B

Sequential purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked)

• White —> Grey (mark stack) —> Black

stackregisters heap

A

C

B

D

E

B

A

mark stack

B

Sequential purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked)

• White —> Grey (mark stack) —> Black

• Mark stack is empty => done marking

✦ Tri-color invariant: No black object points to a white object

stackregisters heap

A

C

B

D

E

A

mark stack

B

D

B

Sequential purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked)

• White —> Grey (mark stack) —> Black

• Mark stack is empty => done marking

✦ Tri-color invariant: No black object points to a white object

• Sweeping : walk the heap and free white objects

stackregisters heap

A

C

B

D

E

A

mark stack

B

D

B

Sequential purely functional

• Stop-the-world mark and sweep

• Tri-color marking

✦ States: White (Unmarked), Grey (Marking), Black (Marked)

• White —> Grey (mark stack) —> Black

• Mark stack is empty => done marking

✦ Tri-color invariant: No black object points to a white object

• Sweeping : walk the heap and free white objects

stackregisters heap

A

B

DA

mark stack

B

D

B

Sequential purely functional

stackregisters heap

A

B

DA

mark stack

B

D

B

Sequential purely functional

• Pros

✦ Simple

✦ Can perform the GC incrementally

✤ …|—mutator—|—mark—|—mutator—|—mark—|—mutator—|—sweep—|…

✤ Minimise GC pause times!

stackregisters heap

A

B

DA

mark stack

B

D

B

Sequential purely functional

• Pros

✦ Simple

✦ Can perform the GC incrementally

✤ …|—mutator—|—mark—|—mutator—|—mark—|—mutator—|—sweep—|…

✤ Minimise GC pause times!

• Cons

✦ Need to maintain free-list of objects => allocations overheads + fragmentation

stackregisters heap

A

B

DA

mark stack

B

D

Generational GC

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters
frontier

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters
frontier

• Minor heap collected by copying collection

✦ Roots are registers and stack

✦ Survivors promoted to major heap

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters
frontier

• Minor heap collected by copying collection

✦ Roots are registers and stack

✦ Survivors promoted to major heap

• Only touches live objects. Typically, < 10% of total. (c.f mark-and-sweep)

Generational GC
• Generational Hypothesis

✦ Young objects are much more likely to die than old objects

minor heap

major heap

stackregisters
frontier

• Minor heap collected by copying collection

✦ Roots are registers and stack

✦ Survivors promoted to major heap

• Only touches live objects. Typically, < 10% of total. (c.f mark-and-sweep)

• Purely functional => no major to minor pointers

Mutations

Mutations
• OCaml does not prohibit mutations

✦ Mutable references, Arrays…

Mutations
• OCaml does not prohibit mutations

✦ Mutable references, Arrays…

• Encourages it with syntactic support!

Mutations
• OCaml does not prohibit mutations

✦ Mutable references, Arrays…

• Encourages it with syntactic support!

type client_info =
 { addr: Unix.inet_addr;
 port: int;
 user: string;
 credentials: string;
 mutable last_heartbeat_time: Time.t;
 mutable last_heartbeat_status: string;
 }

Mutations
• OCaml does not prohibit mutations

✦ Mutable references, Arrays…

• Encourages it with syntactic support!

type client_info =
 { addr: Unix.inet_addr;
 port: int;
 user: string;
 credentials: string;
 mutable last_heartbeat_time: Time.t;
 mutable last_heartbeat_status: string;
 }

let handle_heartbeat cinfo time status =
 cinfo.last_heartbeat_time <- time;
 cinfo.last_heartbeat_status <- status

Mutations
• OCaml does not prohibit mutations

✦ Mutable references, Arrays…

• Encourages it with syntactic support!

✦ Mutations are pervasive in real-world code

type client_info =
 { addr: Unix.inet_addr;
 port: int;
 user: string;
 credentials: string;
 mutable last_heartbeat_time: Time.t;
 mutable last_heartbeat_status: string;
 }

let handle_heartbeat cinfo time status =
 cinfo.last_heartbeat_time <- time;
 cinfo.last_heartbeat_status <- status

Mutations

more functionalless functional

Mutations — Minor GC
• Old objects might point to young objects

minor heap

major heap

Mutations — Minor GC
• Old objects might point to young objects

• Must know those pointers for minor GC

✦ (Naively) scan the major GC for such pointers

minor heap

major heap

Mutations — Minor GC
• Old objects might point to young objects

• Must know those pointers for minor GC

✦ (Naively) scan the major GC for such pointers

• Intercept mutations with write barrier
(* Before r := x *)
let write_barrier (r, x) =
 if is_major r && is_minor x then
 remembered_set.add r

minor heap

major heap

Mutations — Minor GC
• Old objects might point to young objects

• Must know those pointers for minor GC

✦ (Naively) scan the major GC for such pointers

• Intercept mutations with write barrier
(* Before r := x *)
let write_barrier (r, x) =
 if is_major r && is_minor x then
 remembered_set.add r

• Remembered set

✦ Set of major heap addresses that point to minor heap

✦ Used as root for minor collection

✦ Cleared after minor collection.

minor heap

major heap

Mutations — Major GC
A

B

C

Mutations — Major GC
A

B

C

Mutations — Major GC
A

B

C

Mutations — Major GC
A

B

CA

Mutations — Major GC
A CA

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1

B

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

• Deletion/Yuasa/snapshot-at-beginning prevents 2

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA

• Deletion/Yuasa/snapshot-at-beginning prevents 2

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA

• Deletion/Yuasa/snapshot-at-beginning prevents 2

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA

B

• Deletion/Yuasa/snapshot-at-beginning prevents 2

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA

B

• Deletion/Yuasa/snapshot-at-beginning prevents 2
✦ Amount of marking work in a cycle is fixed (snapshot-at-

the-beginning barrier.

BB

Mutations — Major GC
• Mutations are problematic if both conditions hold

1. Exists Black —> White

2. All Grey —> White* —> White paths are deleted

A CA

• Insertion/Dijkstra/Incremental barrier prevents 1A C

B

CA

B

• Deletion/Yuasa/snapshot-at-beginning prevents 2

(* Before r := x *)
let write_barrier (r, x) =
 if is_major r && is_minor x then
 remembered_set.add r
 else if is_major r && is_major x then
 mark(!r)

✦ Amount of marking work in a cycle is fixed (snapshot-at-
the-beginning barrier.

Parallelism — Minor GC

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

major heap

domain n

minor heap(s)

domain 0 …

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

major heap

domain n

minor heap(s)

domain 0 …

fast bump pointer
allocation

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

major heap

domain n

minor heap(s)

domain 0 …

fast bump pointer
allocation

collect
independently?

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Invariant: Minor heap objects are only accessed by owning domain

major heap

domain n

minor heap(s)

domain 0 …

fast bump pointer
allocation

collect
independently?

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Invariant: Minor heap objects are only accessed by owning domain

• Doligez-Leroy POPL’93

✦ No pointers between minor heaps

✦ No pointers from major to minor heaps

major heap

domain n

minor heap(s)

domain 0 …

fast bump pointer
allocation

collect
independently?

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Invariant: Minor heap objects are only accessed by owning domain

• Doligez-Leroy POPL’93

✦ No pointers between minor heaps

✦ No pointers from major to minor heaps

• Before r := x, if is_major(r) && is_minor(x), then promote(x).

major heap

domain n

minor heap(s)

domain 0 …

fast bump pointer
allocation

collect
independently?

Parallelism — Minor GC
• Domain.spawn : (unit -> unit) -> unit

• Invariant: Minor heap objects are only accessed by owning domain

• Doligez-Leroy POPL’93

✦ No pointers between minor heaps

✦ No pointers from major to minor heaps

• Before r := x, if is_major(r) && is_minor(x), then promote(x).

• Too much promotion. Ex: work-stealing queue

major heap

domain n

minor heap(s)

domain 0 …

fast bump pointer
allocation

collect
independently?

Parallelism — Minor GC
major heap

domain n

minor heap(s)

domain 0 …

Parallelism — Minor GC
major heap

domain n

minor heap(s)

• Weaker invariant

✦ No pointers between minor heaps

✦ Objects in foreign minor heap are not accessed directly

domain 0 …

Parallelism — Minor GC
major heap

domain n

minor heap(s)

• Weaker invariant

✦ No pointers between minor heaps

✦ Objects in foreign minor heap are not accessed directly

• Read barrier. If the value loaded is

✦ integers, object in shared heap or own minor heap => continue

✦ object in foreign minor heap => Read fault (Interrupt + promote)

domain 0 …

Efficient Read Barrier Check
• Given an address x, quickly compute is_remote_minor(x)

Efficient Read Barrier Check
• Given an address x, quickly compute is_remote_minor(x)

Efficient Read Barrier Check
• Given an address x, quickly compute is_remote_minor(x)

%rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
ZF set => foreign minor

Efficient Read Barrier Check
• Given an address x, quickly compute is_remote_minor(x)

%rax holds x (value of interest)
xor %r15, %rax
sub 0x0010, %rax
test 0xff01, %rax
ZF set => foreign minor

Deep dive into Multicore OCaml Garbage Collector
http://kcsrk.info/multicore/gc/2017/07/06/multicore-ocaml-gc/

http://kcsrk.info/multicore/gc/2017/07/06/multicore-ocaml-gc/

Parallelism — Major GC

Parallelism — Major GC
• OCaml’s GC is incremental

Mutator GC Mutator GC

Parallelism — Major GC
• OCaml’s GC is incremental

✦ Incrementality minimises GC pauses

✦ Parallel (stop-the-world) collectors is not an option due to latency concerns

Mutator GC Mutator GC

Parallelism — Major GC
• OCaml’s GC is incremental

✦ Incrementality minimises GC pauses

✦ Parallel (stop-the-world) collectors is not an option due to latency concerns

• Multicore OCaml’s GC should be concurrent (and incremental)

Mutator GC Mutator GC

Mutator GC Mutator GC

Mutator GC Mutator GC

Mutator GC Mutator GC

Domain 0

Domain 1

Domain 2

Parallelism — Major GC

Parallelism — Major GC
• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

Parallelism — Major GC
• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• In Multicore OCaml,

✦ States Garbage FreeUnmarked Marked

Parallelism — Major GC
• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• In Multicore OCaml,

✦ States

✦ Domains alternate between mutator and gc thread

Garbage FreeUnmarked Marked

Parallelism — Major GC
• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• In Multicore OCaml,

✦ States

✦ Domains alternate between mutator and gc thread

✦ Marking: Sweeping: Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Parallelism — Major GC
• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• In Multicore OCaml,

✦ States

✦ Domains alternate between mutator and gc thread

✦ Marking: Sweeping:

✦ Marking is racy but idempotent

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Parallelism — Major GC
• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• In Multicore OCaml,

✦ States

✦ Domains alternate between mutator and gc thread

✦ Marking: Sweeping:

✦ Marking is racy but idempotent

• Marking & Sweeping done ⇒ stop-the-world

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Parallelism — Major GC
• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• In Multicore OCaml,

✦ States

✦ Domains alternate between mutator and gc thread

✦ Marking: Sweeping:

✦ Marking is racy but idempotent

• Marking & Sweeping done ⇒ stop-the-world

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Yuasa!

Parallelism — Major GC
• Design based on VCGC from Inferno project (ISMM’98)

✦ Allows mutator, marker, sweeper threads to concurrently

• In Multicore OCaml,

✦ States

✦ Domains alternate between mutator and gc thread

✦ Marking: Sweeping:

✦ Marking is racy but idempotent

• Marking & Sweeping done ⇒ stop-the-world

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Garbage FreeUnmarked Marked

Yuasa!

Concurrency

• Fibers: vm-threads, linear delimited continuations

Concurrency

• Fibers: vm-threads, linear delimited continuations

• Stack segments managed on the heap

Concurrency

• Fibers: vm-threads, linear delimited continuations

• Stack segments managed on the heap

Concurrency

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont fiber

• Fibers: vm-threads, linear delimited continuations

• Stack segments managed on the heap

• Every fiber has a unique reference from a continuation object

✦ Fibers freed when continuations are swept

Concurrency

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont fiber

• Fibers: vm-threads, linear delimited continuations

• Stack segments managed on the heap

• Every fiber has a unique reference from a continuation object

✦ Fibers freed when continuations are swept

• No write barriers on fiber stack operations (push & pop)

✦ Handle major and minor GC interactions specially

Concurrency

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont fiber

Concurrency — Minor GC
• Fibers may point to minor heap objects

✦ which fibers to scan among 1000s? (no write barriers on fiber stacks)

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont fiber

Concurrency — Minor GC
• Fibers may point to minor heap objects

✦ which fibers to scan among 1000s? (no write barriers on fiber stacks)

• Fresh continuation object for every fiber suspension

✦ Continuation in minor heap => fiber suspended in current minor cycle

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont fiber

Concurrency — Minor GC
• Fibers may point to minor heap objects

✦ which fibers to scan among 1000s? (no write barriers on fiber stacks)

• Fresh continuation object for every fiber suspension

✦ Continuation in minor heap => fiber suspended in current minor cycle

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont

fiber

Concurrency — Minor GC
• Fibers may point to minor heap objects

✦ which fibers to scan among 1000s? (no write barriers on fiber stacks)

• Fresh continuation object for every fiber suspension

✦ Continuation in minor heap => fiber suspended in current minor cycle

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont

fiber

Concurrency — Minor GC
• Fibers may point to minor heap objects

✦ which fibers to scan among 1000s? (no write barriers on fiber stacks)

• Fresh continuation object for every fiber suspension

✦ Continuation in minor heap => fiber suspended in current minor cycle

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont

fiberCont’

Concurrency — Minor GC
• Fibers may point to minor heap objects

✦ which fibers to scan among 1000s? (no write barriers on fiber stacks)

• Fresh continuation object for every fiber suspension

✦ Continuation in minor heap => fiber suspended in current minor cycle

minor heap
(domain x)

major heap

Linear fiber heap
(domain x)

Cont

fiberCont’

Concurrency — Major GC

• (Multicore) OCaml uses yuasa/deletion barrier

✦ Fiber stack pop is a deletion (but no write barrier)

Concurrency — Major GC

• (Multicore) OCaml uses yuasa/deletion barrier

✦ Fiber stack pop is a deletion (but no write barrier)

• Mutator before switching to unmarked fiber, completes marking the fiber

Concurrency — Major GC

• (Multicore) OCaml uses yuasa/deletion barrier

✦ Fiber stack pop is a deletion (but no write barrier)

• Mutator before switching to unmarked fiber, completes marking the fiber

• Marking is racy

✦ For fibers, race between mutator (context switch) and gc (marking) unsafe

Concurrency — Major GC

• (Multicore) OCaml uses yuasa/deletion barrier

✦ Fiber stack pop is a deletion (but no write barrier)

• Mutator before switching to unmarked fiber, completes marking the fiber

• Marking is racy

✦ For fibers, race between mutator (context switch) and gc (marking) unsafe

Concurrency — Major GC

Unmarked MarkedMarkingFibers

• (Multicore) OCaml uses yuasa/deletion barrier

✦ Fiber stack pop is a deletion (but no write barrier)

• Mutator before switching to unmarked fiber, completes marking the fiber

• Marking is racy

✦ For fibers, race between mutator (context switch) and gc (marking) unsafe

Concurrency — Major GC

Unmarked MarkedMarkingFibers

time

• (Multicore) OCaml uses yuasa/deletion barrier

✦ Fiber stack pop is a deletion (but no write barrier)

• Mutator before switching to unmarked fiber, completes marking the fiber

• Marking is racy

✦ For fibers, race between mutator (context switch) and gc (marking) unsafe

Concurrency — Major GC

Unmarked MarkedMarkingFibers

time

FiberGC

GC
skip

marking…

• (Multicore) OCaml uses yuasa/deletion barrier

✦ Fiber stack pop is a deletion (but no write barrier)

• Mutator before switching to unmarked fiber, completes marking the fiber

• Marking is racy

✦ For fibers, race between mutator (context switch) and gc (marking) unsafe

Concurrency — Major GC

Unmarked MarkedMarkingFibers

time

FiberGC

GC
skip

marking…

FiberMutator

GC
skip

marking…

• (Multicore) OCaml uses yuasa/deletion barrier

✦ Fiber stack pop is a deletion (but no write barrier)

• Mutator before switching to unmarked fiber, completes marking the fiber

• Marking is racy

✦ For fibers, race between mutator (context switch) and gc (marking) unsafe

Concurrency — Major GC

Unmarked MarkedMarkingFibers

time

FiberGC

GC
skip

marking…

FiberMutator

GC
skip

marking…

FiberGC

Mutator

marking…

Performance

Performance
• Serial performance

✦ Multicore benchmarking CI: micro and macro

http://bench.ocamllabs.io/comparison/?exe=6+L+master&ben=1,2,110,111,5,6,7,9,8,10,12,11,15,16,17,13,14,20,21,22,18,19,25,26,27,23,24,30,31,32,28,29,33,152,151,37,112,113,114,115,116,117,118,119,120,122,121,123,124,125,126,127,54,154,155,153,157,158,156,161,162,163,164,159,160,167,168,169,170,165,166,172,171,174,173,86&env=2&hor=true&bas=12+L+trunk&chart=normal+bars
http://bench2.ocamllabs.io/comparison/?exe=5+L+master&ben=1,2,130,131,3,4,5,6,7,8,9,10,11,12,13,75,76,77,78,79,80,81,82,83,84,132,133,14,15,16,85,86,87,88,17,18,19,20,21,22,23,24,25,26,89,90,91,92,93,94,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,95,43,44,45,46,47,48,49,50,51,52,53,54,55,96,97,98,99,56,100,57,58,59,60,61,101,62,63,64,65,66,102,67,68,69,70,129,103,104,105,106,107,108,71,72,74,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,73&env=3&hor=false&bas=9+L+trunk&chart=normal+bars

Performance
• Serial performance

✦ Multicore benchmarking CI: micro and macro

• Parallel Benchmarks

✦ Multicore http server, model-checker, mathematical kernels…

✦ Intel Core i9 (x86_64), 8 domains (parallel threads)

http://bench.ocamllabs.io/comparison/?exe=6+L+master&ben=1,2,110,111,5,6,7,9,8,10,12,11,15,16,17,13,14,20,21,22,18,19,25,26,27,23,24,30,31,32,28,29,33,152,151,37,112,113,114,115,116,117,118,119,120,122,121,123,124,125,126,127,54,154,155,153,157,158,156,161,162,163,164,159,160,167,168,169,170,165,166,172,171,174,173,86&env=2&hor=true&bas=12+L+trunk&chart=normal+bars
http://bench2.ocamllabs.io/comparison/?exe=5+L+master&ben=1,2,130,131,3,4,5,6,7,8,9,10,11,12,13,75,76,77,78,79,80,81,82,83,84,132,133,14,15,16,85,86,87,88,17,18,19,20,21,22,23,24,25,26,89,90,91,92,93,94,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,95,43,44,45,46,47,48,49,50,51,52,53,54,55,96,97,98,99,56,100,57,58,59,60,61,101,62,63,64,65,66,102,67,68,69,70,129,103,104,105,106,107,108,71,72,74,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,73&env=3&hor=false&bas=9+L+trunk&chart=normal+bars

Performance
• Serial performance

✦ Multicore benchmarking CI: micro and macro

• Parallel Benchmarks

✦ Multicore http server, model-checker, mathematical kernels…

✦ Intel Core i9 (x86_64), 8 domains (parallel threads)

• Latency is our primary concern

✦ Minor GC pause times (trunk & multicore) = ~1-2 ms

✦ Avg. 50th percentile pause times = ~4 ms (1-2 ms on trunk)

✦ Avg. 95th percentile pause times = ~7 ms (3-4 ms on trunk)

http://bench.ocamllabs.io/comparison/?exe=6+L+master&ben=1,2,110,111,5,6,7,9,8,10,12,11,15,16,17,13,14,20,21,22,18,19,25,26,27,23,24,30,31,32,28,29,33,152,151,37,112,113,114,115,116,117,118,119,120,122,121,123,124,125,126,127,54,154,155,153,157,158,156,161,162,163,164,159,160,167,168,169,170,165,166,172,171,174,173,86&env=2&hor=true&bas=12+L+trunk&chart=normal+bars
http://bench2.ocamllabs.io/comparison/?exe=5+L+master&ben=1,2,130,131,3,4,5,6,7,8,9,10,11,12,13,75,76,77,78,79,80,81,82,83,84,132,133,14,15,16,85,86,87,88,17,18,19,20,21,22,23,24,25,26,89,90,91,92,93,94,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,95,43,44,45,46,47,48,49,50,51,52,53,54,55,96,97,98,99,56,100,57,58,59,60,61,101,62,63,64,65,66,102,67,68,69,70,129,103,104,105,106,107,108,71,72,74,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,73&env=3&hor=false&bas=9+L+trunk&chart=normal+bars

Performance
• Serial performance

✦ Multicore benchmarking CI: micro and macro

• Parallel Benchmarks

✦ Multicore http server, model-checker, mathematical kernels…

✦ Intel Core i9 (x86_64), 8 domains (parallel threads)

• Latency is our primary concern

✦ Minor GC pause times (trunk & multicore) = ~1-2 ms

✦ Avg. 50th percentile pause times = ~4 ms (1-2 ms on trunk)

✦ Avg. 95th percentile pause times = ~7 ms (3-4 ms on trunk)

• Throughput is easier => add more domains

http://bench.ocamllabs.io/comparison/?exe=6+L+master&ben=1,2,110,111,5,6,7,9,8,10,12,11,15,16,17,13,14,20,21,22,18,19,25,26,27,23,24,30,31,32,28,29,33,152,151,37,112,113,114,115,116,117,118,119,120,122,121,123,124,125,126,127,54,154,155,153,157,158,156,161,162,163,164,159,160,167,168,169,170,165,166,172,171,174,173,86&env=2&hor=true&bas=12+L+trunk&chart=normal+bars
http://bench2.ocamllabs.io/comparison/?exe=5+L+master&ben=1,2,130,131,3,4,5,6,7,8,9,10,11,12,13,75,76,77,78,79,80,81,82,83,84,132,133,14,15,16,85,86,87,88,17,18,19,20,21,22,23,24,25,26,89,90,91,92,93,94,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,95,43,44,45,46,47,48,49,50,51,52,53,54,55,96,97,98,99,56,100,57,58,59,60,61,101,62,63,64,65,66,102,67,68,69,70,129,103,104,105,106,107,108,71,72,74,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,73&env=3&hor=false&bas=9+L+trunk&chart=normal+bars

Open (source) research

Open (source) research
• Open-source r&d multiples research impact

Open (source) research
• Open-source r&d multiples research impact

✦ Not just throwing code over the wall

Open (source) research
• Open-source r&d multiples research impact

✦ Not just throwing code over the wall

Open (source) research
• Open-source r&d multiples research impact

✦ Not just throwing code over the wall

Open (source) research
• Open-source r&d multiples research impact

✦ Not just throwing code over the wall

Multicore
OCaml

Open (source) research
• Open-source r&d multiples research impact

✦ Not just throwing code over the wall

Multicore
OCaml

• Open-source r&d is reproducible => furthers science

Open (source) research
• Open-source r&d multiples research impact

✦ Not just throwing code over the wall

Multicore
OCaml

• Open-source r&d is reproducible => furthers science

✦ More users => more citations ~=> greater impact.

Research Opportunities in
(Multicore) OCaml

Research Opportunities in
(Multicore) OCaml

• All of the software and tools are freely available and actively
maintained

Research Opportunities in
(Multicore) OCaml

• All of the software and tools are freely available and actively
maintained

• Research Opportunities

Research Opportunities in
(Multicore) OCaml

• All of the software and tools are freely available and actively
maintained

• Research Opportunities

1. Analysis of performance regressions in OCaml

✤ How have new features have impacted overall performance?

✤ Root cause analysis based on commit history & performance.

Research Opportunities in
(Multicore) OCaml

• All of the software and tools are freely available and actively
maintained

• Research Opportunities

1. Analysis of performance regressions in OCaml

✤ How have new features have impacted overall performance?

✤ Root cause analysis based on commit history & performance.

2. Machine learning to tune GC knobs

✤ Conjecture: GC knobs are optimised for average case, where as real
deployments have only a few important performance sensitive programs

✤ Dimensionality reduction

Research Opportunities in
(Multicore) OCaml

• All of the software and tools are freely available and actively
maintained

• Research Opportunities

1. Analysis of performance regressions in OCaml

✤ How have new features have impacted overall performance?

✤ Root cause analysis based on commit history & performance.

2. Machine learning to tune GC knobs

✤ Conjecture: GC knobs are optimised for average case, where as real
deployments have only a few important performance sensitive programs

✤ Dimensionality reduction

3. Concurrency testing and verification for Multicore OCaml

Questions?
https://github.com/ocamllabs/ocaml-multicore

http://kcsrk.info

https://github.com/ocamllabs/ocaml-multicore
http://kcsrk.info

