
July 2019

Memory Hierarchy
Design for

Multicore Architectures

R. Govindarajan
Computer Science & Automation

Indian Institute of Science
Bangalore , India
govind@iisc.ac.in

Memory Performance

• Memory Wall [McKee’94]

– CPU-Memory speed disparity

– 100’s of cycles for off-chip access

DRAM

(2X/10 yrs)

Processor-Memory

Performance Gap:

(grows 50% / year)

Proessor

(2X/1.5yr)

P
e
rf

o
rm

a
n

c
e

Year

Moore’s Law

2

Memory Hierarchy

3

CPU MMU

L1

I-Cache

L1

D-Cache

L2 Unified Cache

Memory

Memory Hierarchy in Multicore

4

L2-$

C0 C1

L1$ L1$

C2 C3

L1$ L1$

Memory

L2-Cache

C0 C1

L1$ L1$

C2 C3

L1$ L1$

Memory

L2-$ L2-$ L2-$

Core

0

Core

1

Core

15

..
.

L1D

L1I

L1D

L1I

L1D

L1I

L2

Cache

(Off

Chip)

Main

Memory

Hit

M
e
m

o
ry

C
o

n
tr

o
ll

e
r

Miss

Multi-Core Processor

L3

Cache

(LLSC)

L2

Cache

Core

14

L1D

L1I

Memory Hierarchy in Multicore

Memory Hierarchy in Multicore

6

L2-Cache

C0 C1

L1$ L1$

C2 C3

L1$ L1$

Memory

Memory Controller

1 – 2 Cycles

100 – 300 cycles

10 – 15 cycles

Memory Performance

• Memory Wall [McKee’94]

– CPU-Memory speed disparity

– 100’s of cycles for off-chip access

• Bandwidth Wall [ISCA’09]

– More cores and limited off-chip bandwidth

– Cores double every 18 months

– Pincount grows only by 10%

Off-chip accesses are expensive !
Memory System Performance is Critical

Experimental Evaluation
Approach

• Cache Performance

– Trace-driven methodology

– Cache simulator (Dinero)

– Hit Rate, MPKI (are they same?)

• MemoryPerformance

– Trace-driven simulation

– DRAMSim, Cactii

• System Performance

– Execution-driven simulation

– Trace-Driven simulation

– SimpleScalar, Tejas, M5, GEM-5, Sniper, PIN, …
8

Research Issues in Multicore
Memory Hierarchy

9

L2-Cache

C0 C1

L1$ L1$

C2 C3

L1$ L1$

Memory

Memory Controller Scheduling of Memory

Request

Memory Organization/

Technology

Better Replacement

Algorithms

Cache Sharing across

Multi-coresDRAM

Cache

Prefetch

L2/L3 Cache Replacement

• L2 or L3 cache is larger (~MB) and has higher

associativity

• High Associativity  replacement policy crucial

to performance

• L1 cache services temporal accesses  Locality

filtered by lower-level caches (L1 or L2)  LRU

replacement inefficient

• Miss penalty long-enough for sophisticated

replacement policy

10

Replacement Algorithms for L2 / L3

• Least Recently Used (LRU)

• V-way Associative Cache

• Indirect Index Cache (~ Fully associative)

• Dynamic Insertion Policy

– choose between LRU and BIP (insertion at LRU or

MRU)

• Pseudo Insertion and Promotion Policy (PIPP)

• Pseuo LIFO

11

Optimal Replacement: On a miss replace the candidate

to which an access is least imminent !

Can OPTIMAL replacement be done?

Shepherd Cache [Micro 2007]

• OPT requires lookahead for

least imminent line  Use

part of cache to emulate

OPT for remaining cache

• Part of L2 Cache, used as

FIFO buffer, to track

imminence of new lines

• Lines flowing out of

Shepherd Cache move to

Main L2 with LRU

replacement

12

CPU

L1

I-Cache

Memory

L2 Cache
Main

Cache

Shepherd

Cache

More recent OPTIMAL replacement approach [JainLin,

ISCA 2016]

• On average both SC-4 and SC-8 out-performs

LRU, DIP, v-way, Fully-Associative, and victim

by 4-10%

13

Performance of Shepherd Cache

NUcache [HPCA 2011]

• Can we improve LLC hits by making them

Next-use aware?

▪ Next-Use : Distance betn. Eviction and next Access

Miss Stream : A, A1, A2, … A10, X

Evictions : X, Y1, Y2, … Y10, M

If X has to be retained longer for additional hits,
it should be retained for at least next 10 misses

NextUse Dist = 10

• Logical partitioning of the

associativity of the cache.

• Each cache set split into

MainWays and DeliWays.

• DeliWays are used on demand

to retain selected lines longer

• Which lines should go to

Deliways?

– Lines of Delinquent PC, whose

collective Next-Use will turn

Deliways to be hits!

NUCache Organization

M
a
in

w
a
y
s

D
e

li
w

a
y
s

Cache Set

Comparison with Other Schemes

• NUcache consistently performs better than

• Utility based Cache Partitioning

• Promotion/Insertion Psuedo Partitioning

• Thread Aware Dual Insertion Policy

0.95

1

1.05

1.1

1.15

Q2 Q6 Q9 Q10 Q12 E2 E3 E4 E6 E7 E9 E10

N
o

rm
a

li
ze

d
 S

T
P

Workload

DeliWays-20

DeliWays-24

UCP

PIPP

TADIP

Higher is better

Research Issues in Multicore
Memory Hierarchy

17

L2-Cache

C0 C1

L1$ L1$

C2 C3

L1$ L1$

Memory

Memory Controller Scheduling of Memory

Request

Memory Organization/

Technology

Better Replacement

Algorithms

Cache Sharing across

Multi-coresDRAM

Cache

Prefetch

0

0.2

0.4

0.6

0.8

1

1.2

IP
C

 n
o

rm
a
li
z
e
d

 t
o

 s
ta

n
d

-a
lo

n
e

Impact of Cache Sharing

• Last Level Cache (LLC)
is shared across all
cores

• All programs suffer
slowdown compared to
stand-alone execution
– Significant slowdown in

some programs

• Ability to control cache
occupancy ➔High level
performance goal
– Maximize throughput

– Fairness

Shared Cache has significant

impact on performance

Framework to manage shared

cache and guarantee desired

cache occupancy is essential

Shared Cache Management

• Way Partitioning
– Partition associativity of cache (based on some

objective)

– Modified Replacement
• Step1 -- Identify Victim Core

• Step2 – Identify Victim block belonging to Victim core

– UCP, PIPP, …

• Way partitioning is at coarse granularity
– Granularity = 1/K, for K-way associativity (e.g., 1/16)

– Does finer granularity (block level) help (e.g.,
1/16384) and be achieved ?

Probabilistic Shared Cache
Management (PriSM) [ISCA-2012]

• Eviction probability associated with each program
sharing the cache
– Used during replacement

– Eviction Probabilities determined based on fine-grain
cache occupancy for the core

– Cache occupancy determined based on target goals:
maximize overall IPC, fairness, QoS, …

• Replacement
– Step 1 – Generate Victim-Core ID based on Eviction

Probability Distribution

– Step 2 – Identify Victim block

• Use baseline replacement

• Victim belonging to victim-core identified above

Performance of PriSM: Hit-
Maximization

0.5

0.6

0.7

0.8

0.9

1

1.1

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1

0

S
1

1

S
1

2

S
1

3

S
1

4

S
1

5

S
1

6

S
1

7

S
1

8

S
1

9

S
2

0

N
o

rm
a

li
z

e
d

 A
N

T
T

PriSM UCP PIPP

Consistent Gain

across all Workloads

Lower is Better

Research Issues in Multicore
Memory Hierarchy

22

L2-Cache

C0 C1

L1$ L1$

C2 C3

L1$ L1$

Memory

Memory Controller Scheduling of Memory

Request

Memory Organization

Better Replacement

Algorithms

Cache Sharing across

Multi-coresDRAM

Cache

Prefetch

Memory Controller

Data Read & Write operations

Control

Address

Data

Rows

Columns

Bank

Logic

Row Buffer

DRAM Bank

DIMM

Rank

Device

Overview of a DRAM based memory

Bank

23

24

DRAM Bank Operation

Row Buffer

Access Address

(Row 0, Column 0)

R
o

w
 d

e
c
o

d
e
r

Column decoder

Row address 0

Column address 0

Data

Row 0Empty

Access Address

(Row 0, Column 1)

Column address 1

Access Address

(Row 0, Column 9)

Column address 9

Access Address

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o

w
s

Slide Source: Onur Mutlu, CMU

Basic DRAM Operations

• ACTIVATE ➔ Bring data from DRAM core into the row-buffer

• READ/WRITE➔ Perform read/write operations on the
contents in the row-buffer

• PRECHARGE➔ Store data back to DRAM core (ACTIVATE
discharges capacitors), put cells back at neutral voltage

Ld Ld

Memory Requests

PRE RDACT

Ld

RD

Row buffer hits are faster and
consume less power

PRE RDACT

Row Buffer

Miss

Row Buffer

Hit
Row Buffer

Miss

Memory Controller Control

Address

Data

Bank Level Parallelism in DRAM

Bank

Ld B2 Ld B1

Memory Requests

PRE RDACT

Ld A1

PRE RDACT

PRE RDACT

Ld C1

RD

Bank Level Parallelism
• Improves perf. with Parallelism and Row Buffer Hit
• Hurts perf. due to bank-to-bank switch delay

Research Issues in Multicore
Memory Hierarchy

27

L2-Cache

C0 C1

L1$ L1$

C2 C3

L1$ L1$

Memory

Memory Controller Scheduling of Memory

Request

Memory Organization/

Technology

Better Replacement

Algorithms

Cache Sharing across

Multi-coresDRAM

Cache

Prefetch

28

Memory Access Scheduling

• A row-conflict memory access takes significantly

longer than a row-hit access

• Scheduling policy (FR-FCFS) [Rixner, ISCA’00] to

improvem DRAM throughput

(1) Row-hit (column) first: Service row-hit memory

accesses first

(2) Oldest-first: Then service older accesses first

• Multiple Small Row Buffers Organization [ICS2012]

– A few (< 4) buffers per bank improve temporal locality

– Small buffers (512-1024B) capture the Spatial locality

Research Issues in Multicore
Memory Hierarchy

29

L2-Cache

C0 C1

L1$ L1$

C2 C3

L1$ L1$

Memory

Memory Controller Scheduling of Memory

Request

Memory Organization/

Technology

Better Replacement

Algorithms

Cache Sharing across

Multi-coresDRAM

Cache

Prefetch

Memory System Design

Why is it complex?

• Technological Choices
– DRAM, PCM, STTRAM …

– Different latencies and energy requirements

• Design Choices
– How many controllers, ranks/banks, width of channels?

– Addressing scheme used (Channels, Rank, Bank, Row,
Col. Selection bits)

– How large should the row-buffer be?

• Architectural Enhancements
– Newer and Better Scheduling algorithms

– Memory channel partitioning

30

• Design space is huge! Simulation-based
evaluation for the entire design-space is
time consuming!

• Analytical Model for Memory System
Performance

• Enables Rapid evaluation of alternatives
• Non-trivial insights compared to

simulation

ANATOMY – Analytical Model of
Memory (SIGMETRICS 2014)

Two components

• Queuing Model of Memory

– Captures Organizational and Technological

characteristics

– Protocols like DDR3, DDR4/Wide-IO, PCM, …

– Workload characteristics used as input
• Computed by the other component

• Summarize Workload Characteristics

– Captures Locality and Parallelism exhibited by

workload’s memory accesses

31

Analytical Model for Memory
System Performance

A System with single Memory Controller

Data

Bus

Server

M/D/1

Bank

Server

1

Bank

Server

N

Bank

Server

2

…

Multiple M/D/1

Address

Bus

Server

Arrival Rate: 

M/D/1

32

Service Time:

(RBH*1 + (1-RBH)*3) *

BUS_CYCLE_TIME

Service Time:

tCL* RBH + (tCL+tPRE+tRCD) * (1-RBH)

Service Time:

Burst_Length *

BUS_CYCLE_TIME

Summarizing Workload
Characteristics

• Arrival Rate ()
– Determined using MPKC

– Workload characteristic

• Row-Buffer Hit Rate (RBH)
– Locality in accesses

– Architectural enhancements like Memory Scheduling

– Design choices like Row-buffer size have an impact

• Bank Level Parallelism (BLP)
– Parallelism in accesses

• Request Spread (S)
– More banks in system than currently busy (BLP)

– New requests distribute to both busy and free banks

– S measures the fraction of requests to idle banks

33

• All characteristics impact performance to
varying degree

• How to estimate these characteristics from a
single trace for each workload?

Estimating RBH

• Summarize locality in accesses

– Reuse Distance Histogram (obtained from a single

trace)

– One Per Row-Buffer size

• Row Buffer Hit (RBH) rate estimation using

combinatorial evaluation

– When will Reuse Distance of ‘K’ translate into a Row-

Buffer Hit?

– Only if the intervening ‘K’ pages are to a subset of the

remaining ‘N-1’ banks
KK

K

K

N

N
RDNRBH 







 −
= 

=

=

1
)(

0 34

Estimate BLP

• Parallelism (BLP) in accesses depends on

– The time that ONE request occupies a bank

– Number of new requests in that time

– Their distribution

• BLP depends on how the requests spread S

across idle vs. active banks

• Combinatorial answer leads to BLP estimation.

35

Putting It Together

Address

Bus

Server

Arrival Rate: 

Bank

Server

1

Bank

Server

N

Bank

Server

2

…

Data

Bus

Server

M/D/1

Multiple M/D/1

M/D/1

busy_bank= (1-S)λ/BLP

busy_bank= (1-S)λ/BLP

Qaddr 1/µaddr

Qbank 1/µbank

Qdata 1/µdata

Latency = Qaddr + Qbank + Qdata + 1/µaddr + 1/µbank + 1/µdata

Peak_BW = Min(µaddr, µbank *N, µdata)

For M/D/1 queue

Q = /(2µ*(1-))

Extensions to the Model

• Multiple memory controllers

• Different memory scheduling algorithms

• Refresh in DRAM

• Different memory technology (e.g., PCM)

• Closed network model

37

-12.5

-7.5

-2.5

2.5

7.5

12.5

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10E11E12E13E14E15Avg

%
 E

rr
o

r

Latency RBH BLP

A
v
e
ra

g
e

Validation - Model Accuracy

• Validation using GEM5 Simulation (with detailed
Memory simulation) on Multiprogrammed workload

• Low Errors in RBH, BLP and Latency Estimation

• Average error of 3.9%, 4.2% and 4% 38

Emerging Memory Technology

• Non-Volatile Memory technology

– Phase Change Memory (PCM), Magnetic RAM

(MRAM), Resistive RAM (RRAM), Spin Torque

Transfer RAM (STT-RAM), …

39Slide Source: Moin Quereshi, Georgia Tech.

Emerging Memory Technology

• Phase Change Memory

– Data stored by changing phase of special material

– Data read by detecting material’s resistance

– Phase change material (chalcogenide glass) exists in
two states:

1. Amorphous: high resistivity – reset state or 0

2. Crystalline: low resistivity – set state or 1

– Non-volatality and low idle power (no refresh)

– Expected to scale (to 9nm), denser than DRAM, and
can store multiple bits/cell

– Higher Write latency and write-energy

– Endurance issues (cell dies after 108 writes)

40Slide Source: Onur Mutlu, CMU

DRAM – PCM Hybrid Memory

• PCM-based (main) memory be organized?

• Hybrid PCM+DRAM

– How to partition/migrate data between PCM and DRAM

– Is DRAM a cache for PCM or part of main memory?

– How to design the hardware and software
41Slide Source: Onur Mutlu, CMU

PCM-based Main Memory

• How should PCM-based (main) memory be
organized?

• Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

– How to redesign entire hierarchy (and cores) to
overcome PCM shortcomings

42Slide Source: Onur Mutlu, CMU

Research Issues in Multicore
Memory Hierarchy

43

L2-Cache

C0 C1

L1$ L1$

C2 C3

L1$ L1$

Memory

Memory Controller Scheduling of Memory

Request

Memory Organization/

Technology

Better Replacement

Algorithms

Cache Sharing across

Multi-coresDRAM

Cache

Prefetch

Stacked DRAM

• DRAM vertically stacked

over the processor die.

• Stacked DRAMs offer

– High bandwidth

– High capacity

– Moderately low latency.

• Several proposals to

organize this large

DRAM as a last-level

cache.

Picture courtesy Bryan Black (From MICRO 2013 Keynote)

Stacked DRAM

• DRAM vertically stacked on the processor die.

• Stacked DRAMs offer

– High bandwidth

– Large capacity

– Same or slightly lower latency.

3-D Stacked DRAM 2.5-D Stacked DRAM

Can be used as

Cache or

Part of Memory

Processor Orgn. With DRAM
Cache

Core

0

Core

1

Core

N

.

.

.

L1D

L1I

L1D

L1I

L1D

L1I

L2

(LLSC)

(~8MB)

Stacked

DRAM

Cache

(~1GB)

(Off

Chip)

Main

Memory

Hit

Memory

Controller

Miss

Processor with Stacked DRAM

Problems in Architecting Large
Caches
• Small cache line size (64 B): Lower spatial locality,

but reduced wasted bandwidth and cache capacity

• Problem: Cache of hundreds of MB needs tag-

store of tens of MB

– E.g. 256MB DRAM cache needs ~20MB tag store

• Large cache block size (2048B)

• Problem: wasted off-chip bandwidth and wasted

cache capacity

Option 1: SRAM Tags

Low Hit Time, but

Impractical (Large SRAM)

[AlloyCache, ATCache]

Option 2: Tags in DRAM

Naïve design has 2x latency

(Two accesses -- tag and data)

[FootPrintCache, CHOP]

Can Hit Time and Hit Rate

be improved simultaneously

while decreasing wasted

off-chip bandwidth and cache capacity ?

Processor Orgn. With DRAM
Cache

Core

0

Core

1

Core

N

.

.

.

L1D

L1I

L1D

L1I

L1D

L1I

L2

(LLSC)

DRAM

Cache

(Vertically

Stacked)

(Off

Chip)

Main

Memory

Tag-

Pred

Hit

Memory

Controller

Miss

Processor with Stacked DRAM

MetaData

on SRAM

MetaData

on DRAM

Bi-Modal Cache (Micro-2014)

• Tags-In-DRAM organization

• With 3 new organizational features:

1) Cache Sets are Bi-Modal – they can hold

a combination of big (512B) and small

(64B) blocks

2) Parallel Tag and Data Accesses

3) Eliminating Most Tag Accesses via a

small SRAM based Way Locator

Reduce Hit

Latency

Improves Hit Rate

And

Reduces Off-Chip

Bandwidth

• Performance improvement of 10.8%, 13.8% and 14% in 4, 8

and 16-core respectively over an aggressive baseline

Results - Performance

Integrated Heterogeneous
Systems (IHS) Architecture
• Latency-oriented CPU cores + Throughput-

oriented GPGPU SMs on-chip

51

– Simplifies Programming -

Shared Virtual Memory,

pointer sharing

– Allows GPUs to operate on

data sets larger than

memory size

– Share resources - NoC,

caches, memory

controllers, DRAMs

– e.g. AMD APUs, Intel Iris,

NVIDIA Denver

Integrated Heterogeneous
Systems (IHS) Architecture

• Integrated Heterogeneous System (IHS)

Architecture with CPU and GPU cores sharing

certain level of memory hierarchy

• Have disparate memory access pattern and

requirements!

– GPU cores pump in large no. of requests, bandwidth

hungry, but are latency-tolerant!

– CPU cores require small foot-print, low demand rate,

but latency sensitive!

➔ Shared resource management for effective use

of CPU and GPU cores

52

HAShCache : Heterogeneity
Aware Shared DRAM Cache

• An optimized DRAM cache for IHS processors

• Efficient DRAM cache design for heterogeneous

architecture

– Carefully architect the first order design constraints

– Cache block size, metadata overheads, set

associativity, miss penalty, addressing scheme

• Three Heterogeneity aware DRAM cache

mechanisms

– Heterogeneity aware DRAM cache scheduler - PrIS

– Heterogeneity aware Temporal Bypass - ByE

– Heterogeneity aware Spatial Occupancy Control –

Chaining
53

HAShCache Performance

54

• ByE+PrIS : CPU IPC 49% ↑, GPU IPC 3% ↓

• Chaining+PrIS : CPU IPC 46% ↑, GPU IPC 6% ↓

HAShCache: IHS Performance

55

• ByE+PrIS : 107% improvement

• Chaining+PrIS : 101% improvement

Conclusions

• Memory hierarchy performance is important in

multicore architectures

• Research issues/opportunities exist across the

hierarchy

• Many (open source) simulators available for the

experimentation

56

Acknowledgment

• All my Graduate Students, specifically

– R. Manikantan

– Kaushik Rajan

– G.D. Nagendra

– Adarsh Patil

• Funding Agencies

– AMD Corporation

– Intel Corporation

– IBM Faculty Award

– Nvidia Research Partnership

57

Thank You!

July 2019

Thank You !!

