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Memory Performance

• Memory Wall [McKee’94]

– CPU-Memory speed disparity

– 100’s of cycles for off-chip access
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Memory Hierarchy 
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Memory Performance

• Memory Wall [McKee’94]

– CPU-Memory speed disparity

– 100’s of cycles for off-chip access

• Bandwidth Wall [ISCA’09]

– More cores and limited off-chip bandwidth

– Cores double every 18 months

– Pincount grows only by 10%

Off-chip accesses are expensive ! 
Memory System Performance is Critical



Experimental  Evaluation 
Approach 

• Cache Performance 

– Trace-driven methodology

– Cache simulator (Dinero)

– Hit Rate, MPKI  (are they same?)

• MemoryPerformance

– Trace-driven simulation

– DRAMSim, Cactii

• System Performance

– Execution-driven simulation

– Trace-Driven simulation

– SimpleScalar, Tejas, M5, GEM-5, Sniper, PIN, …
8
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L2/L3 Cache Replacement

• L2 or L3 cache is larger (~MB) and has higher 

associativity

• High Associativity  replacement policy crucial 

to performance

• L1 cache services temporal accesses  Locality 

filtered by lower-level caches (L1 or L2)   LRU 

replacement inefficient

• Miss penalty long-enough for sophisticated 

replacement policy

10



Replacement Algorithms for L2 / L3

• Least Recently Used (LRU)

• V-way Associative Cache 

• Indirect Index Cache (~ Fully associative)

• Dynamic Insertion Policy 

– choose between LRU and BIP (insertion at LRU or 

MRU)

• Pseudo Insertion and Promotion Policy (PIPP)

• Pseuo LIFO   
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Optimal Replacement: On a miss replace the candidate 

to which an access is least imminent !

Can  OPTIMAL replacement be done?



Shepherd Cache [Micro 2007]

• OPT requires lookahead for  

least imminent line  Use 

part of cache to  emulate 

OPT for remaining cache

• Part of L2 Cache,  used as 

FIFO buffer,  to track 

imminence of new lines

• Lines flowing out of 

Shepherd Cache move to 

Main L2 with  LRU 

replacement
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ISCA 2016]



• On average both SC-4 and SC-8 out-performs 

LRU, DIP, v-way, Fully-Associative, and victim 

by 4-10%

13

Performance of Shepherd Cache



NUcache [HPCA 2011]

• Can we improve LLC hits by making them    

Next-use aware?

▪ Next-Use : Distance  betn. Eviction and next Access

Miss Stream : A,  A1, A2, … A10,  X

Evictions : X,  Y1, Y2, … Y10,  M

If  X has to be retained longer for additional hits,  
it should be retained for at least next 10 misses

NextUse Dist = 10



• Logical partitioning of the 

associativity of the cache.

• Each cache set split into 

MainWays and DeliWays.

• DeliWays are used on demand 

to retain selected lines longer

• Which lines should go to 

Deliways?

– Lines of Delinquent PC, whose 

collective Next-Use will turn 

Deliways to be hits!
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Comparison with Other Schemes

• NUcache consistently performs better than 

• Utility based Cache Partitioning

• Promotion/Insertion Psuedo Partitioning 

• Thread Aware Dual Insertion Policy
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Impact of Cache Sharing

• Last Level Cache (LLC) 
is shared across all 
cores

• All programs suffer 
slowdown compared to 
stand-alone execution
– Significant slowdown in 

some programs

• Ability to control cache 
occupancy ➔High level 
performance goal
– Maximize throughput

– Fairness

Shared Cache  has significant 

impact on performance

Framework to manage shared 

cache and guarantee desired 

cache occupancy is essential



Shared Cache Management

• Way Partitioning 
– Partition associativity of cache (based on some 

objective)

– Modified Replacement
• Step1 -- Identify Victim Core

• Step2 – Identify Victim block belonging to Victim core

– UCP, PIPP, … 

• Way partitioning is at coarse granularity 
– Granularity = 1/K, for K-way associativity (e.g., 1/16)

– Does finer granularity (block level) help (e.g., 
1/16384)  and be achieved ?



Probabilistic Shared Cache 
Management (PriSM) [ISCA-2012]

• Eviction probability associated with each program 
sharing the cache
– Used during replacement

– Eviction Probabilities determined based on fine-grain 
cache occupancy for the core

– Cache occupancy determined based on target goals: 
maximize overall IPC, fairness, QoS, … 

• Replacement
– Step 1 – Generate Victim-Core ID based on Eviction 

Probability Distribution

– Step 2 – Identify Victim block

• Use baseline replacement

• Victim belonging to victim-core identified above



Performance of PriSM: Hit-
Maximization
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Memory Controller

Data Read & Write operations

Control

Address

Data

Rows

Columns

Bank

Logic

Row Buffer

DRAM Bank

DIMM

Rank

Device

Overview of a DRAM  based memory

Bank
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DRAM Bank Operation

Row Buffer
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Basic DRAM Operations

• ACTIVATE ➔ Bring data from DRAM core into the row-buffer

• READ/WRITE➔ Perform read/write operations on the 
contents in the row-buffer

• PRECHARGE➔ Store data back to DRAM core (ACTIVATE
discharges capacitors), put cells back at neutral voltage

Ld Ld

Memory Requests

PRE RDACT

Ld

RD

Row buffer hits are faster and 
consume less power

PRE RDACT

Row Buffer 

Miss

Row Buffer 

Hit
Row Buffer 

Miss



Memory Controller Control

Address

Data

Bank Level Parallelism in DRAM

Bank

Ld B2 Ld B1

Memory Requests

PRE RDACT

Ld A1

PRE RDACT

PRE RDACT

Ld C1

RD

Bank Level Parallelism 
• Improves perf. with Parallelism and Row Buffer Hit
• Hurts perf. due to bank-to-bank switch delay
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Memory Access Scheduling

• A row-conflict memory access takes significantly 

longer than a row-hit access

• Scheduling policy (FR-FCFS) [Rixner, ISCA’00] to 

improvem DRAM throughput

(1) Row-hit (column) first: Service row-hit memory 

accesses first

(2) Oldest-first: Then service older accesses first

• Multiple Small Row Buffers Organization [ICS2012]

– A few (< 4) buffers per bank improve temporal locality

– Small buffers (512-1024B) capture the Spatial locality
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Memory System Design

Why is it complex?

• Technological Choices
– DRAM, PCM, STTRAM …

– Different latencies and energy requirements

• Design Choices
– How many controllers, ranks/banks, width of channels?

– Addressing scheme used (Channels, Rank, Bank, Row, 
Col. Selection bits)

– How large should the row-buffer be?

• Architectural Enhancements
– Newer and Better Scheduling algorithms

– Memory channel partitioning

30

• Design space is huge! Simulation-based 
evaluation for the entire design-space is 
time consuming!

• Analytical Model for Memory System 
Performance 

• Enables Rapid evaluation of alternatives
• Non-trivial insights compared to 

simulation



ANATOMY – Analytical Model of 
Memory (SIGMETRICS 2014)

Two components

• Queuing Model of Memory

– Captures Organizational and Technological 

characteristics

– Protocols like DDR3, DDR4/Wide-IO, PCM, …

– Workload characteristics used as input
• Computed by the other component

• Summarize Workload Characteristics

– Captures Locality and Parallelism exhibited by 

workload’s memory accesses

31



Analytical Model for Memory 
System Performance

A System with single Memory Controller
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Service Time:

(RBH*1 +  (1-RBH)*3) * 

BUS_CYCLE_TIME

Service Time:

tCL* RBH + (tCL+tPRE+tRCD) * (1-RBH)

Service Time:

Burst_Length * 

BUS_CYCLE_TIME



Summarizing Workload 
Characteristics

• Arrival Rate ()
– Determined using MPKC

– Workload characteristic

• Row-Buffer Hit Rate (RBH)
– Locality in accesses

– Architectural enhancements like Memory Scheduling

– Design choices like Row-buffer size have an impact

• Bank Level Parallelism (BLP)
– Parallelism in accesses

• Request Spread (S)
– More banks in system than currently busy (BLP)

– New requests distribute to both busy and free banks

– S measures the fraction of requests to idle banks

33

• All characteristics impact performance to 
varying degree

• How to estimate these characteristics from a 
single  trace for each workload?



Estimating RBH

• Summarize locality in accesses

– Reuse Distance Histogram (obtained from a single 

trace)

– One Per Row-Buffer size

• Row Buffer Hit (RBH) rate estimation using 

combinatorial evaluation

– When will Reuse Distance of ‘K’ translate into a Row-

Buffer Hit?

– Only if the intervening ‘K’ pages are to a subset of the 

remaining ‘N-1’ banks 
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Estimate BLP

• Parallelism (BLP) in accesses depends on

– The time that ONE request occupies a bank

– Number of new requests in that time

– Their distribution

• BLP depends on how the requests spread S

across idle vs. active banks

• Combinatorial answer leads to BLP estimation.

35



Putting It Together

Address
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M/D/1

busy_bank= (1-S)λ/BLP

busy_bank= (1-S)λ/BLP

Qaddr 1/µaddr

Qbank 1/µbank

Qdata 1/µdata

Latency = Qaddr + Qbank + Qdata + 1/µaddr + 1/µbank  + 1/µdata

Peak_BW = Min(µaddr, µbank *N, µdata)

For M/D/1 queue

Q = /(2µ*(1-)) 



Extensions to the Model

• Multiple memory controllers

• Different memory scheduling algorithms

• Refresh in DRAM

• Different memory technology (e.g., PCM)

• Closed network model 

37
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Validation - Model Accuracy

• Validation using GEM5 Simulation (with detailed 
Memory simulation) on Multiprogrammed workload

• Low Errors in RBH, BLP and Latency Estimation

• Average error of 3.9%, 4.2% and 4% 38



Emerging Memory Technology

• Non-Volatile Memory technology

– Phase Change Memory (PCM), Magnetic RAM 

(MRAM), Resistive RAM (RRAM), Spin Torque 

Transfer RAM (STT-RAM), …

39Slide Source: Moin Quereshi, Georgia Tech.



Emerging Memory Technology

• Phase Change Memory

– Data stored by changing phase of special material 

– Data read by detecting material’s resistance

– Phase change material (chalcogenide glass) exists in 
two states:

1. Amorphous: high resistivity – reset state or 0

2. Crystalline: low resistivity – set state or 1

– Non-volatality and low idle power (no refresh)

– Expected to scale (to 9nm), denser than DRAM, and 
can store multiple bits/cell

– Higher Write latency and write-energy

– Endurance issues (cell dies after 108 writes)

40Slide Source: Onur Mutlu, CMU



DRAM – PCM Hybrid Memory 

• PCM-based (main) memory be organized?

• Hybrid PCM+DRAM

– How to partition/migrate data between PCM and DRAM

– Is DRAM a cache for PCM or part of main memory?

– How to design the hardware and software
41Slide Source: Onur Mutlu, CMU



PCM-based Main Memory 

• How should PCM-based (main) memory be 
organized?

• Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]: 

– How to redesign entire hierarchy (and cores) to 
overcome PCM shortcomings

42Slide Source: Onur Mutlu, CMU
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Stacked DRAM

• DRAM vertically stacked 

over the processor die.

• Stacked DRAMs offer 

– High bandwidth 

– High capacity 

– Moderately low latency.

• Several proposals to 

organize this large 

DRAM as a last-level 

cache.

Picture courtesy Bryan Black (From MICRO 2013 Keynote)



Stacked DRAM

• DRAM vertically stacked on the processor die.

• Stacked DRAMs offer 

– High bandwidth

– Large capacity 

– Same or slightly lower latency. 

3-D Stacked  DRAM 2.5-D Stacked  DRAM

Can be used as 

Cache  or 

Part of Memory
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Problems in Architecting Large 
Caches
• Small cache line size (64 B):  Lower spatial locality, 

but reduced wasted bandwidth and cache capacity

• Problem:   Cache of hundreds of MB needs tag-

store of tens of MB

– E.g.  256MB DRAM cache needs ~20MB tag store

• Large cache block size (2048B)

• Problem: wasted off-chip bandwidth and wasted 

cache capacity

Option 1: SRAM Tags

Low Hit Time, but 

Impractical (Large SRAM)

[AlloyCache, ATCache]

Option 2:  Tags in DRAM

Naïve design has 2x latency

(Two accesses -- tag and data)

[FootPrintCache, CHOP]

Can Hit Time and Hit Rate 

be improved simultaneously 

while decreasing wasted 

off-chip bandwidth and cache capacity ?



Processor Orgn. With DRAM 
Cache

Core 

0

Core 

1

Core 

N

.

.

.

L1D

L1I

L1D

L1I

L1D

L1I

L2

(LLSC)

DRAM

Cache

(Vertically

Stacked)

(Off 

Chip)

Main

Memory

Tag-

Pred

Hit

Memory

Controller

Miss

Processor with Stacked DRAM

MetaData

on SRAM

MetaData

on DRAM



Bi-Modal Cache (Micro-2014)

• Tags-In-DRAM organization

• With 3 new organizational features:

1) Cache Sets are Bi-Modal – they can hold 

a combination of big (512B) and small 

(64B) blocks

2) Parallel Tag and Data Accesses

3) Eliminating Most Tag Accesses via a 

small SRAM based Way Locator

Reduce Hit

Latency

Improves Hit Rate

And 

Reduces Off-Chip 

Bandwidth



• Performance improvement of 10.8%, 13.8% and 14% in 4, 8 

and 16-core respectively over an aggressive baseline

Results - Performance



Integrated Heterogeneous 
Systems (IHS) Architecture
• Latency-oriented CPU cores + Throughput-

oriented GPGPU SMs on-chip 

51

– Simplifies Programming -

Shared Virtual Memory, 

pointer sharing 

– Allows GPUs to operate on 

data sets larger than 

memory size 

– Share resources - NoC, 

caches, memory 

controllers, DRAMs 

– e.g. AMD APUs, Intel Iris, 

NVIDIA Denver 



Integrated Heterogeneous 
Systems (IHS) Architecture

• Integrated Heterogeneous System (IHS) 

Architecture with CPU and GPU cores sharing 

certain level of memory hierarchy

• Have disparate memory access pattern and 

requirements!

– GPU cores pump in large no. of requests, bandwidth 

hungry, but are latency-tolerant!

– CPU cores require small foot-print, low demand rate, 

but latency sensitive! 

➔ Shared resource management for effective use 

of CPU and GPU cores

52



HAShCache : Heterogeneity 
Aware Shared DRAM Cache

• An optimized DRAM cache for IHS processors 

• Efficient DRAM cache design for heterogeneous 

architecture 

– Carefully architect the first order design constraints 

– Cache block size, metadata overheads, set 

associativity, miss penalty, addressing scheme 

• Three Heterogeneity aware DRAM cache 

mechanisms 

– Heterogeneity aware DRAM cache scheduler - PrIS

– Heterogeneity aware Temporal Bypass - ByE

– Heterogeneity aware Spatial Occupancy Control –

Chaining 
53



HAShCache Performance

54

• ByE+PrIS : CPU IPC 49% ↑, GPU IPC 3% ↓

• Chaining+PrIS : CPU IPC 46% ↑, GPU IPC 6% ↓



HAShCache: IHS  Performance

55

• ByE+PrIS : 107%  improvement

• Chaining+PrIS : 101%  improvement



Conclusions

• Memory hierarchy performance is important in 

multicore architectures

• Research issues/opportunities exist  across the 

hierarchy

• Many (open source) simulators available for the 

experimentation

56
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