
A More Consistent Understanding of
Consistency

Subhajit Sidhanta

IIT Bhilai/INESC ID Lisbon

Joint work with:

Ricardo Dias SUSE Linux GmbH

Prof. Rodrigo Rodrigues IST, ULisboa

Accepted at
Symposium on Reliable Distributed Systems (SRDS 2019), Lyon, France,

October 1-4, 2019

Consistency Models
• A Consistency Model : a contract (order among observed results)

between the storage and the client (processor).

• Conventions we will use

: jth write on object o with value

: kth read on object o that returned value

Isolation Levels
• An Isolation level: constraints the manner in which results of

operations performed from a transaction is visible from other
concurrent transactions.

• Conventions

: jth write from transaction on object o with
value

: kth read from transaction on object o
returned value

CONSISTENCY

Distributed Systems
→ Consistency Models

Strongest (Linearizability)
weakest (Eventual)

WEAKER CONSISTENCY
MODELS

Causal Consistency

5/23

The “Database” jungle

The consistency jungle

JUNGLE OF CONSISTENCY MODELS

The consistency jungle

• Large number of different models

• Defined using different formalisms

• Community-specific terms and definitions

• How do they compare?

– “The causal+ consistency (…) falls between
sequential and causal consistency” [COPS]

– “FJC implies a number of (…) session guarantees”
[Depot]

Towards an unifying specification
syntax

• Goal: find a unified way to specify consistency
ad isolation levels that is:

– Simple and intuitive

– Unifies consistency and isolation level definitions
using a common syntax

– Directly applicable to automated verification
systems

– Enables straightforward comparisons of levels

– Allows for efficient verification of implementations

Some Common Terminology

• A serialization (Ser) is a sequence in which a
group of storage operations are executed on a
datastore.

• A serialization is said to be legal if every read
operation returns the value written by the latest
write operation preceding it in the serialization.

Adya et al.+ Chockler et al.
◼ Chockler’s consistency definitions

◼ descriptve (informal) specifications

◼

◼

◼ equivalent legal serialization

◼ Adya’s Generalized isolation levels

◼ Similar goal applied to isolation levels

– Graphs derived from trace of the execution

• Nodes = transactions

• Edges = order between transactions (ww/wr/rw)
– follow from version numbers

– Isolation levels defined by precluded cycles

• Cycles represent “anomalies” (bad behaviors)

Adya: DSG based specifications

PL-1: updates of conflicting transactions
are not interleaved

Example: Snapshot isolation
• Transaction t reads from a consistent

snapshot, reflecting writes from transactions
that committed before t began

• T can commit iff it does not have a write-write
conflict with any concurrent transaction

G-SIa: Interference. A history H exhibits phenomenon G-SIa if SSG(H) contains a read/write-dependency
edge from Ti to Tj without there also being a start-dependency edge from Ti to Tj

G-SIb: Missed Effects. A history H exhibits phenomenon G-SIb if SSG(H) contains a directed cycle with
exactly one anti-dependency edge.

Cerone: Algebraic Rules based on
Dependency Relations

Lost Update: Serialisable Lost Update

Any abstract execution satisfies

ATTIYA: CONSISTENCY SEMANTICS
TIED TO TYPE OF STORAGE SYSTEM

ConSpec: Trading off detail for
simplicity

• Reasons for the shift to LTL:

– Graph-based definitions specified in terms of Implicit and
Explicit dependencies of various types

• Requires prior understanding of meaning of each type of
dependency

• Implicit dependencies defined in terms of explicit
dependencies

• Difficult to make this derivation uniform across definitions

– Much complicated representation

complex graphs

– Removing versioning from spec

make the definitions truly implementation-independent

System Model
• Session trace st

− client application

• Global Session trace St

− Set of session traces

Why ConSpec
• Problems with earlier approaches:

– Graph-based definitions specified in terms of Implicit and
Explicit dependencies of various types

• Requires prior understanding of meaning of each type of
dependency

• Implicit dependencies defined in terms of explicit
dependencies

• Difficult to make this derivation uniform across
definitions

– Much complicated representation

complex graphs

– Removing versioning from spec

make the definitions truly implementation-independent
(already achieved by Ricardo)

Why LTL

• Consistency and Isolation

→ restrictions on temporal order in
which results of operations can be observed

• Easier to understand and read

• Easier to build automated tools

→ a wide array of available
automated verification tools

ConSpec Specification Format

A partial order

1) for every operation o in , its output is equal to the one obtained by executing

the sequential specification of an equivalent re-arrangement (i.e., permutation) of

the operations preceding o in ,

2) obeys , which is an LTL expression restricting

ConSpec Specifications

• RYW (Read Your Write)

Violation Examples

Satisfaction Examples

ConSpec Specifications: Contd

• Sequential Consistency

Violation Examples

Satisfaction Examples

Violation: Because one would have to serialize both reads

before the respective writes of value 99, but that would be

impossible to achieve in a total order that respects the

session orders.

Extending CAP Theorem
In an asynchronous system, it is possible to implement a consistency model

while simultaneously providing availability and partition tolerance if and only if for any

global session invocation trace nd partition tolerance if and only if for any global

session invocation trace and all of its partial orderings that are allowed by ,

when you consider the set of maxima of each partial order, it is always possible to

make them depend only on the previous operation in the same session and still

obtain a valid partial order, i.e., the following holds:

We can see that both the causal and processor consistency definitions (plus the

session guarantees – MR, MW, RYW, WFR) are only forcing constraints on the

partial ordering across operations from the same session.

In contrast, SC requires that the visibility order among operations from all the

clients in the system forms a total order.

ConSpecChecker Tool
• Building of Automated Verification Tools

− Spinroot based prototype

− A global session trace is supplied to the tool as input

− The Spin driver then runs the built-in model checker to
check for counter-examples

mtype = {r, w, x, y} ;

typedef Op {

mtype optype ;

mtype var ;

int val ; }

typedef PO {

Op st[max size] ;

mtype status ; }

Op st[size] ;

Op po[po size] ;

ltl cc { [] (¬ (po[i].st[j].optype = w ⇒♦po[i].st[j].optype = r)) }

The following snippet is taken from the PROMELA source file for the RYW consistency

model

ConSpecker Tool: Results
A) How long the tool takes to check the consistency of a session trace,

B) how this validation time varies depending on the length (or size) of the trace,

C) How it compares to checking traces expressed in conventional syntaxes.

We use two sets of traces:

1) generated by executing YCSB on top of a Cassandra cluster on Amazon aws,

2) obtained by executing the TPC-C benchmark on top of a MySQL database.

The tool was run over the above traces on an Apple MacBook Pro, with 8 GB 1600

MHz DDR3 RAM, 2.9 GHz Intel Core i7 processor, running MacOS Sierra v10.12.4

The partial order generator component of the tool was run on Java 1.8.0_121,

and the PROMELA component were compiled and run on Spin v6.4.6.

ConSpecker Tool: Results
To generate a series of global session traces of different lengths, we are able to

vary two configuration parameters of YCSB: the thread count and the

execution time.

Using the thread count parameter, we simulated a number of concurrent YCSB

client threads executing the given workload, where the number of clients

corresponds to the value passed to this parameter.

Thus, each execution of the YCSB client with a given value of the thread

parameter generates a global session trace consisting of multiple session traces,

where each session trace comprises the entire sequence of operations

performed from a specific client thread.

ConSpecker Tool: Results

Future Work (contd.)

• Explore combination of consistency and
isolation

• Other advantages of LTL based definitions?

• Automated Verification Tool for verifying
system Code against consistency and isolation
specs

• Analyze the implications for system
developers in terms of system
design/development

ConSpec Specifications
(Isolation Levels)

• PL-1: Proscribes directed cycles consisting
entirely of write-dependency (ww) edges.

Conclusions

• A unified, simple specification that formalizes
consistency and isolation in an uniform syntax

• ConSpec seamlessly combines consistency and isolation
using common syntax

• E.g., natural definition for transactions with consistency
level X and isolation level Y

• Can leverage existing automated verification tools
(Model Checkers/SAT solvers) to verify whether a storage
system satisfies a claimed consistency model or isolation
level

• Equivalence to previous definitions

• Extension of CAP

Thanks!

• Always Open to
discussion/collaborations:
subhajit@iitbhilai.ac.in

• Openings for Project
Assistants/Interns

30

mailto:subhajit@iitbhilai.ac.in

