
Assistant Professor  
Department of Computer Science & Engineering 

IIIT Delhi 

Vivek Kumar 

Structured Parallelism for 
High Productivity and High 

Performance 



Outline 

•  Background 
•  Structured Parallelism using Async-Finish 

Programming Model 
•  Load Balancing using Work-Stealing 
•  High Productivity using  Async-Finish 
•  High Performance using Async-Finish 

–  Heterogeneous Computing over MPSoC 
–  Distributed Computing 
–  JVM Supported Work-Stealing 

•  Future Research 
  2



Hardware and Software Trend 

OS 

CPU 

1990s, early 2000 

3

Background 

CPU CPU 

CPU CPU 

GPU 

DSP DSP 
OS 

Today 
(No more free lunch) 



Let’s Parallelize Fibonacci Program 

4

#include	<inttypes.h>	
#include	<stdio.h>	
#include	<stdlib.h>	
		
uint64_t	fib(uint64_t	n)	{		
		if	(n	<	2)	{		
				return	n;		
		}	else	{	
				uint64_t	x	=	fib(n-1);	
				uint64_t	y	=	fib(n-2);	
				return	(x	+	y);	
		}	
}	
		
int	main(int	argc,	char	*argv[])	{	
		uint64_t	n	=	atoi(argv[1]);	
		uint64_t	result	=	fib(n);	
		printf("Fibonacci	of	%"	PRIu64	"		
								is	%"	PRIu64	".\n",	n,	result);	
		return	0;	
}	

Key idea for parallelization 
The calculations of fib(n-1) and 
fib(n-2) can be executed 
simultaneously without mutual 
interference. 

Background 

http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf 



Let’s Parallelize  
Fibonacci Program 

5

Pthreads 

http://classes.engineering.wustl.edu/cse539/web/lectures/lec01_intro.pdf 

Background 



Let’s Parallelize  
Fibonacci Program 

6

Pthreads 

EASY HARD 

•  Issues? 
–  Scalability 

•  This code is only for 2 cores. Rewrite 
for more cores 

–  Modularity 
•  Logic no more neatly encapsulated 

–  Overhead 
•  Recreating thread >104 cycles 

Background 



Other well-known options? 

7

Background 

Threads Java Fork/Join Cilk OpenMP 
Productivity Low Better than 

threads 
High High 

Performance Low Limited Limited Limited 

Only supported on 
multicore processors 

•  Supports both multicores and 
accelerators 

•  No support for NUMA 
•  Does not support hybrid 

execution simultaneously 
across multicores and 
accelerators 

•  Loosely integrated with 
communication libraries (MPI, 
UPC, etc.) 



Productively Parallelizing Fibonacci Program 

8

Structured Parallelism using Async-Finish 

•  High productivity due to serial elision (as in Cilk) 
– Removing all async and finish constructs results in a 

valid sequential program 

HClib (Habanero C/C++ Library) 
•  Open-sourced C++11/C library 

based implementation [1] 
•  Originated from Rice University 
•  Being used for research at various 

universities (including IIIT Delhi) 
•  Being used for teaching a parallel 

programming course at IIIT Delhi 

[1] V Kumar, and V Sarkar, Tutorial on HClib, HiPC 2018 [https://github.com/habanero-rice/hclib/tree/master/tutorial/hipc18] 



Dynamic Load Balancing using Work-Stealing 

9

W1 W2 W3 

Push Pop 

Steal 

Tail 
End 

Head
End 

D
eq

ue
 

Structured Parallelism using Async-Finish 



Supported on Wide Range of Architectures 

10

Multicores 

Supercomputers 

CUDA GPUs 

NUMA processors 

Multiprocessor System-on-Chip 

Today’s 
Agenda 

Structured Parallelism using Async-Finish 



11

HClib: Unified Programming Model 
finish_spmd([=]()	{	//	global	synchronization	scope	

	//	“intra-node”	asynchronous	tasks	
	finish([=](){	....	});	//	local	synchronization
	async(...,	[=]()	{...});		

				 	forasync(...,	[=]()	{...});	
	forasyncGPU(...,	[=]()	{...});		

				 	async_await(...,	[=]()	{...});		
	async_future(...,	[=]()	{...});	

	
				 	//	“inter-node”	asynchronous	tasks 		
				 	async_copy(src,	dst,	size,	...);	
				 	async_at(remote_rank,	[=]()	{	...	});	
	

		//	“locality-free”	asynchronous	tasks	
		//	uses	distributed	work-stealing	
		asyncAny([=]()	{	...});		

});	
 

High Productivity using Async-Finish 



12

[1] V Kumar, A Tiwari, G Mitra, HetroOMP: OpenMP for Hybrid Load Balancing Across Heterogeneous Processors, IWOMP 2019 

[2] V Kumar, A Sberlia, Z Budimlic, and V Sarkar, Heterogeneous Work-Stealing across CPU and DSP Cores, HPEC 2015 

High Performance using Async-Finish 

TI KeyStone-II MPSoC 

Heterogeneous Computing over MPSoC 
•  Complex architecture 

–  Different OS at ARM and DSP 
–  No cache coherency at DSP and in between ARM & DSP 
–  Only hardware queues and hardware semaphores at DSP 
–  Different cache line sizes at ARM and DSP 

•  Unified programming model that abstracts away all 
hardware complexities 

•  Hybrid work-stealing for simultaneous execution 
across all 4 ARM and 8 DSP cores 

G
eo

m
et

ric
 m

ea
n 

sp
ee

du
p 

ov
er

 
S

eq
ue

nt
ia

l e
xe

cu
tio

n 
at

 A
R

M
 

OpenMP (ARM-Only) 

OpenMP (DSP-Only) 

HClib (Hybrid) 

2.3x 
1.7x 

4.4x 



13

[1] V Kumar, Y Zheng, V Cave, Z Budimlic, and V Sarkar, HabaneroUPC++: a Compiler-free PGAS Library, PGAS 2014 

[2] V Kumar, K Murthy, V Sarkar, and Y Zheng, Optimized Distributed Work-Stealing, IA3 2016 

UPC++ 

•  Unified programming model 
based on tight integration 
between HClib and UPC++ 
libraries 

•  All inter-node communications 
(UPC++) routed through a 
dedicated communication 
worker (one) at each node [1] 

–  Allows overlapping of computations 
and communications without using a 
thread-safe UPC++ 

•  Inter- and intra-node work-
stealing of locality free tasks 
(asyncAny) [2] 
 

Node-A Node-B 

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1536 3072 6144 12288

E
xe

cu
tio

n
 t
im

e
 (

se
co

n
d
s)

Total cores used on Edison

UTS (T1WL) UTS (T3WL) NQueens

High Performance using Async-Finish 

Distributed Computing 



14

[1] V Kumar, Featherlight Speculative Task Parallelism, EuroPar 2019 (to appear) 

[2] V Kumar, D Frampton, SM Blackburn, D Grove, and O Tardieu, Work-Stealing Without the Baggage, OOPSLA 2012 

High Performance using Async-Finish 
JVM Supported Work-Stealing (1/2) 

1.  class UTS { 
2.      boolean found = false; 
3.      void search() { 
4.          finish_abort recurse(root); 
5.      } 
6.      void recurse(Node n) { 
7.          if(n.equals(goal)) { 
8.              found = true; 
9.              abort; 
10.             return; 
11.         } 
12.         for(int i=0; i<n.nChild; i++) { 
13.             async recurse(n.child[i]); 
14.         } 
15.     }   } 

Java Fork/Join  
HARD 

Java TryCatchWS 

•  Work-stealing 
support from 
inside the JVM 
– But, how? 

Java Fork/Join 

Java TryCatchWS 

G
eo

m
et

ric
 m

ea
n 

sp
ee

du
p 

(2
0 

co
re

) 
ov

er
 S

eq
ue

nt
ia

l 

9.4x 

15x 



15

[1] V Kumar, Featherlight Speculative Task Parallelism, EuroPar 2019 (to appear) 

[2] V Kumar, D Frampton, SM Blackburn, D Grove, and O Tardieu, Work-Stealing Without the Baggage, OOPSLA 2012 

High Performance using Async-Finish 
JVM Supported Work-Stealing (2/2) 

try {
    try {
        // Declare tasks available for stealing 
        X = S1();
        // Check if anything stolen
    } catch (ExceptionEntryThief t) {
        // Entrypoint for Thief
    }
    Y = S2();
    // Try finish based synchronization
}  catch (ExceptionFinish e) {
    // 1. Store partial results
    // 2. Initiate stealing ?
}

foo

……. 

……. 

Top 

Base 

THIEF 

foo

……. 

……. 

……. 

S1

Top 

Base 

VICTIM 

S
ta

ck
 G

ro
w

th
 D

ire
ct

io
n 

Stop and 
Copy 

Java TryCatchWS reuses runtime mechanisms 
already available within managed runtimes, such 
as JVM 
•  Yieldpoint mechanism 
•  On-stack replacement 
•  Dynamic code patching 
•  Exception handling 



Research Focus 

•  Energy efficient execution of async-finish 
program 
– Multicore computing 
– Heterogeneous computing  
– Distributed computing 

•  Exploring async-finish programming in 
WebAssembly 

•  Data race detection and avoidance 

Road Ahead 

16



•  Visit us at: http://hipec.iiitd.edu.in 
•  Email: vivekk@iiitd.ac.in 
•  Openings for Research Assistants and PhD 

students 

17


