

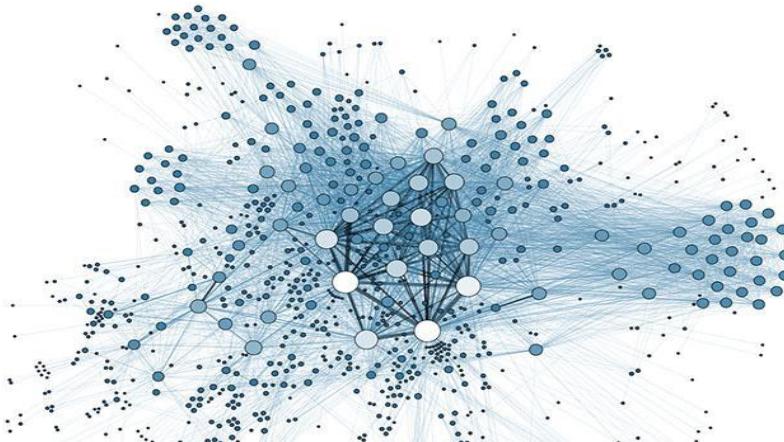
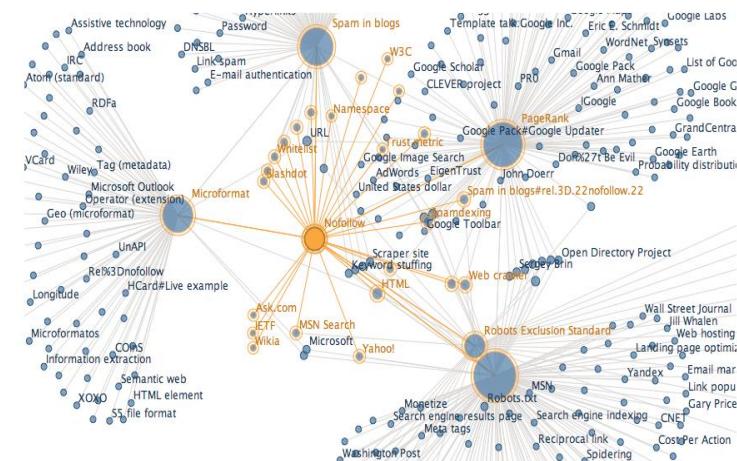
Heterogeneous Computing for Graph Algorithms

Sathish Vadhiyar

Department of Computational and Data Sciences
Indian Institute of Science, Bangalore, India

Introduction

- Graph processing has been prevalent
- Real world graphs large in size
- Processing such real world graphs requires effective harnessing of multiple nodes of CPU and GPU devices



GPUs

- Graphical Processing Units (GPUs)
- A single CPU can consist of 2, 4, 8 or 12 cores
- GPUs consist of a large number of light-weight cores
- Typically GPU and CPU coexist in a heterogeneous setting
- “Less” computationally intensive part runs on CPU (coarse-grained parallelism), and more intensive parts run on GPU (fine-grained parallelism)

Challenges

- Irregular memory access, hence poor locality.
- Poor computation-to-communication ratio.
- Varying parallelism while execution.
- Frequent need of synchronization.
- Load Balancing across computing units.
- **Most important: To be able to use all the heterogeneous resources**

Divide and Conquer

- Partition and run the algorithm independently on the devices
- Three cases
 - **Case 1:** Control the independent algorithmic computations – MST
 - **Case 2:** Split into batches and different pipeline stages on the devices – Betweenness centrality
 - **Case 3:** Let loose and correct – Community Detection

Case 1: Minimum Spanning Tree (MST)

- MST one of the important graph applications
- Large scale MST requires multiple nodes with distributed memory parallelism

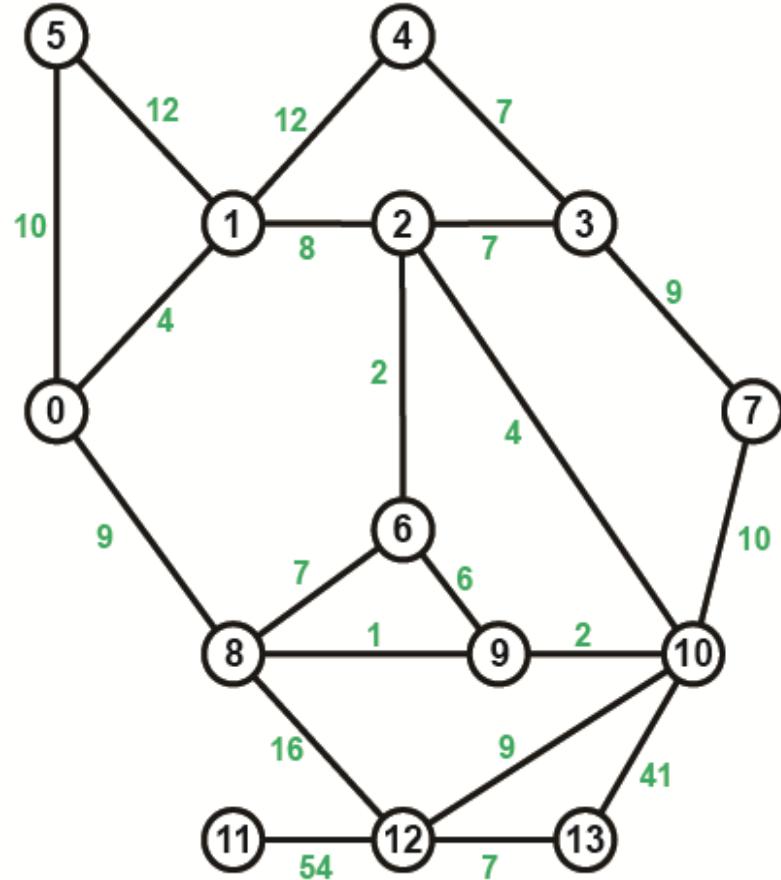
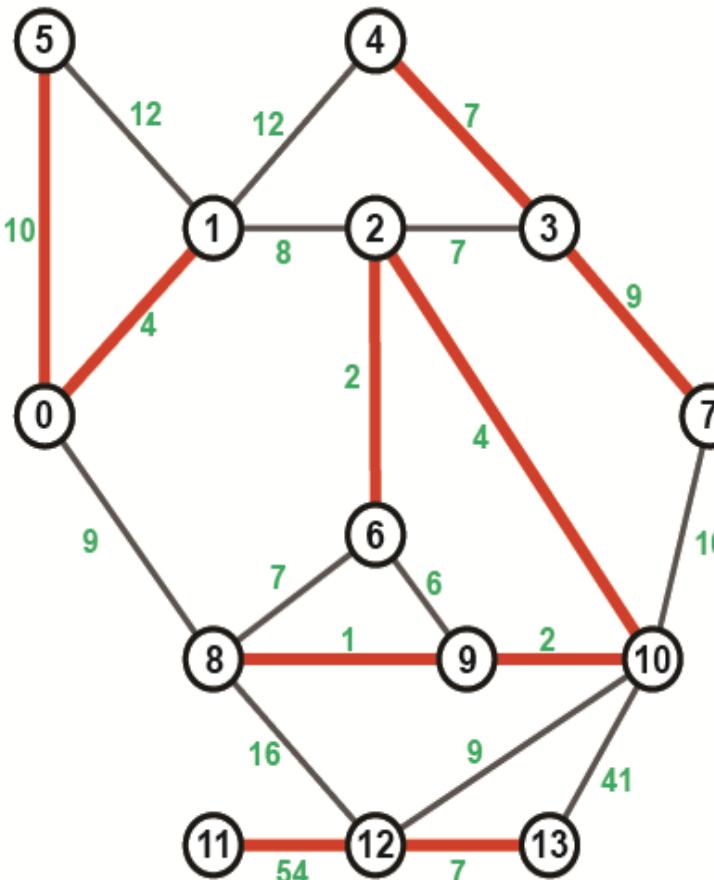
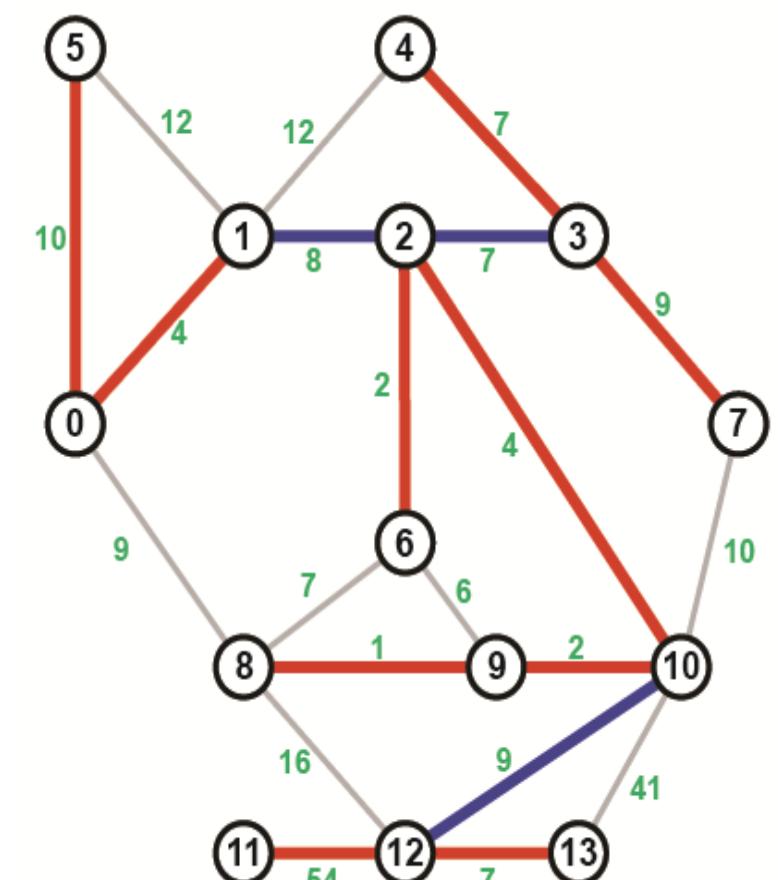
Multi-node multi-device MST

- We propose a multi-node multi-device algorithm following a divide-and-conquer paradigm
- Graph is partitioned across multiple nodes and further across multiple devices
- Boruvka's MST invoked independently on each partition/device
- Results merged using a novel hierarchical merging algorithm

Boruvka's MST

- Iteratively finds lightest edges from a component and merges two components connected by a lightest edge – called edge contraction
- Process repeated until a single component formed
- Edges contracted across all the iterations form the minimum spanning tree

Boruvka's MST



Hybrid CPU-GPU MST

- Consists of:
 - Partitioning
 - Independent computations:
 - Run the Bouruvka's algorithm on each device
 - But **don't run** the algorithm on the border vertices
 - Merging
 - Post processing

Implementation: HyPar Divide-and-conquer API

Function	Remarks
partGraph	Partitions the graph into number of processing units.
indComp	Performs independent computations of a graph kernel, given by an <i>appName</i> , on each partitions independently with excpCond and returns the result.
mergeParts	Merges the results from the independent computations on the devices and communicates ghost vertices.
postProcess	Performs postprocessing by executing the kernel given by <i>postProcessKernelName</i> with updated graph as the input.

HyPar Runtime Optimizations

1. Ratio for Graph Partitioning:

- To find the ratio for partitioning we use a heuristic approach. We choose 5-10 random induced subgraphs with 5% of the total number of nodes and run the application on both the CPU and GPU devices simultaneously to find the partitioning ratio.

2. Threshold for Independent Computation

- While performing independent computation in each partition, the amount of parallelism may drop significantly after few iterations.
- HyPar automatically find the threshold by observing trend in execution times, and switches to the merging step at the threshold

3. Recursive Invocation of Partitioning-Independent Computations-Merging

- After mergeStep in many applications the remaining graph size may be large.
- HyPar framework again partitions the reduced graphs using the same partitioning ratio, followed by invocation of indComp and mergeStep if the size of the graph is more than a threshold

Case 2: Betweenness Centrality

- Betweenness Centrality is a shortest path metric used to give a score to each vertex in a graph or network based on how many shortest paths it lies on.
- Definition:-
 - For a graph $G = (V, E)$, where V is the set of vertices and E , the set of edges. Let $\sigma_{st}(v)$ denotes the number of shortest path from vertex 's' to vertex 't', where $s \neq t$, passing through vertex v .
 - Based on above, we find $\delta_{st}(v) = \sigma_{st}(v) / \sigma_{st}$, where $\delta_{st}(v)$ denotes the pair-wise dependency between of the pair 's' and 't' on 'v'.
 - The Betweenness Centrality score of the vertex is given by
- One way to find BC for all vertices is to perform an APSP and aggregate the pair-wise dependencies for all vertices. Its costly, $O(n^3)$ and infeasible for larger graphs.

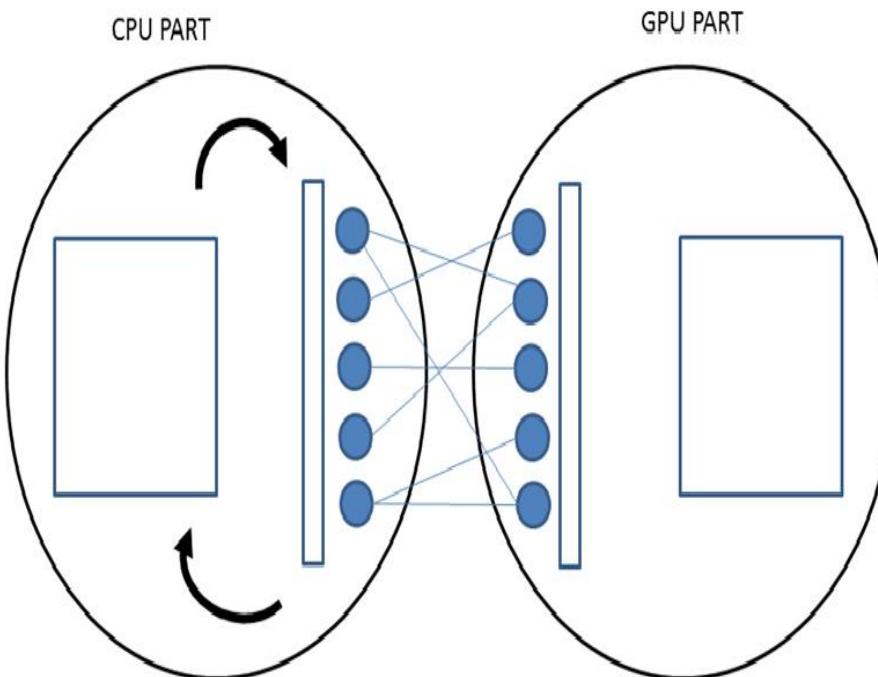
Brandes Algorithm for Betweenness Centrality

- The algorithm by Brandes [JMS-2001] consists of two phases: a **forward** and a **backward** phase.
- The forward phase consists of a BFS traversal or SSSP calculation with s as the source. For each vertex the #shortest paths and predecessor list is calculated.
- The backward phase traverses the vertices in descending order of their distance from s .

DISTANCE CALCULATIONS IN FORWARD PHASE.

- In an iteration a source s is selected
- Distance values of all nodes in G , except s are set to ∞ , which is set to 0.
- **Step 1.**
 - BFS/SSSP from s in $Pr(s)$.
 - $d_C[s, v], \forall v \in Pr(s)$.
 - **Initial step.**
- **Step 2.**
 - Update $B_{G-Pr(s)}$ using edge cuts.
 - Using d_C values of $B_{Pr(s)}$, relaxing the values of $B_{G-Pr(s)}$.
- **Step 3.**
 - Updating the $B_{G-Pr(s)}$ in the same partition.
 - Using $BM_{G-Pr(s)}$ for further relaxing the values of $B_{G-Pr(s)}$.
- **Step 4.**
 - Update $B_{Pr(s)}$ using edge cuts.
 - Using d_C values of $B_{G-Pr(s)}$, relaxing the d_C values of $B_{Pr(s)}$.
- **Step 5.**
 - Updating the $B_{Pr(s)}$ in the same partition.
 - Using $BM_{Pr(s)}$ for relaxing the d_C values of $B_{Pr(s)}$.

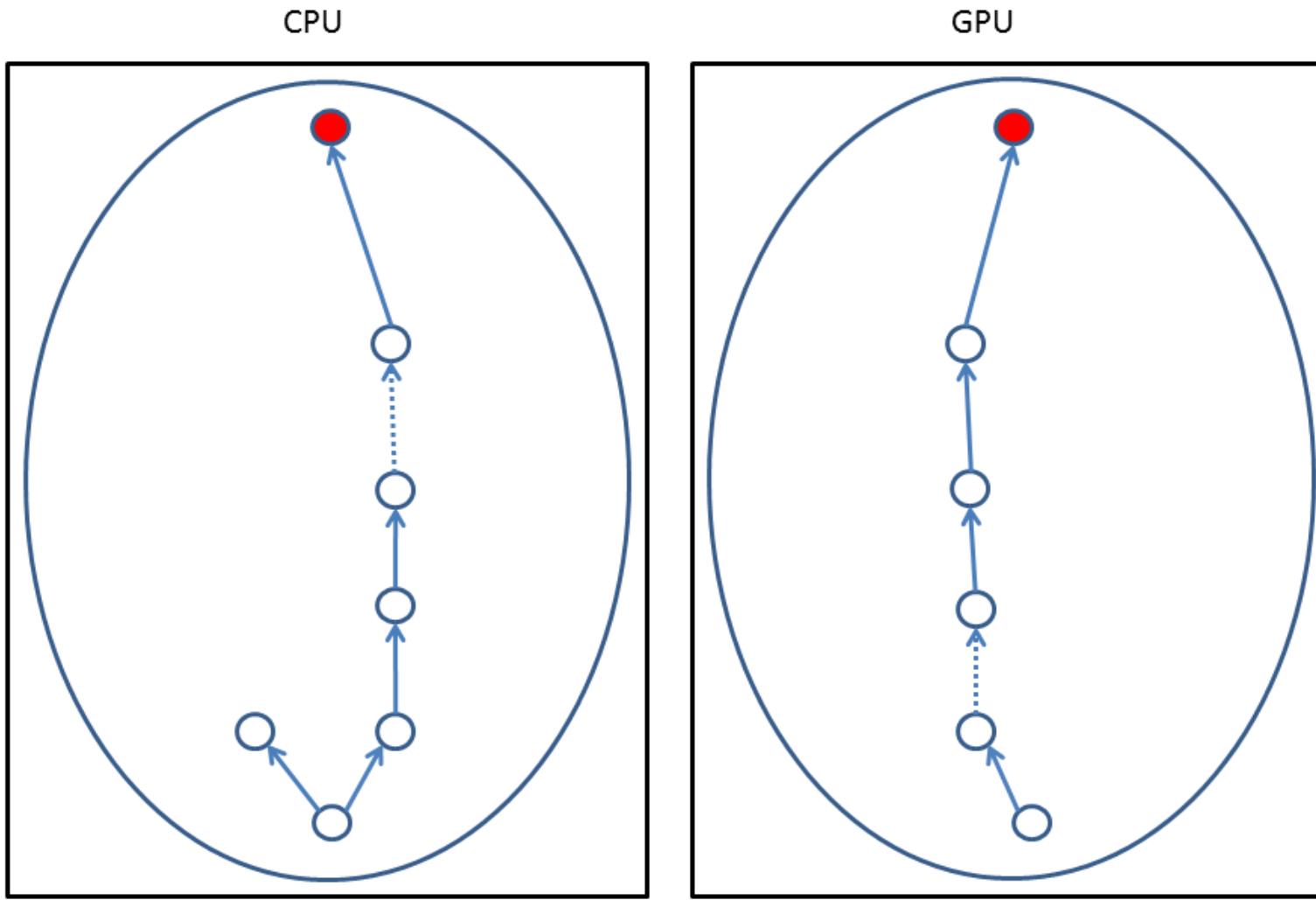
ILLUSTRATION ITERATIVE STEP



ASYNCHRONOUS AND HYBRID BACKWARD PHASE

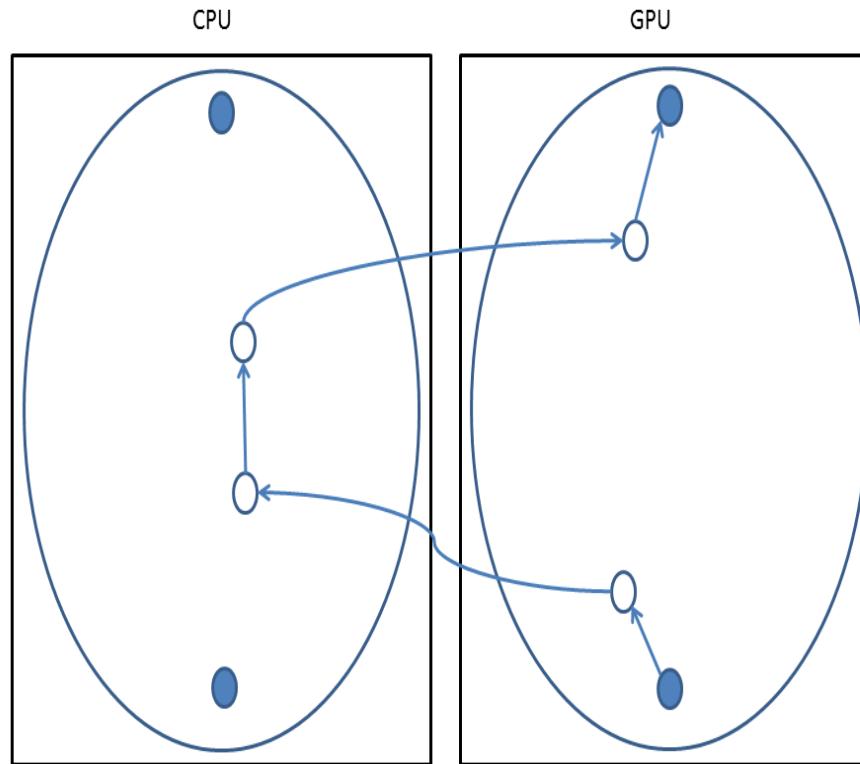
- The non-zero $edge\sigma$ characterizes the dependency information.
- The execution is launched simultaneously on CPU and GPU.
- CPU computation threads.
 - In CPU partition.
 - For each $dist$ level starting from max till the min.
 - Set **$borderNodeinLevel$** if current level has a border node in GPU.
 - Wait till GPU has completed the current level.
- GPU handler thread.
 - A CPU thread.
 - Invokes the GPU kernel.
 - For each $dist$ level starting from max till the min.
 - If **$borderNodeinLevel$** is set then copy the border node values to CPU.
 - If there is a border node in current partition.
 - Wait till CPU has completed the current level.
 - Copy border values from CPU to GPU.

ILLUSTRATION BACKWARD STEP



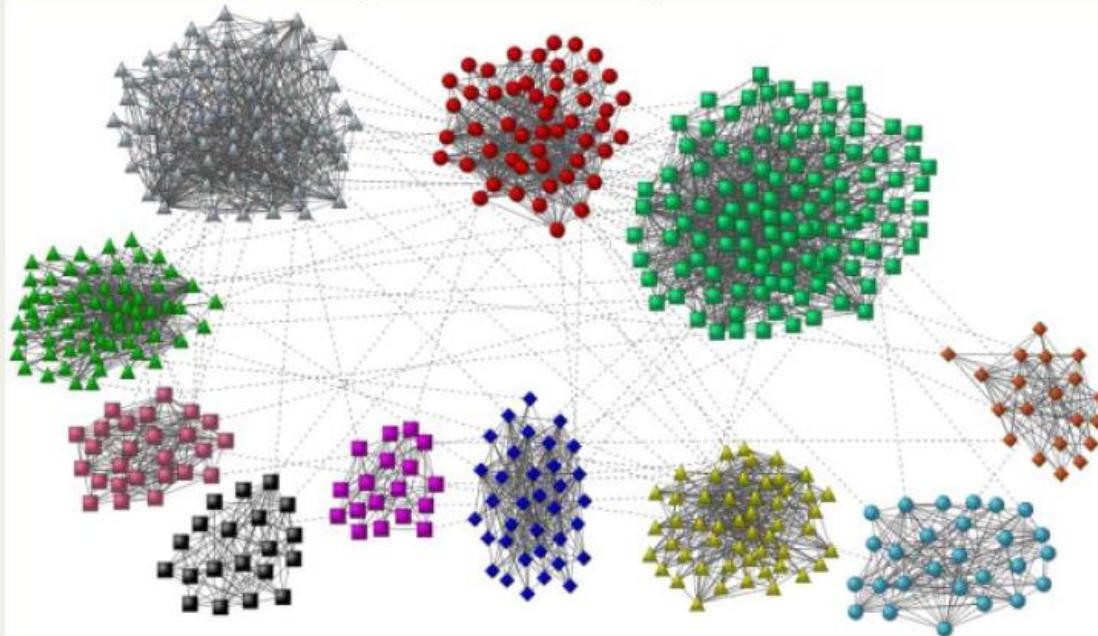
CONTINUED...

- CPU and GPU both traverse asynchronously, until a border node is found.
 - If there is a border node then either processor has to wait for the other to reach current level.
 - Only when required.
- The synchronizations in the backward phase.
 - Depend on the structure of the graphs.
 - Number of border nodes in either partitions.
 - Relation of border nodes among the partitions.
 - Its equal to the number of iterative steps in the forward phase.
- Communication is minimized
 - Only copy the border data structures.
 - delta values.



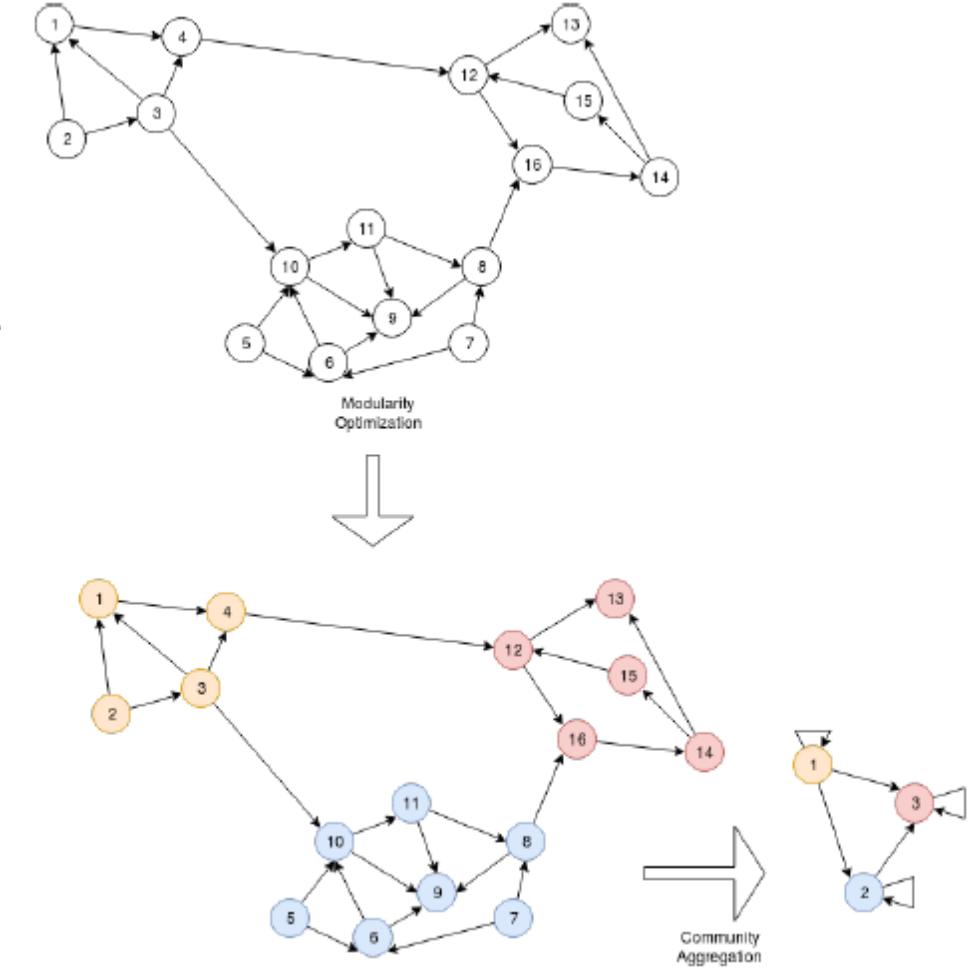
Case 3: Community Detection

- Attempts to identify modules or connected components in a graph
- Used in various fields such as biological science and health care



Hybrid CPU-GPU Algorithm

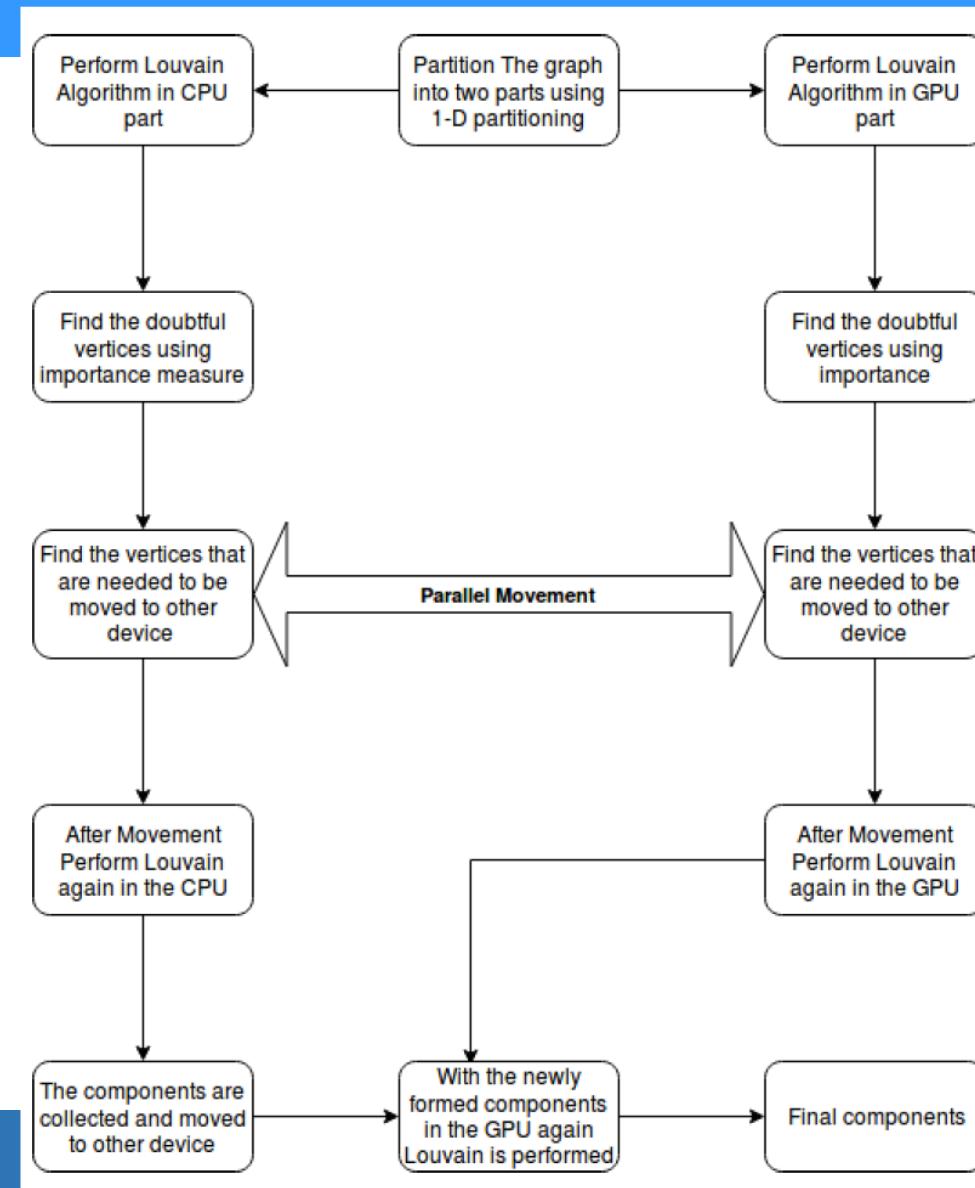
- Once again, partition for CPU and GPU
- Perform independent communities in the devices using a community detection algorithm (e.g., Louvain's)



Hybrid algorithm

- This will form *pseudo communities*
- In the next step, *doubtful vertices* are identified, separated and exchanged
- Independent communities formed again
- Process repeated until components become small

Hybrid Algorithm



Some Lessons

- Take up simple algorithms
 - Simple graph algorithms (e.g., graph coloring), matrix computations
- Try to let it loose across the different devices
- See what needs to be done to get correct answers

Thank You Questions?