
IndoSys Workshop, CDS, IISc

Heterogeneous Computing for Graph Algorithms

Sathish Vadhiyar
Department of Computational and Data Sciences

Indian Institute of Science, Bangalore, India

July 19, 2019

Introduction

• Graph processing has been prevalent

• Real world graphs large in size

• Processing such real world graphs
requires effective harnessing of multiple
nodes of CPU and GPU devices

July 19, 2019 IndoSys Workshop, CDS, IISc

GPUs

• Graphical Processing Units (GPUs)

• A single CPU can consist of 2, 4, 8 or 12 cores

• GPUs consist of a large number of light-weight cores

• Typically GPU and CPU coexist in a heterogeneous setting

• “Less” computationally intensive part runs on CPU (coarse-
grained parallelism), and more intensive parts run on GPU (fine-
grained parallelism)

July 19, 2019 IndoSys Workshop, CDS, IISc

Challenges

● Irregular memory access, hence poor locality.

● Poor computation-to-communication ratio.

● Varying parallelism while execution.

● Frequent need of synchronization.

● Load Balancing across computing units.

● Most important: To be able to use all the heterogeneous

resources
July 19, 2019 IndoSys Workshop, CDS, IISc

Divide and Conquer

● Partition and run the algorithm independently on the devices

● Three cases
○ Case 1: Control the independent algorithmic computations – MST

○ Case 2: Split into batches and different pipeline stages on the devices –
Betweenness centrality

○ Case 3: Let loose and correct – Community Detection

July 19, 2019 IndoSys Workshop, CDS, IISc

Case 1: Minimum Spanning Tree (MST)

• MST one of the important graph applications

• Large scale MST requires multiple nodes with distributed
memory parallelism

July 19, 2019 IndoSys Workshop, CDS, IISc

Multi-node multi-device MST

• We propose a multi-node multi-device algorithm following a
divide-and-conquer paradigm

• Graph is partitioned across multiple nodes and further across
multiple devices

• Boruvka’s MST invoked independently on each partition/device

• Results merged using a novel hierarchical merging algorithm

July 19, 2019 IndoSys Workshop, CDS, IISc

Boruvka’s MST

• Iteratively finds lightest edges from a component and merges
two components connected by a lightest edge – called edge
contraction

• Process repeated until a single component formed

• Edges contracted across all the iterations form the minimum
spanning tree

July 19, 2019 IndoSys Workshop, CDS, IISc

Boruvka’s MST

July 19, 2019 IndoSys Workshop, CDS, IISc

Hybrid CPU-GPU MST

● Consists of:

○ Partitioning

○ Independent computations:
■ Run the Bouruvka’s algorithm on each device
■ But don’t run the algorithm on the border vertices

○ Merging

○ Post processing

July 19, 2019 IndoSys Workshop, CDS, IISc

Implementation: HyPar Divide-and-conquer API
Function Remarks

partGraph Partitions the graph into number of processing units.

indComp Performs independent computations of a graph kernel, given by an

appName, on each partitions independently with excpCond and returns the

result.

mergeParts Merges the results from the independent computations on the devices and

communicates ghost vertices.

postProcess Performs postprocessing by executing the kernel given by

postProcessKernelName with updated graph as the input.

July 19, 2019 IndoSys Workshop, CDS, IISc

HyPar Runtime Optimizations

1. Ratio for Graph Partitioning:

o To find the ratio for partitioning we use a heuristic approach. We choose 5-10 random induced

subgraphs with 5% of the total number of nodes and run the application on both the CPU and

GPU devices simultaneously to find the partitioning ratio.

2. Threshold for Independent Computation

o While performing independent computation in each partition, the amount of parallelism may

drop significantly after few iterations.

o HyPar automatically find the threshold by observing trend in execution times, and switches to

the merging step at the threshold

3. Recursive Invocation of Partitioning-Independent Computations-Merging

o After mergeStep in many applications the remaining graph size may be large.

o HyPar framework again partitions the reduced graphs using the same partitioning ratio,

followed by invocation of indComp and mergeStep if the size of the graph is more than a

threshold

July 19, 2019 IndoSys Workshop, CDS, IISc

Case 2: Betweenness Centrality

• Betweenness Centrality is a shortest path metric used to give a score to each vertex in a graph
or network based on how many shortest paths it lies on.

• Definition:-

• For a graph G = (V,E), where V is the set of vertices and E, the set of edges. Let σst(v)
denotes the number of shortest path from vertex ‘s’ to vertex ‘t’, where s ≠ t, passing through
vertex v.

• Based on above, we find δst(v) = σst(v) / σst , where δst(v) denotes the pair-wise dependency
between of the pair ‘s’ and ‘t’ on ‘v.’

• The Betweenness Centrality score of the vertex is given by

BC(v) = ෍

s≠v ≠ t∈V

δst(v)

• One way to find BC for all vertices is to perform an APSP and aggregate the pair-wise
dependencies for all vertices. Its costly, O(n3) and infeasible for larger graphs.

July 19, 2019 IndoSys Workshop, CDS, IISc

• The algorithm by Brandes [JMS-2001] consists of two phases: a forward
and a backward phase.

• The forward phase consists of a BFS traversal or SSSP calculation
with s as the source. For each vertex the #shortest paths and
predecessor list is calculated.

• The backward phase traverses the vertices in descending order of
their distance from s.

BRANDES’ ALGORITHMBrandes Algorithm for Betweenness Centrality

July 19, 2019 IndoSys Workshop, CDS, IISc

• In an iteration a source s is selected

• Distance values of all nodes in G , except s are set to ∞, which is set to 0.

• Step 1.
• BFS/SSSP from s in Pr(s).
• 𝑑𝐶 𝑠, 𝑣 , ∀𝑣 ∈ Pr(𝑠).
• Initial step.

• Step 2.
• Update BG-Pr(s) using edge cuts.
• Using dC values of BPr(s), relaxing

the values of BG-Pr(s) .

• Step 3.
• Updating the BG-Pr(s) in the same

partition.
• Using BMG-Pr(s) for further

relaxing the values of BG-Pr(s).

• Step 4.
• Update BPr(s) using edge cuts.
• Using dC values of BG-Pr(s), relaxing the dC values of BPr(s).

• Step 5.
• Updating the BPr(s) in the same partition.
• Using BMPr(s) for relaxing the dC values of BPr(s).

DISTANCE CALCULATIONS IN FORWARD PHASE.

ILLUSTRATION ITERATIVE STEP

July 19, 2019 IndoSys Workshop, CDS, IISc

• The non-zero edgeσ characterizes the dependency information.

• The execution is launched simultaneously on CPU and GPU.

• CPU computation threads.

• In CPU partition.

• For each dist level starting from max till the min.

• Set borderNodeinLevel if current level has a border node in GPU.

• Wait till GPU has completed the current level.

• GPU handler thread.

• A CPU thread.

• Invokes the GPU kernel.

• For each dist level starting from max till the min.

• If borderNodeinLevel is set them copy the border node values to CPU.

• If there is a border node in current partition.

• Wait till CPU has completed the current level.

• Copy border values from CPU to GPU.

ASYNCHRONOUS AND HYBRID BACKWARD PHASE

July 19, 2019 IndoSys Workshop, CDS, IISc

ILLUSTRATION BACKWARD STEP

July 19, 2019 IndoSys Workshop, CDS, IISc

• CPU and GPU both traverse
asynchronously, until a border
node is found.

• If there is a border node then
either processor has to wait for
the other to reach current
level.

• Only when required.

• The synchronizations in the
backward phase.

• Depend on the structure of the
graphs.

• Number of border nodes in
either partitions.

• Relation of border nodes
among the partitions.

• Its equal to the number of
iterative steps in the forward
phase.

• Communication is minimized
• Only copy the border data

structures.
• delta values.

CONTINUED…

July 19, 2019 IndoSys Workshop, CDS, IISc

Case 3: Community Detection

• Attempts to identify modules or connected components in a
graph

• Used in various fields such as biological science and health
care

July 19, 2019 IndoSys Workshop, CDS, IISc

Hybrid CPU-GPU Algorithm

• Once again, partition for CPU and GPU

• Perform independent communities in the
devices using a community detection
algorithm (e.g., Louvain’s)

July 19, 2019 IndoSys Workshop, CDS, IISc

Hybrid algorithm

• This will form pseudo communities

• In the next step, doubtful vertices are identified, separated and
exchanged

• Independent communities formed again

• Process repeated until components become small

July 19, 2019 IndoSys Workshop, CDS, IISc

Hybrid Algorithm

July 19, 2019 IndoSys Workshop, CDS, IISc

Some Lessons

• Take up simple algorithms
• Simple graph algorithms (e.g., graph coloring), matrix computations

• Try to let it loose across the different devices

• See what needs to be done to get correct answers

July 19, 2019 IndoSys Workshop, CDS, IISc

July 19, 2019 IndoSys Workshop, CDS, IISc

