Heterogeneous Computing for Graph Algorithms

Sathish Vadhiyar

Department of Computational and Data Sciences
Indian Institute of Science, Bangalore, India

IndoSys Workshop, CDS, 1ISc

July 19, 2019

Introduction

« Graph processing has been prevalent
» Real world graphs large in size

* Processing such real world graphs
requires effective harnessing of multiple

-
. = - Pr—— P .) Loogle LaDs
. .Assis!ive technology ¢ .password Spam in blogs .T?mplale taik:Googee in®. Eric ®. Schnfldt @
°
o s book ofBL e & i Gmai @orINetgHSgS
e .":ﬂ LI"E::H‘aulhemication oGoog® schold? g) @Google Pack P
prorf (starBard) P ® 5 CLEVERprofec K .Ann.Ma!ht 0 (G000l G
° ° I
RDFa |) .ICooge ® _Google Book
N
° & CROSE & ° PageRank ° Lo
° o ® URL ® Go #Google Updater o GrandcCentra
N im0) :mstmsm(2 ° ey
eSS IS N) ® Godgle Image Search - Dom7tsevi , gfoog Earth
b QMiley! 29 Biashdor " nAuwms aEigeﬂTrusr ohngDoerr o o
P .Bh;:::‘zﬂrﬂ(g"[:z:k woatemat | gnted BajagTiollay ‘§pa.m in blogs#rel.3D.22nofollow.22
Geo (microformat) o amdexing
e e — Hofoltow - ‘gogr& Toolbar
- iR,
° y .UnAPl) _ Scraper site Open Directory Project
° .RelSﬁDn:‘f:oI!crr’zuv | ¢ HT::rm"g .v.Web GW "
.Longmde ofiCard#tLive example A
° .Ask.com Wa.ll Street Journal
° ill Whalg
Mlcroforr:alos n‘ETF MSN_ Searth Robots Exclusion Standard® ® lewah:rs‘[mg
" o @Ka Microsofty v ocl] Laﬂling;‘age optimi;
.In!ormauon eRraction @ - . e i
mail mar
© o sefhanticweb (= orandex © of
° & HTML element N &t L) o-ink popu
o 8 Mo%e(ize * B ° ® Gary Price
o obfile format pe .S?arc engingresults pfye Search dhgine indexigg .CNQ’
° s
° ° Reciprocalmnk e CostgPer Action
” ° ° SN)
.W!hl@loﬁ?os(@ oSpidering °

IndoSys Workshop, CDS, IISc

GPUs

» Graphical Processing Units (GPUs)

* A single CPU can consist of 2, 4, 8 or 12 cores

* GPUs consist of a large number of light-weight cores
 Typically GPU and CPU coexist in a heterogeneous setting

* “Less” computationally intensive part runs on CPU (coarse-
grained parallelism), and more intensive parts run on GPU (fine-
grained parallelism) A

e 240 cores

IndoSys Workshop,iCDS, liSc

4:cores

Challenges

. lrregular memory access, hence poor locality.
. Poor computation-to-communication ratio.

. Varying parallelism while execution.

. Frequent need of synchronization.

. Load Balancing across computing units.

. Most important: To be able to use all the heterogeneous

resources

July 19, 2019 IndoSys Workshop, CDS, IISc L

Divide and Conquer

 Partition and run the algorithm independently on the devices

« Three cases
- Case 1: Control the independent algorithmic computations — MST

- Case 2: Split into batches and different pipeline stages on the devices —
Betweenness centrality

- Case 3: Let loose and correct — Community Detection

@ g & 9
e ‘ <

July 19, 2019 IndoSys Workshop, CDS, 11Sc 0. RN
tment of Computational and Data Sciences| Ax ; ;

Case 1: Minimum Spanning Tree (MST)

« MST one of the important graph applications

 Large scale MST requires multiple nodes with distributed
memory parallelism

IndoSys Workshop, CDS, IISc

Multi-node multi-device MST

* We propose a multi-node multi-device algorithm following a
divide-and-conquer paradigm

» Graph is partitioned across multiple nodes and further across
multiple devices

* Boruvka’'s MST invoked independently on each partition/device

* Results merged using a novel hierarchical merging algorithm

e SR
q‘g" 2 *?;
Py | e
IndoSys Workshop, CDS, 11Sc 0. :«‘:‘.,»‘sz
[Department of Computational and Data Sciences| il

Boruvka’s MIST

* |[teratively finds lightest edges from a component and merges
two components connected by a lightest edge — called edge
contraction

* Process repeated until a single component formed

« Edges contracted across all the iterations form the minimum
spanning tree

N " 4 -,.',QQJ EF
® 7 & D
A
4D
July 19, 2019 IndoSys Workshop, CDS, IISc 0. :«';,,A,’f?

Boruvka’s MIST

July 19, 2019 IndoSys Workshop, CDS, IISc

Hybrid CPU-GPU MST

» Consists of:

O

Partitioning

Independent computations:
= Run the Bouruvka’s algorithm on each device
= But don’t run the algorithm on the border vertices

O

O

Merging

O

Post processing

July 19, 2019 IndoSys Workshop, CDS, IISc

Implementation: HyPar Divide-and-conquer AP

partGraph
IndComp

mergeParts

postProcess

July 19, 2019

Partitions the graph into number of processing units.

Performs independent computations of a graph kernel, given by an
appName, on each partitions independently with excpCond and returns the
result.

Merges the results from the independent computations on the devices and
communicates ghost vertices.

Performs postprocessing by executing the kernel given by
postProcessKernelName with updated graph as the input.

e £ R
1 > -)
(37 WA
® 7 O
v, U
1
Do, 4
e | "
ZAN A
‘ LA % i,
1
epament Cit

IndoSys Workshop, CDS, IISc

HyPar Runtime Optimizations

1. Ratio for Graph Partitioning:

o To find the ratio for partitioning we use a heuristic approach. We choose 5-10 random induced
subgraphs with 5% of the total number of nodes and run the application on both the CPU and
GPU devices simultaneously to find the partitioning ratio.

2. Threshold for Independent Computation

o While performing independent computation in each partition, the amount of parallelism may
drop significantly after few iterations.

o HyPar automatically find the threshold by observing trend in execution times, and switches to
the merging step at the threshold

3. Recursive Invocation of Partitioning-Independent Computations-Merging

o After mergeStep in many applications the remaining graph size may be large.

o HyPar framework again partitions the reduced graphs using the same partitioning ratio,
followed by invocation of indComp and mergeStep if the size of the graph is more than a
threshold

July 19, 2019 IndoSys Workshop, CDS, IISc

Case 2: Betweenness Centrality

- Betweenness Centrality is a shortest path metric used to give a score to each vertex in a graph
or network based on how many shortest paths it lies on.

» Definition:-
* For a graph G = (V,E), where V is the set of vertices and E, the set of edges. Let g (V)
denotes the number of shortest path from vertex ‘s’to vertex ‘t’, where s # t, passing through
vertex v.

« Based on above, we find 53;(v) = 0$t(v) | oy , where 64(v) denotes the pair-wise dependency
between of the pair 's’and 1 on ‘v.

» The Betweenness Centrality score of the vertex is given by

BCK) =) 8,)

Ss#v # teV

« One way to find BC for all vertices is to perform an APSP and aggregate the pair-wise
dependencies for all vertices. Its costly, O(n3) and infeasible for larger graphs.

July 19, 2019 IndoSys Workshop, CDS, IISc

Brandes Algorithm for Betweenness Centrality

* The algorithm by Brandes [JMS-2001] consists of two phases: a forward
and a backward phase.

* The forward phase consists of a BFS traversal or SSSP calculation
with s as the source. For each vertex the #shortest paths and
predecessor list is calculated.

* The backward phase traverses the vertices in descending order of
their distance from s.

[J 7 & D
Iy ‘ L

July 19, 2019 IndoSys Workshop, CDS, II1Sc 0. RN
[Department of Computational and Data Sciences| Ax SR

DISTANCE CALCULATIONS IN FORWARD PHASE.

* In an iteration a source s is selected
 Distance values of all nodes in G, except s are set to «, which is set to 0.

« Step 1. ILLUSTRATION ITERATIVE STEP
 BFS/SSSP from s in Pr(s).
* d.[s,v],Vv € Pr(s).
 Initial step.

« Step 2.
* Update Bg p, Using edge cuts.
* Using d¢ values of Bp, relaxing
the values of B p() -

« Step 3.
* Updating the Bg p) In the same
partition.
* Using BMg p() for further
relaxing the values of Bg py)-

- Step 4.
* Update Bp, using edge cuts.
* Using d¢ values of Bg py), relaxing the d¢ values of Bp.

« Step 5.
* Updating the Bp,, in the same partition.
* Using BMp,, for relaxing the d. values of Bp,).

CPU PART GPU PART

July 19, 2019 IndoSys Workshop, CDS, IISc

ASYNCHRONOUS AND HYBRID BACKWARD PHASE

The non-zero edgeo characterizes the dependency information.
The execution is launched simultaneously on CPU and GPU.

CPU computation threads.
* In CPU partition.
» For each dist level starting from max till the min.

 Set borderNodeinLevel if current level has a border node in GPU.
« Wait till GPU has completed the current level.

GPU handler thread.
« ACPU thread.
Invokes the GPU kernel.
For each dist level starting from max till the min.
If borderNodeinLevel is set them copy the border node values to CPU.

If there is a border node in current partition.
« Wait till CPU has completed the current level.
» Copy border values from CPU to GPU.

July 19, 2019 IndoSys Workshop, CDS, IISc

|LLUSTRATION BACKWARD STEP

CPU GPU

CONTINUED...

« CPU and GPU both traverse - -
asynchronously, until a border
node is found.

 If there is a border node then
either processor has to wait for
the other to reach current

level.
* Only when required.

* The synchronizations in the
backward phase.
» Depend on the structure of the

graphs.
* Number of border nodes in N
either partitions.

» Relation of border nodes
among the partitions.

* Its equal to the number of
iterative steps in the forward

phase.

« Communication is minimized

* Only copy the border data
structures.
» delta values.

IndoSys Workshop, CDS, IISc

July 19, 2019

Case 3: Community Detection

« Attempts to identify modules or connected components in a
graph

e Used in various fields such as bioloaical science and health
care spdle

Hybrid CPU-GPU Algorithm

« Perform independent communities in the
devices using a community detection
algorithm (e.g., Louvain’s)

IndoSys Workshop, CDS, IISc

Hybrid algorithm

 This will form pseudo communities

* In the next step, doubtful vertices are identified, separated and
exchanged

* Independent communities formed again
* Process repeated until components become small

’ o “,_'-.ﬂ'a,_‘:\.
O 7 & D
& 2 W
Rl
July 19, 2019 IndoSys Workshop, CDS, IISc @ -.;‘Sf_;,‘ A‘,»f,?
[Department —— . i CE/

Hybrid Algorithm

Perform Louvain Partition The graph Perform Louvain
Algorithm in CPU into two parts using Algorithm in GPU
part 1-D partitioning part
) 4 4
Find the doubtful Find the doubtiul
vertices using vertices using
importance measure importance
v v
Find the vertices that Find the vertices that
are needed to be are needed to be
moved 1o other Parallel Movement moved to other
device device
h ¥

After Movement
Perform Louvain
again in the GPU

After Movement
Perform Louvain
again in the CPU

S

v

The components are With the newly
formed components A
ml{ed?hd ar(;d moved in the GPU again Final components %
July 19, 2019 0 olher device Louvain is performed WA

Data Sciences|

Some Lessons

« Take up simple algorithms
« Simple graph algorithms (e.g., graph coloring), matrix computations

* Try to let it loose across the different devices

« See what needs to be done to get correct answers

. 1£’L) ‘3;

‘ > &

July 19, 2019 IndoSys Workshop, CDS, IISc 0. :«’:_.,V;'Z,
[Department of Computational and Data Sciences| g n/SCIERCT]

July 19, 2019 IndoSys Workshop, CDS, IISc

al and Data Sciences|

