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How do you react when the
next big thingis here?

« Bah, humbug! e

mcswhispers.wordpress.com

= Me too, Me too

= Hmmm, lets examine this...
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Bah, humbug!

= There are enough of these around...too
many to list
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“Big Compute, Big Data, Big Science"”

Observational data

Theoretical

" The way science is done has evolved

Intuition, Theorems & Proofs
Repeatability N
Unified Theory Math Models &
Standard model Simulation
Physics, Molec.
Biology, Video
Games
HPC, MPI, Top500

\4

>

Data Driven

eScience

ML, Data Mining,
Statistics “Fourth

q ’
Genomics, Vision, Paradigm
Behavioral

)

Cloud, Hadoop,
Graph500

TTitle from Robert Harrison (Stony Brook/Brookhaven Lab)’s HiPC 2013 Keynote
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Easing into eScience

UNIVERSITY of WASHINGTON

lISc

Data

SERC @ eScience Institute

M.Tech. : SC' e n ce

Comput’nal B NCA,
Science The Data Grid p ONLINERROGRAM

IU Informatics PhD, 2006

COMMUNICATIONS

I owa rds = CM “
Making the Web Faster _ ==l —
with HTTP 2.0

TheEnd
of Science -

Wired, July 2008

SCIENCE IN THE
PETABYTEERA

4 Sept, 2008
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The Obligatory 3D's

= Volume
* Sheer size of data. Storage, mgmt., bandwidth

= Velocity

» Realtime processing, ephemeral, latency

= Variety
» Complexity, linked data analysis, compute+|/O

= Not exclusive dimensions, but useful

= Helps shape some of the interesting eScience
and eEngineering activity



VVolume [ Pan-STARRS Sky
Survey, 2008

“Me Too” I | ii
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Pan-STARRS Sky Survey

= Discover & characterize Earth-
approaching objects that might pose |
a danger to our planet. _ -

= One of the largest telescopes
* 1.4 Gigapix camera world’s largest! Ry

= Scan 2/3"s of sky, 3 times/month Dmm
* 1 PB of images, 30 TB of processed s __—SEsny
datalyear ) N

* 150 M detections | night

» 5.5 Billion objects, 350 Billion
detections

www.pslsc.org

@Microsoft Research with Johns Hopkins, UHawaii,



I OREAM:La> [ ) 1
HW & DB Architecture
= HW/SW/|DB layout co-design

= GrayWulf commodity cluster for scale out "
» Amdahl’s ratios: I/O BW= 0.5, Memory=1.04

= Distributed MSSQL Databases

* CASJobs auto,
query generation

* “MyDB” local
scratch DB of
results

'SC 2008 Storage Challenge Award
Stargazing through a digital veil, Simmhan, van Ingen, Heasley, Szalay, HPCDB, 2011
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Scientific Data Ingest Pipeline

= Reduce time to science ready data
* Once every 6 months = oncelweek, 10x data

= Ensure performance: Relax ACID on distributed DB
= Ensure resilience & externalize consistency

« Behind the Wall|| User facing services -

Data Valet Workflows

. Astronomers
Data Creators The Pan-STARRS Science Cloud Data Consumer (Data Consumers)
Load Queries & Workflows
>. Workflow > -
n
Pipeline (IPP) Workflow Workflow

\.r\ ” CASlobs <0

Query
Service

Telescope

‘ Flip
Workflow }—

i Validation
Exception  Admin & Load-Merge Machines

________________

lice Fault
Recover
orkflo

— Data flows in one
. direction->, except for
1
error recovery -

" Production Machines




B DREAN:Lab | (o )

Transactional ETL Workflows

= Well defined, Well tested workflows
* Run repeatedly, impact cumulative

= Granular, Reusable workflows
» Separate policy from mechanism

= Workflows as Data State Machines

» Data containers have states
* Workflows & tasks cause state transitions

= Leverage provenance as transaction log

Building Reliable Data Pipelines for Managing Community Data using Scientific
Workflows, Simmhan, van Ingen, Barga, Szalay, Heasley, eScience, 2008
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WF Recovery Baked into Design

= Faults are a fact of life in distributed sys.
» Handling faults a routine action
» Mitigate I/O cost, ease manageability

Activity Type

Load Workflow yaldate Blue/Solid : Mainline
Activities - (ifexists Batch PEERT Load Code
Batch "= Purple/Dashed:
Create DB Insert CSV Success Continues in the . Recovery Preamble
Merge work’flg%
y f it Success States
State Machine for : Load Green/Solid : Clean
Load DB _ Complete Yellow/Dashed:
State transitions take In Flight
place gf::uzgt' vities Failed States
Orange/Dotted:
" Hold for Recoverable

Success

Red/Dotted:

k. Analysis _J
Unrecoverable
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Using Provenance for Resilience

1. Re-Execute ldempotent Recovery
» Rerun without side-effects

2. Resume Idempotent Recovery
* Allow a “goto” at the start

3. Recover & Resume
» Tasks to rollback to initial state. Reduce to #3

4. Independent Recovery
» Complex faults, global sync, manual oversight




\Velocity | The Los Angeles
Smart Grid, 20717

€Cy

Hmmm, lets examine this...” Q
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Smart Grids: The
C\/ber Ph\/sical S\/S. Distribution ____—=& |

= Integration of Renewables (\_ @l I &

[ |
= Bi-directional
communication

= Real-time data acquisition
control

Grids’...like USC | :

= [ADWP: largest US public
utility
. =  Electric
Cloud-based software platform for data-driven l—!VAC & s e g - R ehicloc
smart grid management, Simmhan, et al, CiSE, 2013 Lighting

Control Center Solar Co-

1 e %neratlon
Mﬁ-ﬁ VV
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Dynamic Demand Response (D?R)

Reduce consumer demand for electricity during periods
of peak usage to relieve stress on power grid
When - By How Much - How/Whom ... Predict, Adapt, Evolve

Environment, Events Customers @y ™% Analysts

== —1 Visuali- _

~, 3
3
O EE [

Generation

zation !
Engineers & @ Researchers Capacity Data

AS
E> Forecast \

ﬁ@

Curtailment Notification — Voluntary and Direct Load Control

Monitor
Ingest

=y Data

—46/2012

| =——4/10/2012

Al —4{12/2012
10 - ——4/18/2012
‘ I 1
| 1 DR Schedule
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Information Integration of Big Data

= Real-time data streams
* ~50,000 Sensors
* 1/15min intervals

dul

A A

L T

= Semantic Information Ingest e
Pi eline P : Provision _____ A
p . Prom‘der@
* Normalize Heterogeneous Data

i Cloud Service

* Ease data access in a complex
environment
= Scale to thousands of customers

* Floe: Continuous Dataflow Engine
for Elastic Execution On CIOUdS Virtual Machine Virtual Machine

’.. Pe11:1e ..{

Eucalyptus Cloud Infrastructure
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Elastic Scaling Up & Out on \VMs

= Ensure latency target is met
» Add/remove # of cores allocated per VM
» Add/remove VMs allocated per dataflow

= [nitial placement on independent VMs
= Decentralized VM-local scaling algorithm

w8 T = #cores 80,000
§ 7 + —o—pelletg aoooooooooocooooooocnoocnoooooocnocxnoooooooooa 70,000 g
g g 6 - * latency 60,000 .g i
S<E5 50,000 £ 5
= o QO
° =4 ﬁ..““ 40,000 5 =
5 o A“A“A o) i
82, hra 30,000 2 T
E 2 ‘ et ‘m. : 3 2
g o 2 .:l. ' .-:-:.-...- ‘ -l;AAA ..-:::-:.-.::: .......... — ZO’OOO E g
E A ‘ ,’, o e e e e “An 4T . 0% ** +
5 1 -oooooocoooo * * A“““ . - 10,000 T
P A “‘MLA
O asssssasssest Apiadad asabasassisass 0
12:58 12:59 13:00 13:01 13:02 13:03 13:04 13:05 13:06 13:07

Time (hh:mm)
IEEE SCALE Challenge. First Place. Adaptive Energy Forecasting and Information Diffusion for Smart

Power Crids, Simmbhan, et al. (2012)
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Runtime Adaptation QoS Trade-off

= Allow alternate tasks with differential QoS

» E.g. high rez model w/ high cost & utility vs.
low rez model

» Logically independent, no app. side effects
* Meet throughput goal, Maximize value

= Heuristic runtime adaptation algorithm
» Thru’put skRew of € triggers adaptation
» Estimate local+downstream impact
* Incremental +/- 1 core/[VM per timestep

Exploiting Cloud Elasticity to Enhance the Value of Dynamic, Continuous Dataflows,
Kumbhare, Simmhan and Prasanna, SC 2013
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Semantic CEP for D2R

= Complex Event Processing (CEP)
» Detect event patterns from data streams

= Semantic CEP: Use domain semantics for
higher abstraction in pattern specification

» E.g. Find offices with airflow greater than 200
* Predict energy spikes, energy leaks

= Go forward and back in time

SELECT revent
FROM OPCStream
WHERE {?event evt:hasEventSource ?src . DEBS 2014
?src ee:haslLocation ?loc .
?loc rdf:type bd:0ffice . Challenge
?’src  rdf:type ee:AirflowSensor .
?event.value > 200 }




\ariety | Computational
Biology, etc., 20173

“Hmmm, lets examine this...

p
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Graph Collections in Systems Bio.

Coexpression Recurrent
Networks Patterns

= Co-expression networks

° .T/‘ » a f ho
» Recurrent correlation e ‘%

behavior between gene

* Over time (lifespan), Across @ @

space (cancer patients)
= Modelled as a graph series EN* @W
d : B °

» Same topo, different values " >4
= Find frequent clusters @é; C \A
a® 3 ° °

A graph-based approach for the integrative analysis of gene expression data,
Jasmine Zhou, USC, 2013
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Dynamic & Timeseries Graphs

= Graph (time)series are common in CPS
e Static Road N/W, Variable traffic flows in time
* Power grid N/W, Power loads on vertices

= Dynamic graphs generalize this
» Topology can change too

Composed
Analytics

= Abstractions for scalable
R Distributed
analytics on TS graphs smrageé

* Efficient storage model|  mmeseres,

* Intuitive & efficient composition
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GoFFish Software Platform

= GoFS: Distributed Graph-oriented File Sys.
= Gopher: Compose sub-graph centric analytics

= Targeted at distributed commodity H/W

= Sub-graph & TS aware s
distributed storage

* APIs for SG Iteration,
Filtering and Projection

* Temporal Instance Packing ~
* SG Binning & Caching

92 SUPERSTEPS

Scalable Analytics over Distributed Time-series Graphs using GoFFish, Simmhan, et al,
(under review)
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Sub-graph centric programming

= Logic defined for sub-graphs (>Google Pregel)
= Bulk Synchronous Parallel exec of supersteps
= Message passing between SG’s in superstep

Partition 1 Partition 2

Local Edges Remute Edges e

STerp 1
Find local

max (8 (&) (& (©

SENDTOALLSUB- -=
GRAPHNEIGHBORS _ 6 .

______

- -
- ——_-_.._____
e -

STEP4®®®@® @@@@@ OYONOIO

Sub-graph 1 Sub-graph 2 Sub-graph 3
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Results vs. Apache Giraph

CA Road (2M/2.7M), Traceroute (19M/23 M),
Live Journal (5M/68M)

1000 g M ] M Giraph ]
M GoFFish

100 — m : | B

RN TR LJ RN TR LJ RN TR LJ

Time (secs) [Log]
H
o
|

=

Connected SSSP PageRank

GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics, Simmhan, et
al, ArXiv 2013
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To Conclude

= eScience has been focussing on “Big Data”
for a while

* There is some credence to the hype

" Novel applications are coming up
» Scientific apps are a vanguard

= Platforms for analytics on dynamic &
interconnected data are vital

* Internet of Things, anyone?

=" We need you @ SERC, 11Sc!
» Application deadline for MSc/PhD is Mar, 2014
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Thank You!
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