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Abstract. The rapid growth in edge computing devices as part of In-
ternet of Things (IoT) allows real-time access to time-series data from
1000’s of sensors. Such observations are often queried to optimize the
health of the infrastructure. Recently, edge storage systems allow us to
retain data on the edge rather than moving them centrally to the cloud.
However, such systems do not support flexible querying over the data
spread across 10-100’s of devices. There is also a lack of distributed
time-series databases that can run on the edge devices. Here, we propose
TorqueDB, a distributed query engine over time-series data that oper-
ates on edge and fog resources. TorqueDB leverages our prior work on
ElfStore, a distributed edge-local file store, and InfluxDB, a time-series
database, to enable temporal queries to be decomposed and executed
across multiple fog and edge devices. Interestingly, we move data into
InfluxDB on-demand while retaining the durable data within ElfStore
for use by other applications. We also design a cost model that maxi-
mizes parallel movement and execution of the queries across resources,
and utilizes caching. Our experiments on a real edge, fog and cloud de-
ployment show that TorqueDB performs comparable to InfluxDB on a
cloud VM for a smart city query workload, but without the associated
monetary costs.

1 Introduction

Internet of Things (IoT) domains leverage the availability of affordable sensing
and computing devices, along with pervasive communications and advances in
analytics, to observe and manage cyber-physical systems to enhance their effi-
ciency and resiliency. IoT domains span physical infrastructure such as Smart
Cities, Smart Transportation and Industrial IoT, to consumer devices such as
smart watches and smart appliances. A key characteristic of IoT applications is
their closed-loop cycle where data about the system is analyzed and decisions
are made, typically within seconds, to control the system [11,15]. E.g., in a man-
ufacturing facility, sensors may monitor the temperature and pollution levels to
ensure it is safe for the workers, and if not initiate cooling, scrubbing or other
safety measures.
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Edge devices comparable to Raspberry Pi and Arduino are widely deployed as
part of such IoT applications to help gather and transmit observations from the
sensors, and also to enact control decision onto their co-located actuators [14].
Traditionally, data collected from the field are sent to the Cloud for storage and
analytics, and the control signals are sent back to the field. This introduces high
network round-trip latency from the edge to the cloud, and additional network,
compute and storage costs at the cloud data center.

FEdge computing has gained prominence to make use of the captive computing
and storage on edge devices, as well as to reduce the network latency between
the edge and the cloud for decision making. Besides running tasks and analytics
on such devices [2,3,11], recent works also propose their use for distributed
data storage by offering file and block-based semantics for data update and
access [5,9,10]. They also use workstation-class fog resources located near the
edge devices, which help with management and as a gateway to the Internet [13].

Motivation IoT data tends to be time-series in nature since sensors continu-
ously generate timestamped data. As a result, time-series querying and analytics
is a key requirement for IoT applications [8,15]. These operate on data collected
over time to check if recent observations exceed historic averages, identify min-
imum and maximum outliers within time-windows, and to query and visualize
data from specific sensor types and time ranges. This complements and is more
flexible than Complex Event Processing (CEP) and publish-subscribe systems
that operate on streaming data and limit the queries possible [3,7,12]. Time-
series databases (TSDB) like InfluxDB and Apache Druid are popular for hosting
of such IoT data and performing temporal queries, centrally on the cloud [8].

However, both the sensor data producers and the consuming applications
for such TSDBs tend to reside on edge devices. Edge applications require sub-
second query latency when responding to dynamic situations. Moving data from
the edge to a TSDB on the cloud, and querying it back from the edge causes
unreliable performance due to WAN variability. It also introduces additional
network and VM costs, and privacy concerns when data is moved out of the
private network to public clouds. There is also a lost opportunity cost in not
utilizing the captive compute, storage and network capacity available on edge
and fog resources.

Requirements and Gaps A natural progression is to host such time-series
databases on edge and fog devices, co-locating the query clients near the data
storage and also leveraging the available local compute and storage capacity on
them [1]. However, individual edge or fog resources may not have the capacity to
scale to workloads from many edge clients. This requires the use of a distributed
TSDB operating across multiple edge and fog devices. However, existing systems
are either proprietary, do not support distributed execution, or are not light
enough to be hosted on edge and fog resources. Further, not all time-series data
collected over time will be actively used all the time. Given the overheads of
managing distributed databases, only recent or actively used data should be



stored in such TSDBs. Lastly, data stored in the TSDB will need to complement
storing the data durably as files on the edge. This may required to support time-
series analytics or machine learning models that operate outside the database
and directly on files hosted on the edge devices [15]. We address these gaps.

Contributions We propose TorqueDB (Temporal querying from edge storage
Database) which leverages the ElfStore distributed edge-local storage [9] along
with InflurDB TSDB to offer a distributed execution model for time-series
queries over edge and fog devices. Here, ElfStore retains the persistent time-
series data generated by sensors on the edge devices while InfluxDB instances
running on the fog are used to host subsets of this data, on-demand, to support
user queries. TorqueDB accepts queries defined using the Fluxz language used
by InfluxDB, uses the basic search capabilities of ElfStore to identify blocks of
interest, inserts and caches them into one or more local InfluxDB instances on
the fog, executes subsets of the user query on each fog in parallel, and aggre-
gates the results for returning to the user. This effectively offers a distributed
TSDB with an edge-local backing store, and is the first of its kind system to
offer distributed time-series querying on edge and fog devices.

Next, in § 2 we discuss background on ElfStore and InfluxDB, and related
work on edge computing and querying; we introduce the TorqueDB design and
query execution model in § 3; we present detailed performance results on a real-
world edge and fog deployment in § 4; and lastly offer our conclusions in § 5.

2 Background and Related Work

2.1 ElfStore Distributed Edge-local Federated Storage

ElfStore [9] is a block-centric distributed storage system on edge and fog re-
sources, for files that grow over time. Edges are connected to a parent fog that is
present in their local network, and together form a fog partition. Many such fog
partitions can exist, with fogs being able to talk directly to each other. These all
form a peer-to-peer (P2P) network overlay, with edges serving as peers and fogs
as super-peers, and its associated scaling characteristics to 1000’s of devices.
Edges host data and metadata for a block. Fogs maintain a mapping from the
block ID to the edge(s), and indezes over the block metadata, for blocks in their
local partition. This allows fogs to perform basic value-based searching for blocks
based on their metadata properties, and lookups of block replica locations using
their block ID. Fogs also use Bloom Filters to maintain approrimate indexes
about contents in other fogs partitions to allow forwarding of metadata search
and block retrieval requests across the overlay, within no more than 3 hops.
Since edge devices can have asymmetric reliability, ElfStore uses a block-
specific replication level based on the required block reliability and the reliability
of the edges chosen for placement. Statistics exchanged between the fogs about
the reliability levels and storage capacities of edges in their partitions are used
by the replication logic to guarantee a minimum resilience and load balancing of
storage. It also recovers from failures by re-replicating blocks from failed edges.



2.2 Influx DB Time-series Database

InfluxDB is an open-source TSDB optimized for high read and write throughput.
It stores data in buckets (databases) that contain measurements (tables). Each
row in a table has a timestamp and columns that are either tags, which are
indefaxed, or fields, which can be aggregated on. It has a native Flur query
language that allows SQL-like queries over time-series data, with support for
Select, Project, Aggregate, Window-aggregates and Joins. Besides network APIs
provided for data insertion and querying, data can also be bulk-loaded into an
InfluxDB table using a line-protocol CSV format.

2.3 Querying over edge devices

There have been recent works that examine the use of edge computing for query
processing over event streams, though they do not support distributed time-series
queries over a database or use an external edge-storage as the backend.

StreamSight [2] provides a declarative query model for matching complex
patterns on data streams. The system compiles these queries into stream pro-
cessing jobs for continuous execution on engines running on edge devices. The
query plan is dynamically updated so that intermediate results are reused and
not recomputed. It also supports approximate answers with error-bounds for
latency-sensitive execution.

Periodic querying is essential in Industrial IoT. Here, contiguous queries can
have overlapping input regions, and the sensor data retrieved by recent queries
may be reused for answering the upcoming queries. Zhou, et al. [16] proposed
a popularity-based caching strategy to leverage these patterns. They show sig-
nificant reduction in the communication cost, when the number of queries is
relatively large. Such caching strategies can also be incorporated into TorqueDB.

HERMES [7] enables query evaluation over data streams across cloud and fog
nodes. They use reservoir sampling of incoming observational streams to reduce
communication and memory consumption on fog nodes in resource-constrained
environments. Similarly, our prior work [3] examines distributed analytics over
event streams on edge and cloud using a CEP engine, rather than query over past
data that we address in TorqueDB. Their key objective is to schedule a dataflow
graph of dependent CEP queries on edge and cloud resources while minimizing
the latency and conserving energy. Individual queries are not decomposed unlike
TorqueDB does, and we use only edge and fog rather than the cloud.

Others have examined query rewriting in other contexts. Schultz, et al. [12]
design a CEP system with operator placement decisions based on cost functions,
and greedily selects a distributed deployment plan over machines in a cluster.
They use query rewriting to increase the efficiency of operations by reusing com-
mon operators. TorqueDB’s execution model operates on queries independently
as these are one-off rather than standing CEP queries.

Grunert, et al. [4] use query rewriting and containment techniques from
databases for efficient and privacy-aware processing of queries in an edge-cloud
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Fig. 1. Architecture and Query Execution Sequence of TorqueDB

setup. The input query is split into “fragment” and “remainder” queries. Frag-
ment queries operates on resource constrained edge devices to filter and pre-
aggregate data, while remainder queries execute the complex part of the query
on fog devices. We do similar rewriting across different levels on fog devices.
There are other edge and fog storage systems that have been proposed as well,
besides ElfStore. DataFog [5] is a data management platform at the edge on top
of Apache Cassandra, for a geo-distributed and heterogeneous edge computing
environment. They provided a locality aware distributed indexing mechanism
and a replica placement approach to provide spatial proximity. Finally, they em-
ployed a TTL based data eviction policy to accommodate the constrained storage
capacity at the edge. These can serve as alternative backends for TorqueDB.

3 TorqueDB Architecture

The architecture for TorqueDB is shown in Fig. 1. The system model contains
edge and fog resources. Each edge is associated with one parent fog, which serves
as a network gateway to other fogs and the Internet. All edges with the same
parent fog form a fog partition, and devices in a partition are part of the same
private network, with high bandwidth and low latency connectivity. All fogs can
communicate with each other directly, either on the same private network or
through the Internet. The network link between fogs may be slower than with
the edge devices in their partition. We expect edge devices to have resources
comparable to a Raspberry Pi with a 4-core low-power CPU, 1-2GB RAM and
128G B SD card storage, while the fog resources are comparable to a workstation
or low-end server with 4-8-core CPU, 8-16GB RAM and 500G B-4T B HDD.
FEdge devices host the input data accumulated from sensors in blocks managed
by ElfStore. Each block contains rows of time-series data, typically from one
or more sensors and for a specific time range. New blocks are added over time.
Each block is identified by a unique block ID. ElfStore allows application-specific
metadata properties to be stored for these blocks and searched upon. These



contain details such as the table name, sensor ID, sensor types, units, time
range, location, etc. A subset of these properties match specific columns present
in the time-series data, e.g., the location and the sensor ID column values may
be common to all rows in the block, which are surfaced as a property for that
block, while the minimum and maximum timestamps for the rows in the block
will form the time-range property for that block. As an additional optimization,
we also compute aggregates over the content in these blocks, such as the number
of rows, minimum and maximum values for specific columns like temperature
and humidity, etc. and store them as metadata properties for the block. ElfStore
natively creates replicas of a block data and metadata, identified using the same
block ID, on multiple edge devices to meet the reliability requirements specified.

Fog resources run ElfStore services to manage the edge devices, replication
and block placement, as well as maintain indexes on the metadata for blocks
stored in their partition. For TorqueDB, we also host an InfluxDB instance on
each fog resource to execute Flux queries. The InfluxDB instance is primarily
used as a query engine rather than for data management. It is a transient store
(and optionally cache) for the time-series data on which complex Flux queries
are executed, with the durable storage being the blocks in ElfStore.

This layered design, reusing ElfStore and InfluxDB, has several benefits over
designing a distributed TSDB from the ground up. It avoids the complexity of
distributed management and resilience of different instances of a TSDB, while
leveraging the data reliability guarantees offered by ElfStore. It also allows
edge applications that directly operate on the data blocks to be supported by
ElfStore [15] while the queries are offloaded to TorqueDB. Lastly, it eliminates
the need for redundant copies of data on both the edge-local file storage and the
TSDB, instead using the TSDB just as a transient cache.

At this time, we limit our design to executing the Flux queries on InfluxDB
instances running on the fog resources. This leverages their higher resource ca-
pacity relative to constrained edge devices and limits the coordination overheads.
As future work, we propose to examine designs where the InfluxDB is hosted
directly on the edge devices themselves to enhance the parallelism and limit data
movement.

3.1 Query Lifecycle and Distributed Execution

TorqueDB supports a subset of the Fluz query language, as illustrated in Fig. 2.
Specifically, we support range queries over time-stamps (e.g., time BETWEEN
start AND end), filter queries over column values (e.g., dust > 1000), aggregation
functions such as sum, average, minimum and maximum over columns values
(e.g., SUM dust), aggregation windows over time (e.g., WIN(SUM, every hour)),
and projection of columns (e.g., SELECT UV) to the output. Support for join
queries and complex nested queries is planned for future.

Users submit their Flux query to a TorqueDB service, which run on all fog
resources. The fog receiving the query is called the coordinator for this query
(Fig. 1 (D). The distributed execution plan for the query is decomposed into
a query tree, with execution happening at four levels (Fig. 2). At level 4 (L4),
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Fig. 2. Sample Flux queries and execution levels in TorqueDB

the coordinator attempts to identify the ElfStore blocks that contain the time-
series data on which the query depends. For this, it extracts those parts of the
query predicates that can be pushed down as a native ElfStore search over the
block metadata index ((2)). Specifically, ElfStore can search for blocks with a
given property value, and compose Boolean predicates using AND and OR. These
include matching properties such as the table name, location, sensor 1D, etc.
which require a direct value comparison in the input query.

But ElfStore does not support range queries which are important for time-
series data. To address this, we discretize the time-range for rows in a block into
granular time-chunk numbers relative to an epoch, e.g., in 12-hour increments
starting from 2020-01-01 00:00, and include the chunks numbers that the rows
of a block overlap with in its metadata property. A similar discretization is done
on the input time-range query into one or more chunk numbers, and composed as
an OR on the time-chunk metadata matching any of these chunks numbers. E.g.,
if the user query has a time-range predicate from 2020-02-14 07:35 to 2020-02-
14 20:15, these overlap with the time-chunks 89 and 90. We search ElfStore for
blocks that have time-chunk property with values of 89 or 90. Likewise, when
storing blocks, we calculate the chunk numbers for their time-ranges, and store
these as a multi-valued property for the time-chunk metadata.

The output of the L4 query is a filtered set of block IDs having the minimal
data necessary for further query processing. These are passed as input to level
3 (L3), where the coordinator optionally fetches the actual block metadata to
further refine the search space (Fig. 1 3)). In particular, when we have value
comparisons over non-timestamp columns present in the data, like “dust” and
“UV”, we use the minimum and maximum aggregate metadata values for these
columns to decide if the block contains the relevant data or not for further
querying. E.g., if the input query has a predicate that only retains rows with
dust > 1000ppm, then we fetch and use the block metadata to eliminate those
whose mazimum dust is less than 1000. L3 is done only if value comparison
predicates are present in the input query.

The output of L3 is again a set of block IDs that are a subset of the block IDs
from L4. Now, the coordinator assigns these blocks to the available fog resources
to load the block contents into their local InfluxDB instance and execute the



Flux query on it. The mapping of blocks to fogs is done by the Query Planner
discussed in § 3.2 (Fig. 1 @). The coordinator decomposes and rewrites the
input query into sub-queries relevant to the blocks assigned to each fog, and
sends them these block IDs and sub-query for execution in level 2 (L2) ((B).

In L2, each fog receiving a sub-query and a list of blocks fetches the block
contents from ElfStore, and inserts them into the local InfluxDB instance. We
use a thread-pool for the fetch and insert of each block in parallel (Fig. 1 ©)).
All blocks are inserted into a single table, even across queries. This helps with
caching, as we discuss later. During insertion, we add the block ID as a column
in each row inserted into InfluxDB. These block IDs are also included as a value
predicate in the sub-queries. This ensures that a sub-query only targets blocks
relevant to the current query being executed on the fog and not other blocks
inserted by previous or concurrent queries. This avoids duplicates results. E.g.,
if L3 returns block IDs (3,5,9) for processing at L2, and (3,5) are assigned to
Fog A and (9) to Fog B. Say Fog B already had a copy of block 5 present in it.
If we run the two sub-queries on Fog A and Fog B, we should not get duplicates
for matching rows for the block 5 present both in Fog A and B. So the sub-query
for Fog A will have a filter to limit the rows to those with the Block ID field as
3 or 5, while the sub-query for Fog B filters in only rows with Block ID 9.

Once all blocks assigned to a fog are inserted into the local InfluxDB, the
sub-query is executed on the TSDB and the results returned to the coordinator
(Fig. 1 (D). Multiple fogs having block assignments will operate in parallel.
When the coordinator receives the L2 results from all fogs, in the absence of an
aggregation operator, it just appends all the results and returns them to the client
in level 1 (L1) (®), ©). However, if an aggregation function over a column is
present, then the L2 query result from each fog will have the aggregation over the
subset of rows in that fog. Here, we further aggregate across all these results to
return a single result to the user. This aggregation is done inside the coordinator
by code specific to each aggregation function. For functions like mean, L2 returns
the sum and the count, which are used to compute the global mean.

3.2 Query Planning

In L2, we perform block fetch from ElfStore, insertion into the local InfluxDB
and query execution, on one or more fogs. This is the most time-consuming level
since it involves fetching the block from SD card on the edge and a network data
transfer. The time taken to ingest data into InfluxDB is also significant. So we
ensure the parallelism offered by multiple fog and edge devices is fully exploited.
Given a set of blocks from L3, the edges (and parent fogs) that their replicas are
present in and the available fogs, the goal of query planning is to partition these
blocks to the fogs to reduce the execution time for L2. We propose two query
planning strategies, partition-local (QP1) and load-balancing (QP2).

The block transfer time is constrained by the I/O speed of the edge device
(= 100 Mbps seen for a Class 1 SD card), the network bandwidth from the
edge to parent fog and from fog to fog (= 100Mbps—1Gbps), and the cumulative
bandwidth into a fog (= 1Gbps). In both strategies, we first try and maximize the



cumulative disk and network bandwidth from different edge devices in parallel.
From the available set of blocks, we maintain a load count for each edge, which
is the number of blocks selected for reading from this edge and set to 0 at the
start. We then sort the blocks in ascending order of the number of edges they
are present on (replica count). For each block, in this order, we select one of
its edge replicas such that this edge has the least load count among the replica
edges, and increment the load count for that edge. This achieves load balancing
of the block-reads from among the edges hosting the block replicas.

Next, in the partition-local strategy (QP1), we simply assign a block replica
to the parent fog for its edge. The intuition is that the bandwidth from the edge
to its parent fog is high and one-hop, and the block is kept within this partition.

In the load-balancing strategy (QP2), we prioritize balancing the number of
blocks assigned to each fog. This maximizes the parallelism for the data inserts
into InfluxDB and the query execution on the fogs. Here, we maintain a count
of blocks assigned to a fog, initialized to 0. For each block replica, if the parent
fog for the edge is the least loaded among all fogs, the block is assigned to this
fog; if not, the block is assigned to the least loaded fog. The fog’s load count is
incremented, and this repeats for the next block replica.

3.3 Block Caching

Much time in L2 is spent in fetching and inserting the blocks. We propose a
caching mechanism where the coordinator maintains a local mapping from block
IDs to the fog that has inserted that block into its local InfluxDB. This mapping
is updated after the L2 of each query, and lazily propagated across all fogs. The
query planner uses this knowledge to assign a block to the fog that it is cached
in, and only triggers the QP2 mapping algorithm for blocks that are not cached.

The caching strategy will retain all blocks used in any query within the local
InfluxDB of one of the fog resources. This ensures that blocks that are used once
are available immediately on a fog for future queries, but unused blocks are not
copied from ElfStore. In future, this can be combined with a cache replacement
like least recently used (LRU) to more efficiently utilize the disk space, and may
also load-balance the cached-block distribution across fogs.

4 Experiment Results

4.1 Setup

Our experiments use a 15-node IoT cluster with 12 Raspberry Pi 4B edge de-
vices (ARMvS8 4-core@1.5 GHz, 2 GB RAM, 64 GB UHS-1 SD card) and 3 fog
resources (Intel Core i5 6-cores@2.1 GHz 8 GB RAM and 500 GB HDD). These
15-nodes form 3 fog partitions with 1 fog and 4 edges each, connected over hier-
archical 1 Gbps switches with an average latency of 0.6 ms. As a baseline, we use
a Microsoft Azure Standard D4 v3 VM (Central India) running Intel Xeon E5
4-cores@2.3 GHz, 16 GB RAM and 500 GB HDD. Its performance is comparable
to the fog resource based on query benchmarks.
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Fig. 3. Stacked bar plot for median query on TorqueDB (QP2) vs. Cloud InfluxDB

ElfStore runs on the 15-node cluster with uniform replication factor of 3 and
no edge failures. TorqueDB is implemented in Java v1.8 and runs on the fogs
alongside InfluxDB v1.7.9 3, which is hosted in container. By default, caching is
disabled on TorqueDB and we use QP2.

We use data from Sense your City in our workload %, which has ambient
monitoring devices from 84 locations in 7 cities worldwide that sense dust, tem-
perature, humidity, UV, etc. The devices report an observation every 3 mins
over a 16 month period, to give ~ 19.35 million rows of time-series data. Each
1 MB block in ElfStore holds 1 day of data per city with 5760 rows of data.

We use a query workload with 6 predicate patterns: Project+1 Value Fil-
ter (PF); Project+2 Value Filters (PFF); Filter+Simple Aggregate like sum/-
count/min/max (FSA); Filter+Complex (mean) Aggregate (FCA); 2 Value Fil-
ters+Simple Aggregate (FFSA); and 1 Value Filter+Window Aggregate (FW).
These queries are inspired by a prior IoT query benchmarking work [6]. They
are also designed to cover the common query operators such as projection of
specific columns from a tuple into the result set, filters defined on field values,
simple and complex aggregation over field values, and moving windows over the
time-series tuples. There is also a time-range filter in all cases, with a small range
being over 3 days and large range being 12 days. We permute different values
and time ranges to generate 30 instances of each pattern and range for a total of
360 queries. All queries are run from a client that is in the same local network
as the fogs.



4.2 Analysis

Figs. 3a and 3b show the stack bar plots for the different components of the
total execution times for one median query from each type for TorqueDB and
for centralized InfluxDB on a cloud VM, for small and large time-range queries.

Performance of TorqueDB All query types, except PF with a large time-
range, complete in under 600 ms, with smaller queries running under 400 ms.
For the small time-range queries, the major fractions of the total execution time
spent by TorqueDB are: 39% in inserting data into the InfluxDB in L2, 28% in
the query execution at L2, and 14% in data transfer from ElfStore to L2. For
the larger queries, the largest fractions are: 36% in inserting rows into InfluxDB
in L2, 16% in query execution in L2, and ~ 14% in L4 for locating matching
blocks in ElfStore and the same in transferring results from L2 to L1. These L2
costs are due to on-demand copying and insertion of the relevant blocks from
the edge to the InfluxDB on the fog, and these dominate the overall execution
time. As we see later, it can be mitigated by caching.

We also see that the block search, data transfer and insertion times are
uniform 170-190 ms for all small time-range queries since the number of blocks
transfered and rows inserted are the same at 3 blocks; and likewise the large time-
range with 12 blocks inserted take 265-285 ms. The only exception is query type
PFF where some blocks are filtered out at L3 and hence the data transfer and
insertion costs are smaller.

The variability in the execution times across different query types arise from
the actual query execution in L2. Among the query types, PF is the second
slowest due to the large result set size returned by the query, though the query
itself is not complex. The time spent in transferring data from L2 and L1, and
returning the results to the user is higher. PFF is the fastest as its additional
filter reduces this result set size substantially. FSA and FFSA perform an extra
simple aggregation at L1, besides one and two filters. They are the fourth or third
fastest depending on the small or large query range, though their aggregated
result set size is only 1 row. FCA performs a complex aggregation for finding the
mean by running two aggregation queries for sum and count, and hence is twice
as slow as FSA; it is the slowest among all queries. Lastly, FW does a window
aggregation within InfluxDB to return 10’s of results and is the third slowest.

TorqueDB vs. Centralized InfluxDB on the Cloud Figs. 4a and 4b further
show the violin plots for the total execution times for different query types and
time-ranges, for TorqueDB and centralized InfluxDB on the cloud.

For the small time-range queries, the performance of TorqueDB and InfluxDB
on the Cloud are similar, while for the larger time-range, the latter is mostly
faster. These differences can be attributed to the query execution times, and to
the other overheads. TorqueDB leverages parallel query execution across local

3 https://www.influxdata.com/products/influxdb-overview/
% http://datacanvas.org/sense-your-city/
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Fig. 4. Violin plot of query latencies on TorqueDB (QP2) and Cloud InfluxDB

InfluxDBs on the fog, and this causes it to have a lower query execution time
than the cloud for PF and PPF. But the cloud VM’s CPU is faster in performing
the aggregation operations, by 19%—-147%, for FSA, FCA, FFSA and FW.

Besides this query execution, differences arise from the other components.
Specifically, the network latency between the edge client and the cloud dominates
for the small time-range queries on InfluxDB cloud, which have smaller query
execution times. These overheads of ~ 211 ms take 64% of the total query time.
But this absolute latency is about the same at ~ 255 ms but relatively smaller,
at 57% of the total time, for the large time-range queries having longer query
execution times. In addition, PF returns a large result set and this incurs costs
to return the results to the client. However, for TorqueDB, the larger queries
require more block fetches and insertions, and this increases its overall time.

In addition to these, the InfluxDB on the cloud took ~ 18 mins to transfer
3.28GB of data for the 7 cities from the edge to the cloud. This is amortized over
a period of time in a real-world scenario. The WAN link between the edge and
the cloud also shows more variability, ranging from 27.1-1048 ms latency and
21.2-536 Mbps bandwidth, over a 24 hour period. In summary, while TorqueDB
is slightly slower than queries on the cloud, the latter will have less deterministic
execution times, and also incur additional VM and network costs.

Benefits of Query Planning The QP1 and QP2 query planning strategies in
L2 pick the same set of edges to get the block replicas from, but select different
fogs to assign them to; the former reduces cross-partition data transfers and
the latter balances the load per fog. In our experiments, we report that QP2
is 0.2-7.6% faster than QP1, on average for the different query types. This is
because the edge—fog and fog—fog bandwidths are comparable in our IoT cluster
and hence the benefits of QP1 are not apparent.

However, the load balancing in QP2 does have benefits, in particular where
many blocks are fetched and inserted in L2. Figs. 5 show the Gantt time-line plot
for different time components of a FFSA query with large time-range, running
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Fig. 5. Gantt plot of latency for a FFSA large query on TorqueDB using QP1 vs QP2

on different fogs, when using QP1 and QP2. The Y axis indicates threads in
the 3 fogs and X axis is a relative time-line, in seconds. This fetches 12 blocks
in L2. QP1 assigns 5 blocks to Fog 1, 3 blocks to Fog 2 and 4 blocks to Fog 3,
since these are the parent fogs for the block replicas chosen. QP2 instead load-
balances and assigns 4 blocks to each fog, even though they may cross partition
boundaries and cause 2-hops for block transfer. As a result, QP2 achieves an
~ 200 ms reduction in the L2 block fetch and InfluxDB insert.

Benefits of Caching Finally, we evaluate the benefits of caching in TorqueDB.
Here, we use query workloads having a mix of 20 queries from each of the 6
types, to give 120 queries for the small and 120 queries for the large time-ranges.
This has no (0%) overlaps in the query mix, i.e., all queries are unique. We use
these to create two more workloads where 20% of the queries overlap, i.e., are
duplicated, and 50% overlap. These 6 query workloads are run on TorqueDB,
with and without caching enabled. Fig. 6 shows the total execution time for
these workloads, and the total numbers of blocks fetched and inserted in L2.
These are averaged over 3 runs.

For 0% overlap workload with small time-range, the total number of blocks
fetched is the same at 359, both with and without caching. On the other hand,
in the large time-range 0% workload, caching results in 17% fewer block fetches
than without caching. This is because cached blocks can be reused across queries
even without an exact duplication of the queries. Further, the number of blocks
fetched proportionally reduces as the number of explicit query overlaps increase
to 20% and 50%. However, the impact on the total latency is muted. Since we
use four parallel threads per fog in L2, even having one block transfered in L2
can reduce the benefits of caching as that becomes the critical path.
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5 Conclusions

In this paper, we have proposed TorqueDB, a novel platform for distributed
execution of time-series queries on edge and fog devices, avoiding the need to
keep a central TSDB in the cloud. This reduces monetary costs, keeps the data
within the private network if needed, and also avoids the latency variability
across a WAN to the cloud for edge applications. TorqueDB also leverages the
persistence capabilities of ElfStore which allows non-query applications to use
the same master data without creating duplicates within a TSDB. We also use
the native TSDB querying of InfluxDB with its Flux query language, that is
popular in IoT domains. Our optimizations on the query planning and caching
show benefits, and mitigate the costs of on-demand block transfers in TorqueDB
to give performance comparable to a central cloud VM.

As future work, we plan to extend the InfluxDB instances to run on the edge,
besides the fog. This will avoid the data transfer penalty in L2, and also expose
more parallelism for query execution. Support for joins and nested Flux queries
is planned as well. It is also worthwhile to examine integrating TorqueDB with
other distributed edge storage platforms, besides ElfStore, that may emerge over
time. This is conceptually possible as we are only loosely-coupled with ElfStore,
using just its public storage and lookup APIs which are likely to be offered by
other systems as well. Larger scale experiments on 100’s of devices with more
heterogeneous compute and network capabilities will validate the scalability and
performance further. Examining the impact of device unreliability on the query
performance will also be examined, and contrasted against cloud TSDB.
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