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Abstract—Edge and fog computing have grown popular as IoT
deployments become wide-spread. While application composition
and scheduling on such resources are being explored, there
exists a gap in a distributed data storage service on the edge
and fog layer, instead depending solely on the cloud for data
persistence. Such a service should reliably store and manage
data on fog and edge devices, even in the presence of failures,
and offer transparent discovery and access to data for use
by edge computing applications. Here, we present ElfStore, a
first-of-its-kind edge-local federated store for streams of data
blocks. It uses reliable fog devices as a super-peer overlay to
monitor the edge resources, offers federated metadata indexing
using Bloom filters, locates data within 2-hops, and maintains
approximate global statistics about the reliability and storage
capacity of edges. Edges host the actual data blocks, and we use
a unique differential replication scheme to select edges on which
to replicate blocks, to guarantee a minimum reliability and to
balance storage utilization. Our experiments on two IoT virtual
deployments with 20 and 272 devices show that ElfStore has low
overheads, is bound only by the network bandwidth, has scalable
performance, and offers tunable resilience.

I. INTRODUCTION

The growing prevalence of Internet of Things (IoT) deploy-
ments as part of smart city and industrial infrastructure is
leading to a rapid influx of data generated continuously from
thousands of sensors [1]. These data sources include smart
utility meters, air pollution monitors, security cameras, and
equipment sensors. Analytics over these data, in real-time or
periodically, helps make intelligent decisions for the efficient
and reliable management of such complex systems [2].

At the same time, IoT is also leading to the availability of
edge and fog computing devices on the field, as part of sensors
and gateways [3]. Affordable edge devices like Raspberry Pi
are often co-located with the sensors on private and wide-area
networks to acquire data, perform local analytics, and transmit
it to cloud data centers for persistence [4]. Fog devices like
NVidia Jetson TX2 manage neighboring edge devices on the
network, offer more advanced computing for further analytics
or aggregation, and also forward data to the cloud. In large IoT
deployments, the edge and fog devices are often organized in
a 2-level hierarchy for ease of management and scalability [5],
and complemented by cloud resources.

Edge computing is motivated by the access to such cheap
or free edge and fog compute resources, the reduced network
latency between the data source and the analytics that makes
the decision (e.g., power grid management), and to mitigate

network use by high-bandwidth applications (e.g., video an-
alytics for urban safety) [6], [7]. There is active research
on composing micro-services and scheduling dataflows for
execution on edge and fog resources, in combination with or
instead of cloud resources [8], [9]. These platform services
allow applications to run continuously over incremental data.

However, two key gaps exist. One, there is a lack of trans-
parent data access service at the edge or fog, from which such
applications can consume their input. Typically, streaming
application bind to specific device endpoints or topics on a
central publish-subscribe broker, while file-based applications
use ad hoc mechanisms. Ideally, applications should be able to
use the logical features of the data they are interested in, such
as its metadata, rather than its physical address, to access it.
Two, data generated on the edge and fog are only transiently
available on them, and eventually moved to the cloud for
persistence, a key reason being that edge devices are usually
less reliable. So, applications using such data are forced to run
on the cloud, or move them back to the edge for computing.

These motivate the need for a distributed data storage and
management service over fog and unreliable edge devices that
offers content-based discovery, transparent access, and high
availability of data, across a wide area network and in the
presence of device failures. This ensures data locality for
application micro-services on the edge, allows the cumulative
storage capacity of the edge devices to be efficiently used,
and avoids transferring data to the cloud for persistence. The
storage service should also be optimized for data that is
continuously generated, as is common for IoT sensor data,
and yet allow access to different temporal or logical segments
within the data stream.

We make the following specific contributions in this paper:

1) We propose ElfStore, an Edge-local federated Store,
which is a first-of-its-kind stream-based, block-oriented
distributed storage service over unreliable edge devices,
with fog devices managing the operations using a super-
peer overlay network.

2) We propose a federated indexing model using Bloom
filters maintained by fogs for a scalable, probabilistic
search for blocks based on their metadata properties.

3) We offer tunable resilience for blocks using a novel dif-
ferential replication scheme across unreliable edges. This
uses approximate global statistics at the fogs to decide on
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replica placement, which is sensitive to edge reliability,
balances capacity usage, and ensures data durability.

The rest of the paper is organized as follows. We review
related work to highlight the novelty of our contributions in
Sec. II, introduce the ElfStore service architecture and oper-
ations, federated indexing and tunable replication in Sec. III,
present detailed experiments to validate the design and scala-
bility in Sec. IV, and offer our conclusions in Sec. V.

II. RELATED WORK

There has been limited work on distributed data storage on
edge and fog resources, as reviewed and classified in Moy-
asiadis, et al. [10]. Rather than off-load to cloud or aggregate
to reduce the size, we instead adopt a peer-to-peer (P2P) model
which does not reduce data fidelity, and maintains locality on
edge and fog resources, with reliability guarantees. Others [11]
have evaluated existing distributed cloud object stores, Rados
(Ceph), Cassandra and Inter Planetary File System (IPFS),
for use on edge and fog resources, and proposed extensions.
However, these store data only on the fog layer, with the fog
assumed to be high-end Xeon servers with 128 GB RAM.
We instead design our storage service for practical and large-
scale edge and fog resources that run on Pi- and Jetson-class
devices with 4–8 ARM cores and 1–2 GB RAM, and use the
edge devices as first-class entities for persistence.

IPFS [12] is used for storing web content on a wide-area
network. It uses a Merkle tree to capture the directory struc-
ture, content-based addressing for files, and a P2P Distributed
Hash Table (DHT) to map the file’s hash to its peer locations.
BitTorrent is used for data movement, and the data is replicated
when a client downloads it. Confais, et al. [13] have deployed
IPFS on fog and cloud resources using Network Attached
Storage (NAS). They extend IPFS to support searching at the
local fog, besides the DHT, to speed up access to local content.
However, storage is limited to the fog and not edge, and there
is no active replication to ensure reliability upon failures.

FogStore [14] proposes a distributed key-value store on
fog resources with replication and differential consistency.
Our focus is on reliably storing a stream of blocks of a
much larger size, where resilience and capacity constraints
are met. Others [15] propose repositories hosted on stable
fogs (referred to as “edges”) that are populated by data from
transient edges (“mobile devices”), and act as a reverse-
Content Distribution Network (CDN) to serve requests from
the cloud too. Reliability is a non-goal in their design and no
experiments are presented. vStore [16] supports context-aware
placement of data on fog and cloud resources, with mobile
devices generating and consuming these data. It uses a rules
engine to place and locate data based on its context metadata,
but ignores reliability as edge devices do not store data.

Chen, et al. [17] examine fault-tolerant and energy-efficient
data storage and computation on a set of edge devices (“mobile
clouds”), without any fog or cloud. They use k-of-n erasure
coding, where files are fragmented and coded fragments placed
on energy-efficient edge devices. Access to data is by creating
n tasks that execute on the edge devices containing the

fragments, and waiting for k of them to complete, so as to
decode and process the original fragment. This tightly-couples
processing with storage on the same devices, rather than offer
an independent data service like us. Also, it is designed for 10–
100’s of edge devices since all-to-all information is required
for decision making, while we use fog overlays that can scale
to 100’s of fogs and 1000’s of edges. They do not support
searching by metadata like we do. Lastly, erasure codes while
space-efficient compared to replication, are time-inefficient for
recovery on unreliable systems, like the ones we consider [18].

RFS [19] is a distributed file system hosted on the cloud
but optimized for mobile clients (edges) with transient network
connectivity. While the cloud holds the encrypted master data,
clients selectively pre-fetch, decrypt and cache parts of the file
based on their access patterns. Clients have exclusive access to
their encrypted home directory, and common access to shared
directories. The master data in the cloud is reliable.

P2P systems like Chord, Pastry and BitTorrent have pro-
posed distributed file, block and key-value storage on unre-
liable peers on wide-area networks [20]. We adopt several
of these concepts such as super-peers [21], but simplify and
enhance their performance for edge and fog deployments with
less device flux, guarantee a minimum durability for stored
blocks, and balance the storage capacity across peers. We also
use an efficient federated indexing using Bloom filters [22].

Cloud storage services like HDFS and Ceph [23] have
been vital to the success of Big Data platforms by separating
the distributed storage layer from the computing layer, like
Apache Spark or MapReduce, while allowing co-location
during scheduling. We adopt a similar model for edge and
fog, while being aware of the network topology, sensitive to
variable failure rates of edges, and offering search capability.

In summary, none of the existing literature or systems
provide a scalable distributed store for storing, searching
and accessing streams of objects generated from IoT sensing
devices on fog and unreliable edges, while guaranteeing
reliability, balancing capacity, and leveraging the topology of
fog and edge resources.

III. ELFSTORE ARCHITECTURE

In this section, we describe the desiderata, the supported
operations, our design choices, and the architecture for Edge-
local federated Store (ElfStore).

Our system model has two types of resources, edge and
fog. Edges like Raspberry Pi have constrained compute and
memory (e.g., 4-core ARM32 CPU, 1 GB RAM), and about
64 GB of SD card storage. These commodity devices are
cheap but unreliable, especially when operating in the field,
and have an expected failure rate. Each edge connects to a
single fog, through a wireless or wired private local area
network (W/LAN), and the fog manages it. Fogs like Jetson
TX2 have moderate resource capacity (e.g., 8-core ARM64
CPU, 4 GB RAM, 500 GB HDD), and serve as a gateway to
the public Internet for their edges to connect to other fogs and
their edges. Fog resources are reliable, and connect with each
other through a wired Metropolitan or Wide Area Network
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Figure 1: High-level Architecture of ElfStore

(MAN/WAN). We plan to support city-scale deployments hav-
ing 10–100’s of fogs, each managing 10–100’s of edges [7].

Given this, there are several design goals and assumptions
for our data storage service. (1) Applications running on edge,
fog or other devices on the Internet may put, search and
get data and associated metadata from the service. However,
we expect that the edges will be the predominant clients to
the store, generating and writing data continuously from co-
located sensors, and consuming data for edge micro-services.
(2) The edges will serve as the primary storage hosts for
the data to enhance locality (hence, “edge-local”), with the
fogs used for management and discovery. We avoid cloud
as a storage location, though it can have clients that access
the data for processing or long-term archival. (3) Data that is
stored must meet a minimum reliability level, even with edge
failures, and have sufficient availability. The typical lifetime
of the hosted data is in days or months (not years), as edge
applications are likely to be interested in recent data. Adequate
cumulative storage capacity should be available on the edges.
(4) The store should scale as edges join and leave the system,
often triggered by device failures and their stateless recovery,
or occasional capacity expansion. Its performance should also
weakly scale with the number of clients. (5) We assume a
fully-trusted environment, where all edge and fog devices are
secure, part of the same management domain, and there are
no access restrictions to the contents.

The ElfStore architecture (Fig. 1) addresses these require-
ments, and offers a federated storage service for streams of
blocks. It uses the local disks on unreliable edges in the LAN
as the persistent layer, and fogs on the WAN connected using
a super-peer overlay as the management layer. It guarantees
reliability at the block-level using differential replication, and
helps search for streams and blocks over their metadata using
federated Bloom filter indexes. These are discussed next.

A. Data Model and Operations

IoT data is often streaming, and arrives continuously from
sensors. While publish-subscribe brokers enable access for
real-time processing, we handle data storage and application
access in the short- and medium-term. Since this data accumu-
lates over time, ElfStore adopts a hybrid data model consisting
of a stream of blocks. Here, the storage namespace has a flat

set of streams, identified by unique stream IDs, and a sequence
of data blocks within a stream ID, each having a unique block
ID. Streams have associated metadata properties as a set of
name–value pairs, and is used in searching. Each block has a
data payload as a byte-array, and also metadata properties.

Stream properties include the stream ID, start and end time
range of its blocks, sequence IDs of the blocks, and user-
defined properties like sensor type, spatial location, etc. Block
properties are stream ID, block ID, sequence number, MD5
checksum, timestamp, and domain properties. Our store is
optimized for append rather than update operations, with data
and metadata often (but not always) immutable.

While this model resembles other block and object stores
like HDFS, Ceph and Azure Blobs, we additionally allow users
to search over the block and stream metadata to discover
block IDs to access. This is useful when the IoT clients micro-
batch sensor streams and create blocks with different temporal
event ranges, and consumers wish to access blocks containing
a particular time segment; or when different variables from
the same sensor is placed in different blocks of a stream and
users wish to access blocks holding specific variables. If need
be, streams can be treated as directories and blocks as files
within them to even offer a distributed file-system view.

Given this, ElfStore supports the following service API:
• CreateStream(sid, smeta[], r) This creates a

logical stream with ID sid, with r as the stream’s
reliability (i.e., reliability required for its blocks), and
registers its metadata with the local (owner) fog, with
an initial version number, and indexes it for searching.
Metadata properties may be static or dynamic.

• Open|ReopenStream(sid) This is optionally used
before Put to acquire an exclusive write lock to the
stream for this client. Its response is the lease duration.
Reopen renews the lease before it expires.

• PutBlock(sid, bid, bmeta[], data,
lease) Put adds a single new block bid to the
end of the stream sid, with the given data payload
and the stream’s reliability, and registers its static block
metadata for searching. If lease is passed from Open
or Renew, it supports concurrent puts. Else, it behaves
as an optimistic, lock-free protocol.

• UpdateBlock(sid, bid, data, lease) This
updates the data contents for all replicas of an existing
block, but is otherwise similar to put.

• UpdateStreamMeta(smeta[], v) This allows the
dynamic metadata properties for a stream to be updated,
where smeta has the updated properties and v the
version number of the old metadata being updated.

• FindStream(squery) This searches for streams that
match a given set of static stream properties provided in
the squery, and returns their IDs.

• FindBlock(bquery) This searches for blocks that
match a given set of static properties provided in the
bquery, and returns their stream and block IDs.

• GetStreamMeta(sid, latest) This fetches the
cached metadata for the stream sid and their version.



The latest flag forces the most recent version of the
metadata to be fetched.

• GetBlock(sid, bid) This downloads the data and
metadata for the given stream and block ID.

Every fog runs a service that exposes these APIs, and clients
can initiate an operation on any fog. These can be enhanced
in future by APIs like InsertBlock, GetBlockRange,
GetBlockMeta, DeleteBlock, DropStream, etc.

B. Device Management

1) Super-peer Overlay: ElfStore uses a P2P model for
device management and search. Fogs act as super-peers and
edges as peers within them [21]. Each edge peer attaches to a
single fog super-peer, which serves as its parent and manages
search and access to its data and storage. A fog and its edges
form a fog partition. This reflects practical IoT deployments
where such a 2-level hierarchy is common [5]. E.g., there may
be a fog within a university campus, and all edges in the
campus LAN are part of this fog partition.

Typical P2P networks scale exponentially, but require a
logarithmic number of hops to locate information [20]. Each
(super)peer maintains routing details to h (super)peers, where
2h is the number of items that can be stored in the network.
These form an overlay network that takes up to h hops to
locate a peer containing an item ID. Since we expect the fogs
to number within the thousands and without a lot of flux, we
instead maintain the super-peer overlay as a recursive 2-level
tree. Each fog maintains a list of b buddy fogs at the first
level (which form a buddy pool), and a list of n = ( p

b+1 − 1)
neighbor fogs at the second level, where p is the total number
of fog devices. Buddy pools are mutually exclusive, as are the
neighbors of buddies in each pool. This limits our searches to 2
hops – first to a buddy and then to its neighbor 1. Edges know
which parent fog to join, and since our fogs do not come and
go often, existing P2P discovery mechanisms or even simpler
techniques can be used for constructing this overlay network.

Fig. 2a shows p = 12 fog super-peers in an overlay, each
with b = 2 buddies and the other fogs being partitioned across
these buddies to give n = 3 neighbors each. For brevity,
neighbors for only one buddy pool and edges for only one
fog partition are shown. E.g., fog 9 maintains details on its
buddies 1 and 5, neighbors 10, 11 and 12, and edges, e91–e95.

2) Health Monitoring and Statistics: Light-weight heart-
beat events that are a few bytes long and sent often (≈ 10–
100 secs) are used to monitor the devices. We also piggy-back
tens of bytes of metadata and statistics in these heartbeats.
This monitoring plane enables fail-fast detection of device
failures, and federated statistics to be maintained (Fig. 1).

Each edge in a fog partition sends heartbeats to its parent
fog when it is online, say every 30 secs. The arrival or loss
of an edge is detected using this. Multiple heartbeat misses
indicate a loss, and will trigger re-replication of blocks on
the missing edge, while an edge arrival will make its storage

1This model can be easily extended to a classic super-peer overlay that
scales to millions of fogs but with h hops, or to support b-level redundancy
for fog failures by having edges use all b+ 1 buddies as parent fogs [21].
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available. This obviates the need for a “graceful” entry or exit
of edges. Fogs in a buddy pool send heartbeats to each other.
Besides detecting the loss of a buddy and recovering its state
(in future), this passes aggregate statistics from each buddy
about its neighbors to others in the pool. Likewise, neighbors
of a fog send it heartbeats and statistics periodically. Such
heartbeats between buddies, and between neighbors and a fog,
can help maintain the overlay network as fogs come and go.

C. Data Discovery using Federated Indexes

Typical P2P DHTs use consistent hashing over their IDs
to locate the peer hosting the content. But we provide a
unique feature to locate streams and blocks using their static
metadata, and not just ID. We maintain a federated index,
updated using the heartbeat events, to enable this (Fig. 1).
First, each fog maintains a partition index of the metadata for
blocks present in its edges and streams registered with it. This
index is updated when a stream is created on the local fog
that becomes its owner, or when a block replica is placed on
it as part of an PutBlock call or a re-replication.

Each edge eij sends a 〈a, v, eij , bid〉 tuple to its parent fog
i, when a block bid with property name a and value v is
put on it2. The fog maintains the index Ia : v → (eij , bid),
that locates edges and block IDs in its partition that match a
name–value pair. This update tuple is shown in Fig. 2b for fog
1 from its edges, and allows the fog to answer 0-hop queries
– FindBlock queries over these property name(s) can be
answered locally to return the matching block IDs and edges.

We also maintain a hierarchical Bloom filter from neigh-
bors, buddies and their neighbors to identify fog partitions
that potentially host block(s) matching a given key–value
pair, within 2 hops of the fog initiating the search request.
Specifically, each fog i applies its edge metadata updates
to a local Bloom filter for each property name, given as
f iL,a =

∨
k(H(vk)), where H is a fixed bit-width multi-level

hash function, vk are the set of distinct values for the property
name a for blocks present in this partition, and the Bloom filter

2The block and stream IDs themselves are a property name. We use a
similar approach for stream metadata, but omit its discussion for brevity.



is formed by a bitwise OR over all the hashes [24]. We test if
a value v′ is probably present in the filter by checking if the
bitwise OR of the filter with a hash of the value is non-zero,
i.e., (f iL,a ∨H(v′)) 6= 0.

Bloom filters can have false positives, whose frequency
is determined by the number of unique values inserted, the
number of bits in the hash, and the quality of the hash [24].
But it has constant-time insertion and lookups, and compact
storage. In our experiments, we use a 160 bit SHA1 hash per
property name. ***TODO Later: for ≈ 1% of false positives.
Also, Bloom filters do not support deletions, and hence used

to only index static properties and not dynamic ones. This can
be relaxed in future using Cuckoo Filters [25].

When the local Bloom filter is updated, a fog sends it to
other fogs it is a neighbor of, as part of the heartbeats. Each
fog i maintains list of n neighbor Bloom filters for a property
name a, one per neighbor fog j, given as Fi

N,a = {〈j, f jL,a〉}.
This lets a fog check if any neighbor possibly contains blocks
matching a given name–value query, and if so, forward the
FindBlock query to the neighbor for an exact match using
its local index Ia. Fig. 2b shows neighbors fogs 2, 3, 4 sending
their updates to fog 1, and responding to 1-hop queries.

Lastly, each fog encodes its local Bloom filters and its
neighbor’s Bloom filters into a recursive Bloom filter [22], and
sends it to its buddies. For a fog j with neighbors fog k, this
buddy Bloom filter is constructed as f jB,a =

∨n
k=1(fkL,a)∨f jL,a.

Each fog maintains b buddy Bloom filters, Fi
B,a = {〈j, f jB,a〉},

which allows it to test if its buddies or their neighbors possibly
match a given query. E.g., in Fig. 2b, buddy fog 9 constructs
a buddy Bloom filter from its neighbor Bloom filters, fogs 10,
11, 12, and its local Bloom filter, and passes it to fog 1. This
uses it for 1-hop (forward request to buddy) or 2-hop (forward
to buddy’s neighbors) queries.

Since client requests are routed through a fog, each fog
maintains a cache of metadata retrieved from others as part of
various operations. This allows fast responses to other clients
from the local fog’s cache rather than the parent fog, but can
return stale dynamic properties. Clients can pass a flag to force
the latest metadata to be fetched. We do not cache data blocks
to reduce the storage overhead, though it is a simple extension.

D. Reliable Data Management and Access

Each edge ei has a pre-defined device reliability ri, which
can be part of the device specification or inferred from field
experience. We also assume that blocks hosted on them are
permanently lost when they disconnect from their parent fog.

ElfStore uses differential replication to ensure that a block
of size s̄ that it stores meets its block reliability r̄, by placing
replicas on q edges having available storage capacity si and
reliabilities ri, such that s̄ ≤ si and (1 − r̄) ≥

∏q
i=1(1 −

ri). So the replication count q depends on both the reliability
required for the block, and the reliabilities of the edges used.
When a fog receives a request to put a block with its stream’s
reliability, it determines the replication factor q and the exact
edges to put these replicas on. E.g., a reliability of r̄ = 0.999
(i.e., 99.9%) can be achieved for a block by replicating it on

q = 3 edges with reliabilities, ri = {0.80, 0.91, 0.95} such
that (1 − 0.999) ≥ (1 − 0.80) × (1 − 0.91) × (1 − 0.95), or
on q = 2 edges having ri = {0.95, 0.99}.

The key challenge is that with 1000′s of edge devices, it
is not possible for each fog to maintain the current capacity
and reliability of every edge device to make this decision.
Instead, just as we used federated indexes to locate blocks, we
similarly propagate and maintain approximate statistics about
the storage and reliability of edges in various fog partitions
within the overlay network to help make this decision.

1) Approximate Statistics: Each edge ei reports its reli-
ability and available storage capacity 〈ri, si〉 to its parent
fog, periodically as part of its heartbeat. Each fog i then
determines the minimum, maximum and median reliabilities
and storage capacities for all its edges, 〈rmin

i , rmed
i , rmax

i 〉
and 〈smin

i , smed
i , smax

i 〉, along with the count of edges that fall
within each quadrant of this 2D space, 〈cq1i , c

q2
i , c

q3
i , c

q4
i 〉, as

illustrated in Fig. 3(d). Here, we have cq1i edges with reliability
between [rmed

i , rmax
i ) and capacity between [smed

i , smax
i ); cq2i

edges with [rmed
i , rmax

i ) and [smin
i , smed

i ); and so on for
the other 2 quadrants. These edge counts correspond to the
combinations of high/low capacity and high/low reliability,
HH, HL, LL, HL. We will also have cq1i +cq2i ≈ c

q3
i +cq4i ,

and cq1i + cq4i ≈ c
q2
i + cq3i , depending on rounding errors.

These 10-tuple values are then sent to the fogs we are a
neighbor of, as part of heartbeats. Similarly, buddies exchange
their neighbors’ and their own tuples with other buddies. Using
these 10-tuples acquired from all fogs, each fog independently
and consistently constructs a global distribution matrix, as
follows. We first find the global min and max storage range
among all the fogs, smin = mini (smin

i ) and smax =
maxi (smax

i ), and likewise the reliability range, rmin and
rmax. We divide each range [smin, smax) and [rmin, rmax)
into k equiwidth buckets, and for each fog i, proportionally
distribute its (cq2i + cq3i ) count among the storage buckets
that overlap with [smin

i , smed
i ), and its (cq1i + cq4i ) count

among buckets that overlap with [smed
i , smax

i ); and similarly,
distribute counts (cq3i + cq4i ) and (cq1i + cq2i ) proportionally to
reliability buckets that overlap with the reliability sub-ranges
for the fog. We sum these bucket values across all fogs, and
calculate the global median storage and reliability, smed and
rmed. This gives us the bounds of the global quadrants.

For the 10-tuples for the 4 fogs, A, B, C and D shown
in Fig. 3(a), their contributions to the storage and reliability
buckets are shown in (b) and (c), using k = 16 buckets. These
help decide the global bounds in (d). E.g., fog B contributes it
cq2B +cq3B = 9 edges proportionally to the 3 storage buckets that
fall between [smin

B , smed
B ) = (9, 12], and cq1B + cq4B = 6 edges

to the 2 storage buckets that between [smed
B , smax

B ) = (12, 14].
From these plots, we find the new global medians, rmed = 85
and smed = 12.

Now, for each fog i, we consider the area overlap of each
if its local quadrants with each of the global quadrants, and
proportionally include the fog’s edge count from that local to
the global quadrant. E.g., in Fig. 3(a), fog C contributes all its
edge counts in quadrants cq3C = 2 and cq4C = 2 to the global
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Figure 3: Global Matrix Estimation for Storage and Reliability.
***TODO Later: ***Dreamer: we need to say that the
distribution is uniform? or the equi-width partition explanation
suffices? ***Yogesh: not clear. check with SKR

cq4 which fully contains them, while the 6 + 6 = 12 edges
in its q1 and q2 local quadrants, which overlap with both the
global quadrants q4 and q1, are shared proportionally in a ratio
of 1:3 between them. This gives the global count of edges in
each of these four storage and reliability quadrants, HH, HL,
LL, HL. Given this, a fog is mapped to the quadrant where
its median-center falls. E.g., fog A falls in LL and C in HL.

2) Replica Placement for Put: We use this information
maintained independently but consistently on each fog to
handle the PutBlock operation, invoked by a client on any
fog. The fog receiving a put request for a block of size s̄
queries the stream sid to get its reliability, r̄. It then selects a
series of q fog partitions, and chooses an edge within each
for placing a replica such that we (1) balance the use of
fogs with both high and low reliability edges to ensure that a
sustainable mix of edges remain, (2) give preference to fogs
that have a higher available storage to ensure effective use of
capacity, (3) select different fogs for each replica to enhance
partition-tolerance and locality with diverse clients, (4) bound
the replication factor to a minimum and maximum value set
by the user, and (5) meet the block’s reliability requirement.

We select fog partitions from different quadrants in the
global matrix in a particular sequence to meet the above goals.
Specifically, we alternate between HH and HL quadrants to
prioritize high-capacity fogs. Within the global quadrant, we
pick a random fog and test if it has a non-zero edge count in a
complementary reliability quadrant. E.g., for a fog that maps
to the HH quadrant of the global matrix, we check for edges
in its HL or LL local quadrants, and for a fog in the HL global
quadrant, we test for edges in its HH or LH local quadrants.
If the fogs have zero edges in these quadrants, we expand to
the other two local quadrants as well.

The sequence order of global and local quadrants that
are tested is given in Fig. 3(e), and a variant of a Z-order
curve. Intuitively, this picks edges close to the median global
reliability and with high capacity. The reliability is initially
met by median edges. As their capacity is exhausted, the edges
with more extreme (low or high) reliability move closer to

the median and will be chosen. Later, this helps us find pairs
of edges with low and high reliability that together give a
reliability similar to the initial two median reliability edges.
As an optimization, we always try and place the first replica
locally, if the writing client is on an edge. We also pick edges
in different fog partitions unless there is no available capacity.

A fog i that is chosen will provide a minimum reliability of
rmin
i if the edge is in the HL or LL local quadrant, or rmed

i if
in HH or LH. This is a conservative estimate since the actual
edge selected within the fog may have a reliability as high as
rmed
i or rmax

i , respectively. We pick as many fogs as needed to
meet the block’s reliability or the minimum replication count.

The fogs chosen in this manner are sent to the client, which
then directly contacts each fog concurrently to place a replica
of the block. Each fog selects an edge with the least reliability
in the specified local quadrant, and puts the block on it.
In case the global matrix is stale and the fog cannot find a
suitable edge, this fog can use its own global matrix to find
an alternative fog with a similar non-empty global and local
quadrant. Since the edge may be on a private network, the data
moves from the client to the parent fog hosting a replica, and
from it to the edge. If the client is an edge, it will also pass
through its own parent fog first, but not otherwise, to avoid
the extra hop. The fog also registers the block metadata with
itself, propagates to the federated indexes as described before,
and updates the stream metadata at the owner fog with the
block ID, MD5 checksum, and block count.

3) Getting a Block: Getting a block involves finding the
fogs containing the block replicas using its ID from the local
fog. This first returns the local fog or the possible neighbor
fogs that may contain it, based on a local index or Bloom
filter lookup. The client contacts the local fog if present in
the response, and this will have the replica. Else, the client
contacts each neighbor fogs, which checks its local index, and
if present, returns the block from the edge to the client.

If none of the local or neighbor fogs hold a copy, or in
the rare case these were all false positives, we recheck with
the local fog and force it to search its buddy Bloom filters. It
forwards the find request to matching buddies to check their
local index and neighbor Bloom filters, in 2–3 hops. This will
return the global list of fogs that may contain the replica, and
the client contacts each to get the first available replica.

4) Re-replication for Recovery: A parent fog detects an
edge failure due to missing heartbeats. This triggers a recovery
of all block replicas present on the edge to ensure each block’s
reliability requirement is still met. For this, the fog uses the
same edge selection approach as above, except that it tries to
find a single fog that has an edge with a reliability similar
to the edge that failed. The parent fog then gets an existing
block replica from a surviving edge, and puts it on the newly
selected fog and an edge within it. This selection of alternative
devices and re-replication onto them is done concurrently for
lost blocks on the failed edge. While we currently assume that
the reliability for an edge does not change over time, in future,
this same technique can be extended to expand or contract the
number of replicas to adapt to dynamism in the reliability.



E. Consistent Concurrency and Updates
1) Concurrent Puts and Updates with Leasing: The default

PutBlock operation is optimistic, and assumes that just one
client is writing to the stream. With concurrent clients adding
blocks, the order in which the blocks are appended to the
stream depends on the order in which the stream metadata at
the owner fog is updated with the new block IDs. Here, we will
need a user-defined sequence number in the block metadata
for partial ordering of blocks written by one client.

However, for global ordering of blocks with concurrent
clients, we offer a soft-lease mechanism. Here, the client first
calls OpenStream to try and acquire a lease for a certain
duration. This request is forwarded to the owner fog for the
stream, which logs and returns a successful lease for the
requested (or a pre-defined) duration, if no other client holds
an active lease on this stream. The response has the duration
and a session key, which is a unique random nonce used for
auditing. PutBlock then passes the client ID, lease duration
and session key to the fogs where the replicas will be placed.
These fogs sanity-check if the lease duration is valid, and log
the client ID and session key for this operation, before writing
the block replica to their edge. The client also adds the new
block IDs to the stream metadata.

This soft-lease model is light-weight, but does not enforce
locking of the stream. It is up to the clients to ensure that they
have acquired a valid lease before they call puts in parallel to
avoid inconsistent ordering. But, the logs maintained at the
fogs allow us to later verify the validity of the operations.

The lease on a stream can be used by the client across
multiple Put|UpdateBlock operations. This lets it write
a series of blocks to the stream with guaranteed contiguous
order. If the lease is going to expire before an operation,
the client Renews it with the fog, which returns an extended
lease duration if it has not expired. If the lease has expired
and no other client has acquired the lease since then, the
fog goes ahead and extends the lease. This reduces leasing
overhead dues to time-skews, without affecting consistency. If
an OpenStream fails due to another client having the lease,
the client can poll and retry acquisition. There is no explicit
close stream operation, and the lease is released on expiry.
UpdateBlock is similar to PutBlock, but replaces the

selection of replicas using the global matrix, with finding the
fogs holding all the current replicas for the block, similar to
GetBlock. Once located, the client sends the updated block
data to each replica, and also updates the stream metadata with
the new MD5 checksum for the block.

2) Stream Metadata Updates: When a stream is created, it
is registered with an owner fog that holds it metadata. These
properties may be static or dynamic. While static properties
are indexed and searchable, the values of dynamic properties
can be updated but not searched on.

Leasing is useful when multiple operations are done with
a single lease to amortize its cost. But metadata updates are
single operations. So we assign version numbers to dynamic
metadata properties and employ a test and set pattern to allow
consistent and concurrent updates to them. This version is

returned by GetStreamMeta. Cached versions of the stream
metadata also maintain and return the version in their cache.

When updating the metadata for a stream, the client first
does a GetStreamMeta, updates the values of the returned
dynamic properties, and sends the new property values and the
earlier version number to the owner fog of the stream. The
fog tests if the current version matches the passed version, and
if so, sets the passed dynamic properties and increments the
version. But, if the current version is greater than the one that
is passed, then the client is trying to update a stale copy of the
dynamic property. This may be due to using an older cached
metadata on a different fog, or another client having updated
the metadata with the owner fog since the last access by this
client. Then the update call fails, and the client has to get the
latest metadata and retry with the new version number.

There are also system-defined dynamic properties that are
maintained as part of various APIs, such as the block count, list
of block IDs, and their MD5 checksums, for a stream. These
cannot be modified directly by the client, but the framework
updates these internally using a similar pattern.

IV. EXPERIMENTS

ElfStore is implemented in Java using the Apache Thrift
cross-platform micro-services library. The fog service has the
bulk of the logic, while the edge services are light-weight.

We conduct experiments to validate the performance, re-
silience and scalability of ElfStore. We use the VIoLET
container-based IoT virtual environment to define two deploy-
ments [26]. In the first, D20, we have 4 fog containers on a
public network, with 4 edges connected to each fog in a private
network. This gives a total of 20 devices running on 4 Azure
D32 VMs (32-core, 128 GB RAM). The D272 configuration
has 16 fogs, with 16 edge containers each, for a total of 272
devices on 1 public and 16 private networks. They run on
16 Azure D32 VMs. All devices in each fog partition run on
the same VM. The edge containers have CPU and memory
resources that match a Raspberry Pi 3B (4-cores@1.2 GHz,
1 GB RAM, 16 GB disk space), while the fog containers map
to a Jetson TX1 (4-cores@1.9 GHz, 4 GB RAM), as defined
in VIoLET. Network links have a bandwidth of 90 Mbps.
We use a Normal distribution for the edges’ reliability, with
µ = 90%, σ = 3% for D20, and µ = 80%, σ = 5% for D272.

A. Put Block Performance

1) Put performance without leasing: For the D20 setup,
we run experiments with 1, 4 or 16 edges concurrently call-
ing the PutBlock API on their local fog parent with a
blocks size of 10 MB, in a loop for 100 times. We set a
reliability of r̄ = 99% for all these streams, and a min and
max replication factor of 2 and 5. For the D272 setup, we
perform two experiments with 16 and 64 concurrent edge
clients spread across the 16 fogs. Each edge calls put for 100
iterations. They put blocks of size 1 MB or 10 MB and
use reliabilities of 90.00%, 99.00%, 99.90% or 99.99%, with
uniform probability. This diversity reflects realistic scenarios.
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Figure 4: Performance of Put and Get block operations

Leasing is not enabled, and edges put to distinct streams in
their local fog; one replica will be placed in the local edge.

The end-to-end latency distribution in seconds for the put
API calls is shown as blue violin plots on the left Y axis
of Fig. 4a. For a single API call, this is the time to find
the fogs to place block replicas on, copy all replicas to the
target edges concurrently, and register the block metadata.
Each violin distribution has #edges× 100 data points.

For D20, with 1 edge writing, each put call takes a median
of 3.8 secs. Since each replica is 10 MB in size, the link speed
is 90 Mbps, and we need 3 hops – from client to parent fog,
parent fog to target fog, and target fog to edge – about 3 secs
are spent just in data movement. Zooming in, the time to find
the replica placement is just 30 ms as the parent fog takes a
local decision, and the time to update the metadata index is
also 30 ms; this is mostly the service call overhead.

These times do not vary much as we increase to 4 con-
current edges writing from 4 different fog partitions, with
their median time at 4.5 secs. But with 16 edges putting
blocks in parallel, all 4 edges of every fog are active. Since
they all route data through their parent fog to a remote
fog, the data transfered out from the fog for edges in its
partition is 4 edges × 2 remote replicas × 10MB. Hence, its
available bandwidth limits the performance, taking a median
of 10.2 secs. So ElfStore’s overheads are minimal in all these
cases, and we are only bandwidth bound.

For D272, each edge is randomly assigned to put blocks
of either 1MB or 10MB in size, 100 times. For 16 edges,
there are 8 edges each putting blocks of these two sizes, while
for 64 edges, there are 25 writing 10MB blocks and the
rest 39 writing 1MB blocks. Fig. 4a shows that the median
latency with 16 concurrent edges is about 2.5 secs and it only
marginally increases to 2.9 secs for 64 edges. The smaller
time than D20 is due to the use of smaller block sizes and a
smaller client load, compared to the total edge count.

If we limit our analysis to just the edges on D272 putting
10MB blocks (plots omitted for brevity), we report that the
median time for the 8 (of 16) edges writing 10MB blocks is
5.5 secs while for 25 (of 64) edges it is 6.8 secs. These are
higher than D20 primarily due to the higher replication factor,
which has grown from being ≈ 3 to as high as 5, as seen in
the red violin on the right Y axis of Fig. 4a. This increases the
data transfer time, both due to additional bandwidth and the

compute cost of concurrent threads doing these operations.
The higher replication factor and its wider distribution for

D272, spanning the full range of 2–5 copies allowed, are due to
its lower and more variable edge reliability of µ = 80%, σ =
5%. In contrast, D20’s reliability of µ = 90%, σ = 3%
results in a replication factor of 2–3. This clearly shows the
differential replication at work.

***TODO Later: We should plot the excess reliability too
2) Put performance with leasing: We initialize the D20

setup with 16 × 100 block writes without leasing. Then, we
perform 25 additional block puts per client to a random
stream, from 1, 4 and 16 concurrent clients, with a lease
acquired on the stream for 100 secs, and renewed a median of
2 times. Different edges may select the same stream to write
to. Besides the end-to-end latency for these leased-puts, which
now includes the lease acquisition and renewal time (left Y
axis in Fig. 4b), and the replica count (right Y axis), we also
show the concurrent writers count for a stream (right Y axis).

With 1 or 4 edges doing puts, we see that the median
latency is 2.5 secs and 4.65 secs. These are comparable to
the previous experiments without leasing for the same number
of writers. This is due to the lower median replication factor
of 2 in these runs (compared to 3 earlier). This is due to a
higher overall reliability of the edge devices in these runs,
despite sampling from the same edge reliability distribution.
No two edges have selected the same stream to write to in
these runs. This indicates that the edge reliabilities, replication
count and bandwidth usage have a bigger impact on the end-
to-end latency than the leasing overheads. ***TODO Later:
experiments are poorly designed since many factors change
and we are not comparing apples to apples! Not convincing.

With 16 clients, the median latency is lower than without
leasing at 6.2 secs due to the smaller replication count. But
the latency distribution is much wider, reaching 450 secs. This
is because multiple edges pick the same stream to write to, as
seen in the right-most violin. We have 4 streams selected by 2
edges each to write to, and 1 stream picked by 3 edges. Hence,
with concurrent writers and leasing, only one will write to the
stream at a time while the others poll to acquire the lease.
This lasts till all 25 blocks are put by an existing edge with
the lease. The peak latency to write a block is for the stream
with 3 clients. The last edge to get the lease was waiting for
50 blocks to be written by the previous two edges, that takes
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Figure 5: Performance of stream metadata update, and block recovery after edge failures.

about 446 secs. So the latency for this edge to put its first
block is 450.3 secs, ***TODO Later: this should have taken
50*6 = 300secs while putting the rest of its 24 blocks does
not have additional leasing overheads.

B. Find and Get Block Performance

We do a similar set of concurrent FindBlock and
GetBlock API calls from 1, 4 and 16 edges for the D20
setup, and from 16 and 64 edges for D272. ElfStore has been
loaded with 16×100 blocks (D20) or 64×100 blocks (D272)
using the previous put runs. Each edge finds 100 random block
IDs from the ones inserted, followed by a get of that block.

The time to find and get each block is shown in Fig. 4c (left
Y axis), and a magenta triangle on the right Y axis indicates
the percentage of times a replica from the local partition is
read. The find API call is fast, taking about 220 ms with 1
and 4 edges for D20, and about 440 ms with 16 edges. In the
latter case, each fog is servicing 4 concurrent edge requests
and hence marginally slower.

Once the replicas for a block ID are identified, we get one of
the replicas – preferring a replica in the local fog partition, if
present. For D20, we see that the get latencies have a bimodal
distribution. There are peaks at 1.4 secs and 2.6 secs for 1
and 4 edges, and at 3.1 secs and 7.5 secs for 16 edges. This
is due to the mix of local and remote replicas that an edge
accesses. Edges are able to get a local replica copy 55–70%
of the time, resulting in the lower latency peak. This range is
within the 1

4 × 1 + 3
4 ×

1
4 × 2 = 62.5% we expect – since all

edge clients put blocks uniformly, 1
4

th of all the blocks have
their first replica locally; of the remaining 3

4

th of blocks, there
is a 1

4 chance on the ≈ 2 non-local replicas to be on that fog.
The second peak reflects the copying of a remote replica. Just
like for the write, we are bandwidth bound as the concurrency
increases, showing that ElfStore has low overheads.

The performance for D272 is equally fast, taking a median
1.1–1.3 secs with 16 or 64 edge readers. It benefits from 50–
60% of blocks being only 1 MB in size. However, this is
despite only ≈ 23% of blocks having a local replica out of
the median 4 replicas per block. This too matches the expected
local fraction of 1

16×1+ 15
16×

1
16×3 = 23.8%. In fact, the small

number of local copies means that the latency distribution is
tighter. So ElfStore weakly scales for gets too.

C. Metadata Update Performance

We conduct experiments on the D20 setup to measure
the latency for stream metadata updates, using 1, 4 and 16
concurrent edges as clients. Each client randomly picks one of
the 100 existing streams, and performs 100 GetStreamMeta
and UpdateStreamMeta operations alternately on it. It
is possible for two clients to select the same stream to
perform an update. Since we use version checking rather than
leasing for metadata updates, it is likely that the version of
a stream metadata being updated may have been updated by
a concurrent client and hence fail. We report the latency for
get and update metadata (left Y axis) and the count of failed
updates (right Y axis) in Fig. 5a; failed updates are not retried.

With just 1 or 4 clients, no two streams are randomly picked
for update by the same client, and only local streams are
chosen. So all updates are at the local fog, and complete
successfully with a median latency of 121 ms. But with 16
clients, 4 streams are selected by a pair of clients to update
concurrently. This causes 185 of the total of 1600 updates to
fail due to staleness, as seen in the right Y axis. The update
time also increases to a median of 245 ms. This is primarily
due to a majority of the metadata updates happening on a
remote fog partition, unlike the 1 and 4 edge cases, and this
causes an extra network hop in the VIoLET environment.

***TODO Later: poor experiment design

D. Block Recovery Performance

Lastly, we measure the responsiveness of ElfStore in recov-
ering from edge failures, and ensuring that the blocks maintain
their reliability levels. We load 16× 00 and 64× 100 blocks
into the D20 and D272 setups, like before, and then kill one
of the edges with the least reliability. We track the time taken
by its parent fog to detect the loss, and start re-replicating
the lost blocks on other edges. Once recovery is complete, we
kill another low reliability edge. Fig. 5b plots the time to re-
replicate each block on the left Y axis violin, the number of
blocks recovered on the right Y axis, and list the total recovery
time at the bottom, shown after the first and the second failures.
In all cases, 100% of lost blocks are re-replicated.

We see that the re-replication time per block is ≈ 21 secs
for D20, and ≈ 3–8 secs for D272. These are comparable to
the sum of the get and put times seen before, since we get
a surviving replica and put it on a new edge. Also, recovery



of blocks is done in parallel on the fog using 10–20 threads.
Hence, while 109–144 blocks are recovered depending on the
failing edge, the total recovery time is only 105–312 secs. So
the thread parallelism gives us a 10× speedup.

We further examine how our global matrix changes as
blocks are populated in ElfStore, and when failures happen.
Fig. 5c shows a heatmap of the edge-counts in the 4 global
matrix quadrants (top 4 rows) and the median storage and
latency values (bottom 2 rows), updated every 150 secs
along the X axis, for D20. At time steps 0–12, 4 edges are
concurrently writing 100 blocks in a loop. Initially, the median
available storage smed = 14 GB, and all 16 edges fall in the
high capacity quadrants, HH or HL. As replicas are written to
fogs in these quadrants and their edge capacities get used on
a priority, the count shifts from HH and HL, to LH and LL,
e.g., from step 2 to 3. Eventually, this disk usage causes the
median capacity to change, say, from 14 GB to 13 GB after
step 5. This causes borderline fogs, earlier classified as low
capacity, to move to the high capacity, and become prioritized
for selection. So we keep selecting fogs that are in and around
the median value.

After step 15, there is an edge failure and the total edge
count drops from 16 to 15. The ensuing re-replication causes
the missing blocks to be copied to an existing edge. While only
one replica is created, this is done by 10+ concurrent threads.
So the edge counts again shift from high to low capacities.
When a second edge fails after step 22, it even causes the
median reliability to drop from rmed = 90% to 89%.

V. CONCLUSIONS

In this paper, we have presented a novel distributed storage
service for edge and fog resources that offers a transparent
means for edge computing applications to access streams of
data blocks persisted locally. This avoids the need to move
IoT data to and from the cloud, other than for long-term
archival. ElfStore leverages ideas from both P2P networks
and Big Data storage like HDFS. It uses a federated index
for 2-hop searching of blocks, with hierarchical Bloom filters
over static metadata properties for fast probabilistic searches
at scale. It maintains approximate global statistics on storage
and reliability distributions of edges on different fogs, which
helps it select fogs and edges for differential replication. This
guarantees tunable reliability of each block. Our experiments
demonstrate the low overhead of ElfStore, with block read
and write performance bound only by the network speed.
Consistent and concurrent updates of blocks and metadata are
also validated. It also performs automated and rapid block re-
replication on edge failures, to maintain the required reliability.

As future work, we plan to include support for overlay
creation, as available in existing P2P literature, and use buddy
pools to handle unreliable fogs as well. We can also enforce
the leases as locks, and support access control, auditing and
non-repudiation mechanisms. Larger scale and comparative

experiments, and concurrent-failure tests are planned as well 3.
***TODO Later: ***Reviewer2: Questions that are not

addressed are around data security and access control. It seems
that the data is freely available to anyone through the P2P
network. Furthermore, there is a question around guarantees
that can be given on authenticity and no-repudiation of the
data. ***Sumit: The current work doesn’t look into the
security, access control of data. We plan to address these in a
future extension of this work

***TODO Later: Future work:
Supporting access control over reads and writes.
Using hashes for verification, PKI for encryption, or even
blockchain.
Comparison with IPFS and .

***TODO Later: we may revisit and use Fog for data as
well ***TODO Later: handle fog join/leave, flux ***TODO
Later: Allow edge devices to rejoin after some time and re-
register blocks that are present on them. Use MD5 checksum.

***TODO Later: The end time metadata is blank for an
active stream.

***TODO Later: One of the assumptions of this work is
that a single client will be generating all the microbatches for
a particular streamId. ***Yogesh: Are we really using this
constraint? this should be relaxed

***TODO Later: allow metadata mutations. Block updates,
inserts

***TODO Later: While writing the data, which is a micro
batch byte array, we also write the associated metadata and
store them together, this is an explicit design choice, so that
even though the indexes on stream and microbatch metadata
are lost, they can be reconstructed easily with the metadata on
the Edge.

***TODO Later: Make the global stats calculation hierar-
chical, O(n+b) rather than O(b*n), with buddies doing agg of
their neighbors and exchanging semi-global stats, and these
used to form global appox stats. Each fog also just maintains
its neighbors mapping to HH–LL rather than global. Replica
selection picks from local neighbors and forward request for
buddy’s neighbors.

***TODO Later: HDFS or Ceph on Pi’s for validation?
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