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Abstract—Unmanned Aerial Vehicles (UAVs), or drones, are
increasingly used for urban applications like traffic monitoring
and construction surveys. Their autonomous navigation allows
drones to visit waypoints and accomplish activities at those
locations, as part of their mission. A common activity is to hover
and observe a location using on-board cameras. Advances in
Deep Neural Networks (DNNs) allow such videos to be analyzed
for automated decision making. UAVs also host edge computing
capability for on-board inferencing by such DNNs. Here, we
propose a novel Mission Scheduling Problem (MSP) for co-
scheduling the flight route to visit and record video at waypoints,
and their subsequent on-board analysis, for a fleet of drones. The
schedule maximizes the utility from the activities, while meeting
activity deadlines, and the energy and computing constraints. We
first prove that MSP is NP-hard and then offer a mixed integer
linear programming (MILP) formulation to optimally solve. Next,
we provide two efficient heuristic algorithms, JSC and VRC, to
obtain fast, sub-optimal solutions. Our detailed evaluation of
these algorithms using real drone benchmarks show the utility-
runtime trade-offs of the 3 schedulers under diverse workloads.

Index Terms—UAV, drone, edge computing, vehicle routing,
job scheduling, energy constrained, video analytics

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), also called drones, are
expected to enable a wide range of applications in smart
cities [1], such as traffic monitoring [2], construction sur-
veys [3], package delivery [4], and even COVID-19 manage-
ment [5], assisted by the upcoming 5G wireless roll-out [6].
The mobility, agility, and hovering capabilities of drones allow
them to rapidly fly to many points of interest (waypoints)
in the city to accomplish specific activities, e.g., observing
traffic at hot-spots during commute hours, status of building
construction, or crowding among pedestrians during COVID-
19. Usually, such activities involve hovering and recording
a scene for a certain perdiod using the drone’s camera, and
analyzing the videos to take decisions, such as changing traffic
signaling or sending a patrol car, flagging construction delays,
encouraging pedestrians to practise social distancing, etc.

The increasing sophistication of Deep Neural Networks
(DNNs) and computer vision algorithms enable video analytics
to be performed over these recordings for automated decision-
making. Typically, these are done after the drone lands, the
video is transferred to a cloud or local server, and the DNN
inferencing is run. However, certain activities may require low-

latency analysis and decisions, as soon as the video is captured
at a location. Here, one can leverage the on-board edge
computing capability available in commercial and bespoke
drones to process videos after recording, and immediately
report the results to cloud servers over 4G/5G networks. These
computing capacities include power-efficient ARM CPUs and
NVIDIA Jetson GPUs, designed for edge devices [7].

At the same time, drones are energy-constrained vehicles
with limited battery capacity, and typical commercial drones
can fly for under 1 hour. So, the distance between the
waypoints to be visited will affect the number of activities
that can be completed in one trip. Performing edge analytics
will consume additional energy, and UAVs also drain energy
for hovering and recording video at a location for an activity.
So, the energy on the drone should be judiciously managed for
the flying, hovering, and computing tasks. Nevertheless, once
a drone lands, its exhausted battery can be quickly swapped
out for fresh ones and it can start a new trip.

In this paper, we examine how a UAV fleet operator in a city
can plan missions for a captive set of drones to accomplish
activities that are periodically provided by users. An activity
involves visiting a waypoint, hovering and capturing video
at that location during a specific time period, and optionally
performing on-board analytics on the captured data. Activities
also offer utility scores depending on how they are handled.
The novel problem that we propose is for the fleet operator
to co-schedule the flight routing among waypoints and the
on-board computation for their drones to complete (a subset
of) the provided activities, within the energy and compute
constraints of the drone, while maximizing the total utility.

Other earlier works have examined routing of one or more
drones for capturing and relaying data to the backend [8],
off-loading compute from mobile devices [9], and cooperative
video surveillance [10]. There is also literature on scheduling
tasks for edge computing that are compute and energy aware,
operate on distributed edge resources, and consider deadlines
and device reliability [11], [12], [13], [14]. However, none
of these examine co-scheduling a fleet of physical drone and
the digital applications on them to meet the objective, while
efficiently managing the energy capacity to maximize utility.

Specifically, our Mission Scheduling Problem (MSP) com-
bines elements of the Vehicle Routing Problem (VRP) [15],
which generalizes the well known Traveling Salesman Prob-
lem (TSP) to find optimal routes given a set of vehicles
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and customers [16], and the Job-shop Scheduling Problem
(JSP) [17] for mapping jobs of different execution durations to
available resources, which is often used for parallel scheduling
of computing tasks to multiprocessors [18].

We make the following specific contributions in this paper.
• We characterize the system and application model, and

formally define the Mission Scheduling Problem (MSP)
to co-schedule routes and analytics for a fleet of drones,
to maximize the obtained utility (Sections III and IV).

• We prove that MSP is NP-hard, and optimally solve it
using a mixed integer linear programming (MILP) design,
OPT, that is feasible for small inputs (Section V).

• We also provide two time-efficient heuristic algorithms,
JSC and VRC, that can solve for arbitrary-sized inputs, and
offer complexity bounds for their execution (Section VI).

• We evaluate and analyze the utility and scheduling run-
time trade-offs for these three solutions, for diverse drone
workloads based on real drone benchmarks (Section VII).

In addition, we contrast with related work in Section II,
discuss alternative approaches and future work in Section VIII,
and offer our conclusions in Section IX.

II. RELATED WORK

This section provides an overview of existing literature on
vehicle routing and job-shop scheduling, and how they contrast
with MSP and our proposed solutions.

A. Vehicle Routing Problem

The VRP is a TSP variant with multiple salespersons [15]
and it has been proven to be NP-hard [19]. This problem has
had several extensions to handle realistic delivery scenarios,
such as temporal constraints that impose deliveries only at
specific time-windows [20], capacity constraints on minimum
or maximum vehicle payloads [21], allowing multiple trips
for the same vehicle [22], providing profit to vehicles [23], an
dealing with traffic congestion [24]. The VRP has also been
adapted for planning routes for a fleet of ships [25]. Recently,
it has been extended for drone assisted delivery of goods [26].

The authors in [8] consider the problem of scheduling events
that need to be performed at a specific location, and are sub-
mitted to UAVs as they fly. This involves sensing/processing
data, and communicating it to the backend over wireless
networks. Their dual goal is to minimize both the drone’s
energy consumption and the operation time. They consider
factors such as wind speed and temperature that may affect
the route and CPU execution time. However, sensing and
processing is a monolithic operation for an event, and not
separate but independent tasks like ours that need to be co-
scheduled. They minimize the operating time and energy rather
than maximize the utility for performing tasks within a time
and energy budget, like we do.

Others [9] explore the use of UAVs for off-loading comput-
ing from users’ mobile devices, and as a data relay between the
mobile devices and access points. They consider optimization
of the trajectory, bandwidth, and computing of the drone in an
iterative manner, for edge computing and relay tasks submitted

to a single UAV. They minimize the energy consumption of
the drones and the mobile devices, and validate this through
simulation for four mobile devices. We instead consider a more
practical problem of planning the trajectory and computing for
a fleet of drones with possibly hundreds of locations to visit
and on-board computing tasks to perform.

Novel architectures have been proposed for energy efficient
video surveillance of points of interest (POI) in a city using
drones [10]. The UAVs leverage bus rooftops to re-charge
themselves, while also being transported to the next POI based
on known bus routes. Drones also act as relays for other drones
that are capturing video. They formulate the mapping of drones
to bus routes as an MILP problem and propose a TSP-based
heuristic. Unlike us, scheduling and processing data on-board
the drone is not a goal. We do not examine any data off-loading
from the drone, nor any piggy-backing mechanisms.

B. Job-shop Scheduling Problem

Scheduling computing tasks on drones is closely aligned
with scheduling tasks for edge and fog devices [27], and
broadly with parallel workload scheduling [18] and JSC [17].

Dedas [11] proposes an online algorithm for deadline-
aware task scheduling for edge computing. This work jointly
optimizes networking and computing so as to yield the best
possible schedule. It also highlights that workload scheduling
on the edge has several dimensions to the problem and jointly
optimizing for them, improves the quality of the schedule.
Fend et al. [28] propose a framework for cooperative edge
computing on autonomous road vehicles, aimed at increasing
their computational capabilities in a decentralized manner.
Such a system also improves the task execution performance.
In [29], the authors combine the optimal placement of data
blocks and the optimal scheduling of tasks for reducing
the computation delay and response time for the submitted
tasks while improving user experience in edge computing. In
contrast, we co-schedule UAV routing and edge computing.

Several others explore task scheduling where the client is
mobile, and off-loads its computing to another nearby edge
or fog resource. Typically, these may be categorized based
on their mobility models as predictable and unpredictable.
In [30], the mobility of a vehicle is predicted and this is
used to select the road-side edge computing unit to which the
compute is off-loaded. In [31], the authors take an extreme
view and assume that mobile edge devices interact with other
such devices intermittently and at random. This makes it
challenging to determine if tasks should be off-loaded to
another proximate mobile edge device for reliable completion.
The problem we solve is complementary, with the possible
waypoints known ahead, and we perform predictable UAV
route planning and schedule the computing locally on the edge.

Scheduling on energy-constrained edge has also drawn
attention [12], where an energy-aware off-loading scheme is
proposed for jointly optimizing communication and computa-
tion resource allocation on the edge and to limit latency. In
our problem, we also consider the energy for the drone flight
and try to meet deadlines for on-board computing.



III. MODELS AND ASSUMPTIONS

This section introduces the UAV system model, application
model, and utility model along with underlying assumptions.
Figure 1 illustrates a sample MSP scenario.
A. UAV System Model

Let λ̂ = (0, 0, 0) be the location of a UAV depot in the city
(see Figure 1, left) centered at the origin of a 3D Cartesian
coordinate system 1.Let D = {d1, . . . , dm} be the set of m
available drones. For simplicity, we assume that all the drones
are homogeneous. Each drone has a camera for recording
videos, which is subsequently processed. This processing can
be done using the on-board computing, or done offline once the
drone lands (which is outside the scope of our problem). The
on-board processing speed is π floating point operations per
second (FLOPS). For simplicity, this is taken as cumulative
across CPUs and GPUs on the drone, and this capacity is
orthogonal to any computation done for navigation.

The battery on a drone has a fixed energy capacity E, which
is used both for flying and for on-board computation. The
drone’s energy consumption has three components – flying,
hovering, and computing. Let εf be the energy required for
flying for a unit time duration at a constant energy-efficient
speed s within the Cartesian space; let εh be the energy for
hovering for a unit time duration; and let εc be the energy
for performing computation for a unit time duration. For
simplicity, we ignore the energy for video capture since it is
negligible in practice. Also, a drone that returns to the depot
can get a fresh battery immediately to start a new trip.

B. Application Model

Let A = (α1, . . . , αn) be the set of n activities to be
performed starting from time t̂ = 0, where each activity
αi is given by the tuple 〈λi, ti, t̄i, κi, δi, γi, γ̄i, ¯̄γi〉. Here,
λi = (xi, yi, zi) is the waypoint location coordinates where
the video data for that activity has to be captured by the drone,
relative to the depot location λ̂. The starting and ending times
for performing the data capture task are ti and t̄i. The compute
requirements for subsequently processing all of the captured
data is κi floating point operations 2. Lastly, δi is the time
deadline by which the computation task should be completed
on the drone to derive on-time utility of processing, while
γi, γ̄i, and ¯̄γi are the data capture, on-time processing, and on-
board processing utility values that are gained for completing
the activity. These are described in the next sub-section.

The computation may be performed incrementally on sub-
sets of the video data, as soon as they are captured. This
is common for analytics over constrained resources [32].
Specifically, for an activity αi, the data captured between
(t̄i − ti) is divided into batches of a fixed duration β, with
the sequence of batches given by Bi = (b1i , . . . , b

qi
i ), where

qi = |Bi| =
⌈
t̄i−ti
β

⌉
. The computational cost to process each

1Since the route planning is in a city, without loss of generality (WLOG)
and for simplicity, we use Cartesian coordinates for 3D positioning rather a
geo-spatial system such as latitude, longitude, and elevation, or UTM.

2We assume that the computing performed is numerical and floating-point
heavy, as is often the case with Deep Neural Network model inference.

batch is κki = κi

qi
floating-point operations, and is constant for

all batches of an activity. So, the processing time for the batch,
given the processing speed π for a drone, is ρki =

⌈
κki · 1

π

⌉
;

for simplicity, we discretize all time-units into integers.
We make some simplifying assumptions. Only one batch

may be executed at a time on-board a drone and it should
run to completion before scheduling another. There is no
concurrency, pre-emption, or checkpointing. The data capture
for an activity’s batch may overlap with the computation of a
previous batch of the same or a different activity. All batches
for a single activity should be executed in sequence, i.e.,
complete processing bki before processing bk+1
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Fig. 1. Sample MSP scenario. a) shows a city with the depot (λ̂); 6 waypoints
to visit (λi) with some utility; and possible trip routes for drones (Ri

j ). b)
has the corresponding 6 activities (αi) with data capture duration (shaded)
and compute deadline (vertical line) and the two available drones.

C. Utility Model

The primary goal of the drone is to capture videos at the
various activity locations for the specified duration. This is
a necessary condition for an activity to be successful. We
define this as the data capture utility (γi) accrued by a drone
for an activity αi. The secondary goal is to opportunistically
process the captured data using the on-board computing on
the drone. Here, we have two scenarios. Some activities may
not be time sensitive, and performing on-board computing is
just to reduce the costs for offline computing. Here, processing
the data caputed by an activity using the drone’s computing
resources will provide an on-board processing utility (γ̄i).
Other activities may be time-sensitive and have a soft-deadline
δi for completing the processing. For these, if we process its
captured data on the drone by this deadline, we receive an
extra on-time processing utility (¯̄γi). The processing utilities
accrue pro rata, for each batch of the activity completed.

IV. PROBLEM FORMULATION

The Mission Scheduling Problem (MSP) can be summarized
as: Given a UAV depot in a city with a fleet of captive drones,
and a set of observe and compute activities to be performed
at locations in the city, each within a given time window and
with associated utilities, the goal is to co-schedule the drones
onto mission routes and the compute onto the drones, within
the energy and compute constraints of the drones, such that
the total utility achieved is maximized. It is formalized below.

A. Mission Scheduling Problem (MSP)

A UAV fleet operator receives and queues activities from
users. Periodically, a mission schedule is planned to serve



some or all these activities using all the drones in the fleet
to maximize the utility. There is a fixed cost for operating the
captive fleet that we ignore.

Multiple activities can be assigned to the same drone dj
as part of the drone’s mission, and the same drone dj can
do multiple trips from the depot for a mission. The mission
activities for the rth trip of a drone dj is the ordered sequence
Arj = (αrj1 , . . . , α

r
jn

) ⊆ A where αrjx ∈ A, jn ≤ n, and
no activity appears twice within a mission. Further, we have
αrjx ≺ αrjx+1

, i.e., the observation start and end times of an
activity in the mission sequence fully precede those of the next
activity in it, t̄rjx ≤ trjx+1

. Also, Axj ∩ A
y
k = ∅ ∀j, k, x, y to

ensure that an activity is mapped to just one drone. Depending
on the feasibility and utility, some activities may not be part
of any mission, i.e.,

∑
j

∑
r |Arj | ≤ n.

The route for the rth trip of drone dj is given by Rrj =

(λ̂, λrj1 , . . . , λ
r
jn
, λ̂), where the starting and ending waypoints

of the drone are the depot location λ̂, and each intermediate
location corresponds to the video capture location λrjk for the
activity αrjk in the mission sequence. For uniformity, we denote
the first and the last depot location in the route as λrj0 and
λrjn+1

, respectively. Clearly, |Rrj | = jn + 2.
A drone dj , given the rth trip of its route Rrj , it starts at the

depot, visits each waypoint in the sequence, and returns to the
depot, where it may get a fresh battery and start on the (r+1)th

route. Let drone dj leave a waypoint location in its route, λrji ,
at departure time τ rji and reach the next waypoint location,
λrji+1

, at arrival time τ̄ rji+1
. Let the function F(λp, λq) give the

flying time between λi and λj . Since the drone has a constant
flying speed, we have τ̄ rji+1

= τ rji + F(λrji , λ
r
ji+1

).
The drone must hover at each waypoint λrji between trj and

t̄rj while recording the video, and it departs the waypoint after
this, i.e., τ rji = t̄rji . If the drone arrives at this waypoint at time
τ̄ rji , that is before the observation start time tj , it hovers here
for a duration of trj − τ̄ rji , and then continues hovering during
the activity’s video capture. If a drone arrives at λrji after trj ,
it is invalid since the video capture for the activity cannot be
done for the whole duration. So, τ̄ rji ≤ trji ≤ τ rji . Also, since
the deadline for on-time computation over the captured data
is δrji , we require δrji ≥ t̄

r
ji

.
Once the drone finishes capturing video for the last activity

in its rth trip, it returns back to the depot location at time
τ̄ rjn+1

= τ rjn + F(λrjn , λ̂). Hence, the total flying time for a
drone dj for its rth trip is:

frj =

n∑
i=0

(τ̄ rji+1
− τ rji)

and the total hover time for the drone on that trip is:

hrj =

n∑
i=1

(trji − τ̄
r
ji) +

n∑
i=1

(t̄rji − t
r
ji) =

n∑
i=1

(t̄rji − τ̄
r
ji)

which includes hovering due to early arrival at a waypoint,
and hovering during data capture.

Let the scheduler assign the time slot [θkji , θ̄
k
ji

) for executing
a batch bkji of activity αji on drone dj , where θ̄kji = θkji + ρki ,

based on the batch execution time. We define a completion
function for each activity αji , for the three utility values:
• The data capture completion uji ∈ {0, 1}. The value is

1 if the drone hovers at location λji for the entire period
from tji to t̄ji , and is 0 otherwise.

• The on-board completion 0.0 ≤ ūji ≤ 1.0 indicates the
fraction of batches of that activity that are completed on-
board the drone. Let µ̄ki = 1 if the batch bki of activity αi
is completed on-board, and µ̄ki = 0 if it is not completed
on-board the drone. Then, ūji =

∑
k µ̄

k
i

qi
.

• The on-time completion 0.0 ≤ ¯̄uji ≤ 1.0 indicates the
fraction of batches of that activity that are fully completed
within the deadline. Similarly, let ¯̄µki = 1 if the batch bki
of activity αi is completed on-time, i.e., θ̄ki ≤ δi, and
µ̄ki = 0 otherwise. So, ¯̄uji =

∑
k

¯̄µk
i

qi
.

The total utility for an activity αi is Ui = uiγi+ūiγ̄i+¯̄ui ¯̄γi,
and the total computation time of batches on a drone dj is:

cj =
∑
αi∈A

(µ̄kji + ¯̄µkji) · ρ
k
i

B. Optimization of MSP

Based on these, the objective of the optimization is:
arg max

∑
αi∈A

Ui

i.e., assign drones to activity waypoints and activity batches
to drone for computing slots to maximize the utility derived
from data capture, on-board, and on-time computation.

These are subject to the following constraints on the exe-
cution slot assignments for a batch on a drone:

(tji + k · β) ≤ θkji θ̄kji ≤ θ
k+1
ji

θ̄ki ≤ τ̄jn+1

i.e., the data capture for a duration of β for the kth batch of
the activity is complete before the execution slot of the batch
starts; the batches for an activity are executed in sequence;
and the execution completes before the drone lands.

Also, there can only be one batch executing at a time on a
drone. So ∀[θxjp , θ̄

x
jp

) and [θyjq , θ̄
y
jq

) slots assigned to batches
bxp and byq on drone dj , we have [θxjp , θ̄

x
jp

) ∩ [θyjq , θ̄
y
jq

) = ∅.
Lastly, the energy expended by drone dj on the rth trip, to

fly, hover, and compute, should be within its battery capacity:
Erj = frj ε

f + hrjε
h + crjε

c ≤ E

V. OPTIMAL SOLUTION FOR MSP

In this section, we prove that MSP is NP-hard, and we
define an optimum, but computationally slow, algorithm called
OPTIMAL MISSION SCHEDULER (OPT) based on MILP.

A. NP-hardness of MSP

As discussed earlier, the MSP combines elements of the
VRP and the JSP in assigning routes and batches to drones, for
maximizing the overall utility, subject to energy constraints.
Theorem 1. MSP is NP-hard.

Proof. The VRP is NP-hard [19]. In addition, MSP considers
multiple-trips, time-windows, energy-constraints, and utilities.



TABLE I
CONSTRAINTS FOR OPT MILP FORMULATION.

C. Expression Meaning

1
∑

k∈D
∑

l∈R
∑

j∈−→i x
kl
ij ≤ 1, ∀i ∈ V ′ The waypoint for an activity αi is visited only once.

2
∑

j∈−→0 x
kl
0j −

∑
j∈←−0 x

kl
j0 = 0, ∀k ∈ D, l ∈ R A drone trip l starting from the depot must also end there.

3
∑

j∈−→0 x
kl
0j = 1 ⇐⇒

∑
j∈−→i x

kl
ij = 1, ∀i ∈ V ′, k ∈ D, l ∈ R A drone k must visit at least one waypoint on each trip l.

4
∑

i∈←−j x
kl
ij −

∑
i∈−→j x

kl
ji = 0, ∀k ∈ D, j ∈ V ′, l ∈ R A drone k visiting waypoint j must also fly out from there.

5 (tj −F0j) ·
∑

k∈D
∑

l∈R x
kl
0j ≥ 0, ∀j ∈ V ′ Any drone flying to waypoint j from the depot must reach

before its observation start time tj .
6 (tj − t̄i −Fij) ·

∑
k∈D

∑
l∈R x

kl
ij ≥ 0, ∀i ∈ V ′, j ∈ −→i Any drone flying to waypoint j from i must reach before its

observation start time tj .
7 τ̄ lkn+1

=
∑

i∈V′ xkli0 · (t̄i + Fi0), ∀k ∈ D, l ∈ R Decides the landing time of drone k at the depot after trip l.
8 τ̄ lkn+1

≤ τmax, ∀k ∈ D, l ∈ R Depot landing times for all trips is within the maximum time.
9 ti + (g + 1) · β ≤ θgi , ∀i ∈ V ′, g ∈ Bi Batch g of activity αi must be observed before it is processed.
10 θ̄gi < θg+1

i , ∀i ∈ V ′, g ∈ Bi Processing of batch g of activity αi must precede batch g+1.
11

∑
j∈−→i x

kl
ij +

∑
b∈−→a x

kl
ab−1 ≤ wgh

ia +whg
ai , ∀i, a ∈ V ′, i < a, g ∈ Bi, h ∈

Ba, k ∈ D, l ∈ R
Compute time slots of two batches g and h from activities
αi and αa on the same drone k and trip l should not
overlap [17].12 θ̄gi − θ

h
a ≤M · (1− w

gh
ia ), ∀i, a ∈ V, i 6= a, g ∈ Bi, h ∈ Ba

13 ylgik = 1⇒ θ̄gi +M
(

1−
∑

j∈−→i x
kl
ij

)
≤ δi, ∀i ∈ V ′, g ∈ Bi, k ∈ D, l ∈ R Decision variable for batches that complete before deadline.

14 zlgik = 1⇒ θ̄gi +M
(

1−
∑

j∈−→i x
kl
ij

)
≤ τ̄ lkn+1

,∀i ∈ V ′, g ∈ Bi, k ∈ D, l ∈ R Decision variable for batches that complete before landing.

15
∑

i∈V

(∑
j∈−→i

(
xklij · Fij · εf

)
+

∑
g∈Bi

(
zlgik · κ

g
i · ε

c
)

+∑
j∈−→i

(
xklij · (t̄j−(t̄i + Fij)) · εh

))
≤ E, ∀k ∈ D, l ∈ R

Sum of energy consumed for flying, hovering and computing
on trip l of drone k should be within battery capacity.

The VRP variant with multiple-trips (MTVRP), which con-
siders a maximum travel time horizon Th, is NP-hard. Any
instance of VRP can be reduced in polynomial time to MTVRP
by fixing the number of vehicles to the number of waypoints,
m = n, and setting the time horizon Th =

∑
e∈E F(e), where

E is the set of edges and F(e) is the flying time for traversing
an edge [33], and limiting the number of trips to one. The
VRP variant with time-windows (TWVRP), which limits the
start and end time for visiting a vertex, [ti, t̄i), is NP-hard.
Any instance of VRP can be reduced in polynomial time to
TWVRP by just setting ti = 0 and t̄i = +∞ [16]. Clearly, a
VRP variant with energy-constrained vehicles is still NP-hard,
by just relaxing those constraint to match VRP.

In the above VRP variants, the goal is only to minimize the
costs. But MSP aims at maximizing the utility while bounding
the energy and compute budget. In literature, the VRP variant
with profits (PVRP) is NP-hard [22] since any instance of
MTVRP can be reduced in polynomial time to PVRP by just
setting all vertices to have the same unit-profit. Moreover, MSP
has to deal with scheduling of batches for maximizing the
profit. The original JSP is NP-hard [34]. So any variant which
introduces constraints is again NP-hard by a simple reduction
to relax those constraint to JSP.

As MSP is a variant of VRP and JSP, it is NP-hard too.

B. The OPT Algorithm

The OPTIMAL MISSION SCHEDULER (OPT) algorithm of-
fers an optimal solution to MSP by modelling it as a multi-
commodity flow problem (MCF), similar to [35], [10]. We
reformulate the MSP definition as an MILP formulation.

The paths in the city are modelled as a complete graph,
G = (V, E), between the n activity waypoint vertices, V =

{0, 1, . . . , n}, where 0 is the depot λ̂. Let
−→
i and

←−
i be the

set of out-edges and in-edges of a vertex i, and V ′ = V \
{0} be the set of all waypoint vertices. We enumerate the m
drones as D = {1, . . . ,m}. Let τmax be the maximum time
for completing all the missions, and rmax the maximum trips
a drone can do. Let R = {1, . . . , rmax} be the possible trips.

Let xklij ∈ {0, 1} be a decision variable that equals 1 if the
drone k ∈ D in its trip l ∈ R traverses the edge (i, j), and 0
otherwise. If xklij = 1 for i ∈ V ′, then the waypoint for activity
αi was visited by drone k on trip l. Let Bi = {0, . . . , qi} be
the set of batches of activity αi. Let wghia be a binary decision
variable used to linearize the batch computation whose value
is 1 if batch bgi is processed before bha , 0 otherwise [17].

Let yklig be a decision variable that equals 1 if the drone
k ∈ D in trip l ∈ R processes the batch g of activity αi within
its deadline δi, and 0 otherwise; and similarly, zklig equals 1 if
the batch is processed before the drone completes the trip and
lands, and 0 otherwise. Let the per batch utility for on-board
completion be Γ̄i = γ̄i

qi
, and on-time completion be ¯̄Γi =

¯̄γi
qi

,
for activity αi. Finally, let M be a sufficiently large constant.

Using these, the MILP objective is:

max
∑
k∈D

∑
l∈R

∑
i∈V

(∑
j∈−→i

xklij · Γi

)
+

( ∑
g∈Bi

yklig · Γ̄i + zklig · ¯̄γi

)
(1)

subject to the constraints in Table I.

VI. HEURISTIC ALGORITHMS FOR MSP

Since MSP is NP-hard, OPT can be reasonably performed
only for small-sized inputs. So, time-efficient but sub-optimal
algorithms are necessary for larger-sized inputs. In this section,
we propose two heuristic algorithms, called JOB SCHEDULING
CENTRIC (JSC) and VEHICLE ROUTING CENTRIC (VRC).



A. The JSC Algorithm

The JOB SCHEDULING CENTRIC (JSC) algorithm aims to
find near-optimal batches scheduling while ignoring optimiza-
tions of routing in terms of energy. JSC is split into two phases:
clustering and scheduling.

1) The Clustering Phase: First, we use the ST-DBSCAN
algorithm [36] to do time-efficient spatio-temporal clustering
of activities. It returns a set of clusters C such that for activities
within a cluster Ci ∈ C, certain spatial and temporal distance
thresholds are met. Drones are then allocated to clusters
depending on their availability. For each cluster Ci ∈ C,
let TUi = maxαj∈Ci

(t̄j + F(λj , λ̂)) be the upper bound for
the latest landing time for a drone servicing activities in Ci;
analogously, let TLi = minαj∈Ci (tj −F(λ̂, λj)) be the lower
bound for the earliest take-off time. Then, all the temporal
windows [TLi , T

U
i ] for each Ci ∈ C are sorted with respect

to TLi . Recalling that there are m drones available at t̂ = 0,
they are proportionally allocated to clusters depending on the
current availability, which in turn depends on the temporal
window. So, c1 = m

n · |C1| drones are allocated to C1 at time
TL1 and released at time TU1 ; c2 = m−c1

n · |C2| allocated to
C2 from TL2 to TU2 (assuming TL2 < TU1 ), and so on.

2) The Scheduling Phase: Here, the activities are assigned
to drones. The feasibility of assigning αi to dj , is tested by
checking if the required flying and hovering energy is enough
to visit Aj ∪αi; here, we ignore the batch processing energy.
If feasible, the drone can update its take-off and landing times
accordingly, and then schedule the subset of batches B̂i ⊆ Bi
within the energy requirements. Assignments are done in two
steps: default assignment and test and swap assignment.
Default Assignment. For each bki ∈ B̂i, let Pbki = [tk+iβ, δk)
be the preferred interval; Qbki ⊆ Pbki be the available preferred
sub-intervals, i.e., the set of periods where no other batch is
scheduled; and Sbki = [δk, τ̄jn+1) be the schedulable interval,
which exceeds the deadline but completes on-board. Clearly,
Pbki ∩ Sbki = ∅. The default schedule determines a suitable
time-slot for bki . If Qbki 6= ∅, bki is first-fit scheduled within
intervals of Qbki ; else, if Qbki = ∅, the same first-fit policy is
applied over intervals of Sbki . If bki cannot be scheduled even
in Sbki , it remains unscheduled.
Test and Swap Assignment. If the default assignment has
batches that violate their deadline, i.e., scheduled in S but
not in P , we use the test and swap assignment to improve
the schedule. Let P+

i =
⋃
i Pbki be the union of the preferred

intervals forming the total preferred interval for an activity αi.
Each batch bki is tested for violating its deadline. If it violates,
then batches bhj from other activities already scheduled in P+

i

are identified and tested if they too violate their deadline. If so,
bhj is moved to the next available slot in Sbhj , and its old time
slot given to bki . If bhj is in its preferred interval but has more
slots available in this interval, then bhj is moved to another
free slot in Pbhj and bki assigned to the slot that is freed. Else,
the current configuration does not contain violations, except
for the current batch bki . But all available slots are occupied.

So, the utility for bki is compared with another bhj in P+
i , and

the batch with a higher utility gets this slot.
3) The Core of JSC: The JSC algorithm works as follows

(Algorithm 1). After the initial clustering phase, activities
are tested for their feasibility. If so, the default assignment
is initially evaluated in terms of total utility. If this creates
deadline violation, the test and swap assignment performed,
and the best scheduling is applied.

4) Time Complexity of JSC: The ST-DBSCAN time com-
plexity is O(n log n), where n is the number of waypoints. As
opposed to k-means algorithm, ST-DBSCAN does not require
one to specify the number of clusters a priori. Let k be the
number of clusters formed, with ≈ n

k waypoints each. For k
times, we compute the the min-max of sets of size n

k , sort the
k elements, and finally make n

k assignments. So this drones-
clusters allocation takes O(k nk +k log k+ n

k ) time. Hence, this
clustering phase takes O(n log n) time.

Algorithm 1: JSC(A,D)

1 C← clustering phase
2 for Ck ∈ C do
3 for αi ∈ Ck do
4 for dj assigned to Ck do
5 if αi ∪Aj is feasible then
6 apply best scheduling among default and

test and swap assignment on B̂i

For the test and swap assignment, we maintain an inter-
val tree for fast temporal operations. If l is the maximum
number of batches to schedule per activity, building the tree
costs O(nlk log(nlk )), while search, insertion and deletion cost
O(log(nlk ). Finding free time slots makes a pass over the
batches in O(nlk ). This is repeated for l batches, to give an
overall time complexity of O(nlk log(nlk ) + n

k l
2). Also the

default assignment relies on the same interval tree reporting
the same complexity as test and swap assignment.

Finally, for the k clusters and each application in a
cluster, two schedule assignments are calculated for all the
drones. Thus, the time complexity of JSC is O(n log n) +
O(k nkm(nlk log(nlk )+ n

k l
2)). However, since the clustering can

result in single cluster, m→ n, and the overall complexity of
JSC is O(n3l2) in the worst case.

B. The VRC Algorithm

The VEHICLE ROUTING CENTRIC (VRC) algorithm aims to
find near-optimal waypoint routing while initially ignoring the
optimizations for scheduling batch computation. VRC is split
into three phases: routing, splitting, and scheduling.

1) The Routing Phase: In this phase, VRC builds routes
while satisfying the temporal constraint for activities, i.e., for
any two consecutive activities (αi, αi+1) in the route, t̄i +
F(λi, λi+1) ≤ ti+1. This is done using a modified version of
k-nearest neighbors (k-NN) algorithm, whose solution is then
locally optimized using the 2-OPT* heuristic [37].

The modified k-NN works as follows: Starting from λ̂, a
route is iteratively built by selecting, from among the k nearest



waypoints which meet the temporal constraint, the one, say,
λ1 whose activity has the earliest observation start time. This
process resumes from λ1 to find λ2, and so on until there is no
feasible neighbor. λ̂ is finally added to conclude the route. This
procedure is repeated to find other routes until all the possible
waypoints are chosen. This initial set of routes is optimized to
minimize the flying and hovering energy using 2-OPT*, which
lets us find a local optimal solution from the given one [16].
However, routes found here may be infeasible for a drone to
complete within its energy constraints.

2) The Splitting Phase: Say Ri,j = (λ̂, λi, . . . , λj , λ̂) be an
energy-infeasible route from the routing phase, which visits λi
and λj as the first and last waypoints from λ̂. The goal is to
find a suitable waypoint λg, i ≤ g < j such that by splitting
Ri,j at λg, λg+1, we can find an energy-feasible route while
also improving the overall utility and reducing scheduling
conflicts for batches. For each edge (λg, λg+1), we compute
a split score whose value sums up three components: energy
score, utility score, and compute score.
Energy score. Let E(a, b) be the cumulative flying and
hovering energy required for some route Ra,b ⊆ Ri,j . Here we
sequentially partition the route Ri,j into multiple viable trips
R(i,k1−1), R(k1,k2−1), . . . , R(kx,j) such that each is a maximal
trip and is energy-feasible, i.e., E(ky, ky+1 − 1) ≤ E while
E(ky, ky+1) > E. For each edge (λg, λg+1) ∈ R(ky,ky+1−1),
the energy score is the ratio E(ky,g)

E ≤ 1. A high value indi-
cates that a split at this edge improves the battery utilization.
Utility score. Say U(a, b) gives the cumulative data capture
utility from visiting waypoints in a route Ra,b ⊆ Ri,j . Say
edge (λg, λg+1) ∈ R(ky,ky+1−1) ⊆ Ri,j is also part of a viable
trip from above. Here, we find the data capture utility of a sub-
route of Ri,j that starts a new maximal viable trip at λg+1 and
spans until λl, as U(g, l). The utility score of edge (λg, λg+1)
is the ratio between this new maximal viable trip and of the
original viable trip the edge was part of, U(g,l)

U(ky,ky+1−1) . A value
> 1 indicates that a split at this edge improves the utility
relative to a sequential partitioning of the route done earlier.
Compute score. We first do a soft scheduling of the batches
of all waypoints in Ri,j using the first-fit scheduling policy,
mapping them to their preferred interval, which is assumed to
be free. Say there are |Ri,j | such batches. Then, for each edge
edge (λg, λg+1) ∈ Ri,j , we find the overlap count Og as the
number of batches from αg whose execution slot overlaps with
batches from all other activities. The overlap score for edge
(λg, λg+1) is given as Og

|Ri,j | . If this value is higher, splitting
the route at this point will avoid batches from having schedule
conflicts in their preferred time slot.

Once the three scores are assigned, the edge with the highest
split score is selected as the split-point to divide the route into
two sub-routes. If a sub-route meets the energy constraint, it
is selected as a valid trip. If either or both of the sub-routes
exceed the energy capacity, the splitting phase is recursively
applied to that sub-route till all waypoints in the original route
are part of some valid trip.

3) The Scheduling Phase: Trips are then sorted in decreas-
ing order of their total utility, and drones are allocated to

trips depending their temporal availability. Once assigned to a
trip, the drone’s scheduling is done by comparing the default
assignment and the test and swap assignment used in JSC.

4) The Core of VRC: The VRC algorithm works as fol-
lows (Algorithm 2). After the initial routing phase, energy-
unfeasible routes are split in feasible ones in the splitting
phase, and then drones are allocated to them. Finally, in the
scheduling phase is applied the best scheduling between the
default assignment and the test and swap assignment.

5) Time Complexity of VRC: In the routing phase, the
modified k-NN takes O(kn), where k denotes the number of
neighbors, while the 2-OPT* algorithm has time complexity
O(n4), hence this phase costs overall O(n4).

In the splitting phase, calculating the energy score for a
route with length n edges takes O(n). Calculating the energy
score has O(n2) complexity, and calculating the compute
score has O(n) complexity. Considering a recursion of length
n− 1, the complexity of this phase is O(n3)

Algorithm 2: VRC(A,D)

1 R← routing phase
2 for Rij ∈ R do
3 for (λg, λg+1) ∈ Rij , i ≤ g < j do
4 s(g)← energy score + utility score + compute score

5 R′ ← splitting phase based on scores s(i), 1 ≤ i ≤ n
6 for dj assigned to Rij ∈ R′ do
7 apply best scheduling among default assignment and test

and swap assignment on Rij

When combined with the complexities of default assignment
and test and swap assignment, the overall complexity of VRC
is O(n4) in the worst case.

VII. PERFORMANCE EVALUATION

A. Experimental Setup

The OPT solution is implemented using IBM’s CPLEX
MILP solver v12 [38]. It uses Python to wrap the objective
and constraints, and invokes the parallel solver. Our JSC
and VRC heuristics have a sequential implementation using
native Python. By default, these scheduling algorithms on our
workloads run on an AWS c5n.4xlarge VM with Intel Xeon
Platinum 8124M CPU, 16 cores, 3.0 GHz, and 42 GB RAM.
OPT runs on 16 threads and the heuristics on 1.

We perform benchmarks on flying, hovering, DNN com-
puting, and endurance, for a fleet of custom, commercial-
grade drones. The X-wing quad-copter is designed with a top
speed of 6 m/s (20 km/h), < 120 m altitude, a 24000 mAh Li-
Ion battery, and a payload capacity of 3 kg. It includes dual
front and downward HD cameras, GPS and LiDAR Lite, and
uses the Pixhawk2 flight controller. It also has an NVIDIA
Jetson TX2 compute module with 4-Core ARM64 CPU, 256-
core Pascal CUDA cores, 8 GB RAM, and 32 GB eMMC
storage. The maximum flying time is ≈ 30 min with a range
of 3.5 km. Based on our benchmarks, we use the following
drone parameters in our analytical experiments.



s εf εh εc E

4 m/s 750 J/s 700 J/s 20 J/s 1350 kJ

B. Workloads

We evaluate the scheduling algorithms for two application
workloads: Random (RND) and Depth First Search (DFS).
Both have a maximum mission time of 4 h over multiple
trips. In the RND workload, n waypoints are randomly placed
within a 3.5 km radius from the depot, and with a random
activity start time within (0, 240] mins. This is an adversarial
scenario with no spatio-temporal locality. The DFS workload
is motivated by realistic traffic monitoring needs. We perform
a depth-first traversal over a 3.5 km radius of our local
city’s road network, centered at the depot. With a P = 1

10
probability, we pick a visited vertex as an activity waypoint;
P grows by 1

10 for every vertex that is not selected, and n are
chosen. The start time of these activities monotonically grows.

The table below shows the activity and drone scenarios
for each workload. These are based on reasonable operational
assumptions and schedule feasibility. We vary the data capture
time (t̄− t); batching interval (β); batch execution time on 2
DNNs (ρM , ρR)3; deadline (δ); utility (γ); and number of
drones (m). The load factor x decides the count of activities
per mission, n = x ·m. Drones take at most rmax = n

m trips.

t̄− t β ρM ρR δ γ m x n = x ·m
[1, 5] 60 s 11 s 98 s 120 s [1, 5] 5, 10, 20, 50 2, 4, 8 10, . . . , 200

For brevity, RNet is only run on DFS. 10 instances of each
of these 33 viable workload scenarios are generated. We run
OPT, JSC, and VRC for each to return a schedule. Their results
are analyzed and presented next.

C. Experimental Results

Figures 2a, 2b, and 3a show the utility per drone given by
schedules from the three algorithms, for different drone counts
and activity load factors. Similarly, Figures 2c, 2d, and 3b
show the algorithm execution time (log, secs) for them. Each
bar is averaged for 10 instances and the standard deviations
shown as whiskers. The per drone utility lets us uniformly
compare the schedules for different workload scenarios. The
total utility – MSP objective function – is the product of the
per drone utility shown and the drone count. OPT did not finish
(DNF) within 7 h for scenarios with 40 or more activities.

1) OPT offers the highest utility, if it completes executing,
followed by VRC, and JSC: Specifically, for the 5-drone
scenarios for which OPT completes, it offers an average of 42%
more utility than JSC. VRC gives 26% more average utility than
JSC for these scenarios, and 75% more for all scenarios they
run for. This is as expected for OPT. Since a bulk of the energy
is consumed for flying and hovering, VRC, which starts with
an energy-efficient route, schedules more activities within the
time and energy budget, as compared to JSC.

3We run SSD Mobilenet v2 DNN (MNet, ρM ) [39], popular for analyzing
drone footage [40], and FCN Resnet18 DNN (RNet, ρR) [41] on the TX2

This is evidenced by Figure 4, which reports for MNet
the average fraction of activities, which are submitted and
successfully scheduled by the algorithms. The remaining ac-
tivities are not part of any trip. Among all workloads, JSC
only schedules 60% of activities, VRC 90%, and OPT 98%. So
OPT and VRC are better at packing routes and analytics on the
UAVs. OPT and VRC offer more utility for the DFS workload
than RND since ≥ 96% of DFS activities are scheduled. They
exploit the spatial and temporal locality of activities in DFS.

2) The average flying time per activity in each trip is higher
for VRC compared to JSC: Interestingly, at 728 s vs. 688 s per
activity, the route-efficient schedules from VRC manage to fly
to waypoints farther away from the depot and/or from each
other, within the energy constraints, when compared to the
schedules from JSC. As a result, it schedules a larger fraction
of the activities to gain more utility.

3) The execution times for VRC and JSC match their time
complexity: We use the execution times for JSC to schedule
the 300+ workload instances to fit a cubic function in n, the
number of activities, to match its time complexity of O(n3·l2);
since in our runs, l ∈ [1, 5] and l ≤ n, we omit that term in
the fit. Similarly, we fit a degree-4 polynomial for VRC in n.
The correlation coefficient for these two fits are high at 0.86
and 0.99, respectively. So, the real-world execution time of
our scheduling heuristics match our complexity analysis.

4) OPT is the slowest to execute, followed by VRC and JSC:
Despite OPT using 16× more cores than JSC and VRC, its
average execution times are > 100 s for just 20 activities. The
largest scenario we are able to run within reason is 40 activities
on 5 drones, which took 7 h on average. This is consistent with
the NP-hard nature of MSP. As our mission window is 4 h,
any algorithm slower than that is not useful.

JSC is fast, and on average completes within 1 s for up to
80 activities. Even for the largest scenario with 50 drones and
200 activities, it takes only 90 s for RND and 112 s for DFS.
VRC is slower but feasible for a larger range of activities than
OPT. It completes within 3 min for up to 100 activities. But,
it takes ≈ 45 min to schedule 200 activities on 50 drones.

5) The choice of a good scheduling algorithm depends on
the fleet size and activity count: From these results, we can
conclude that OPT is well suited for small drone fleets with
about 20 activities scheduled per mission. This completes
within minutes and offers about 20% better utility than VRC.
VRC offers a good trade-off between utility and execution time
for medium workloads with 100 activities and 50 drones. This
too completes within minutes and gives on average about 75%
better utility than JSC and schedules over 80% of all submitted
activities. For large fleets with 200 or more activities being
scheduled, JSC is well suited with fast solutions but has low
utility and leave a majority of activities unscheduled.

6) A higher load factor increases the utility, but causes
fewer % of activities to be scheduled: As x increases, we see
that the utility derived increases. This is partly due to adequate
energy and time being available for the drones to complete
more activities in multiple trips. E.g., for the 5-drone case,
we use load factors of x = {2, 4, 8, 16, 32} for JSC and VRC.
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(a) Utility per drone, RND.
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(b) Utility per drone, DFS.
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Fig. 2. Utility per drone and algorithm runtime of the three MSP algorithms, for the RND and DFS workloads on MNet. On the X axis, the number of
drones (outer) and activities per drone (inner) increase. OPT is solved on 16× cores while JSC and VRC run on just 1. DNF indicates OPT did not finish.
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(a) Utility per drone.
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Fig. 3. Utility per drone and algorithm runtime for RNet on DFS.
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Fig. 4. Fraction (%) of submitted activities scheduled per mission for MNet.

There is a consistent growth in the total utility, from 109 to
523 for JSC, and from 121 to 1080 for VRC. There is also a
corresponding growth in the number of trips performed per
mission, e.g., from 7.5 to 43.2 in total for VRC.

However, the fraction of submitted activities that are sched-
uled falls. For JSC, its activity scheduled % linearly drops with
x from 76% to 23%. But for VRC, the scheduled % stays at
about 80% until x = 8, at which point the activities saturate
the drone fleet’s capacity and the scheduled % falls linearly to
37% for x = 32. Interestingly, the utility increases faster than
the number of activities scheduled for VRC. This is due to the
scheduler favoring activities that offer a higher utility, while
avoiding those with a lower utility, causing a 20% increase in
utility received per activity between x = 8 to x = 32.

7) Longer-running edge analytics offer lower on-time util-
ity: We run the same scenarios using RNet and MNet DNN
for the DFS workload. For both JSC and VRC, the data capture
utility that accrues from their schedules for the two DNNs is
similar. However, since the RNet execution time per batch is

much higher than MNet, there is a drop in on-time utility,
by about 32% for both JSC and VRC, due to more deadline
violations. As a result, this also causes a drop in total utility
for RNet by about 15.9% for JSC and 19% for VRC, relative
to MNet. Even for OPT we see a similar trend with a 15.8%
drop in the total utility. The runtimes of JSC and VRC do not
exhibit a significant change between RNet and MNet.

VIII. DISCUSSION AND FUTURE WORK

The MSP that we have proposed is just one variant of an
entire class of fleet co-scheduling problems for drones. Other
architectures to be explored in future include consideration of
4G/5G network coverage and bandwidth to send edge results to
the backend, or even off-load the captured data to the cloud for
computing if it is infeasible on the drone. There will be energy
and latency trade-offs. Even the routing can be aware of the
cellular coverage to ensure such off-loading can happen on a
trip, deterministically. We can also pre-provision and schedule
cloud resources for tasks that did not completed on-board the
drone and were off-loaded at the depot.

We can use alternate cost models by assigning an opera-
tional cost per trip or per visit, and convert the MSP into
a profit maximization problem. The activity time windows
may be relaxed rather than defined as a static window. Drones
with heterogeneous capabilities, in their endurance, compute
capabilities and sensors, will also be relevant for performing
diverse activities such as picking up a package using an on-
board claw and visually verifying it using a DNN.

Lastly, we can examine the impact of runtime conditions in
rescheduling. E.g., changing winds may affect the energy use,
while changing application needs may make some scheduled
waypoints unnecessary or require us to increase their data cap-
ture times. It would be interesting to study online scheduling
to complement batch scheduling, where additional activities
can be submitted when a drone is on a scheduled trip.

IX. CONCLUSION

In this paper, we have introduced a novel Mission Schedul-
ing Problem (MSP) to co-schedule routes and analytics for
a fleet of homogeneous drones, for maximizing the utility
obtained from completing activities. We propose an optimal
mixed integer linear programming (MILP) implementation,
OPT, and design two time-efficient heuristic algorithms, JSC



and VRC, to solve MSP. Our detailed evaluation for two
workloads, varying drone counts and load factors shows that
these offer different trade-offs on utility and execution time,
with OPT best for ≤ 20 activities and ≤ 5 drones, VRC
for ≤ 100 activities and ≤ 50 drones, and JSC for > 100
activities. Their time complexity matches reality. We also see
that improving the load factor favors VRC, with a higher utility
and good activity scheduling rate. The schedules work well for
fast and slow DNNs, though on-time utility drops for the latter.
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