
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

1
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Internet of Things (IoT) deployments have been growing manifold, encompassing sensors, networks, edge, fog
and cloud resources. Despite the intense interest from researchers and practitioners, most do not have access
to large-scale IoT testbeds for validation. Simulation environments that allow analytical modeling are a poor
substitute for evaluating software platforms or application workloads in realistic computing environments.
Here, we propose VIoLET, an emulator for defining and launching large-scale IoT deployments within cloud
VMs. It allows users to declaratively specify container-based compute resources that match the performance
of native IoT compute devices using Docker. These can be inter-connected by complex topologies on which
bandwidth and latency rules are enforced. Users can configure synthetic sensors for data generation as well.
We also incorporate models for CPU resource dynamism, and for failure and recovery of the underlying
devices. We offer a detailed comparison of VIoLET’s compute and network performance between the virtual
and physical deployments, evaluate its scaling with deployments with up to 1000 devices and 4000 device-cores,
and validate its ability to model resource dynamism. Our extensive experiments show that the performance of
the virtual IoT environment accurately matches the expected behavior, with deviations levels within what is
seen in actual physical devices. It also scales to 1000s of devices, and at a modest cloud computing costs of
under 0.15% of the actual hardware cost, per hour of use, with minimal management effort. This IoT emulation
environment fills an essential gap between IoT simulators and real deployments.
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1:2 Baheti, Badiger and Simmhan

1 INTRODUCTION
The Internet of Things (IoT) is expanding rapidly as diverse domains deploy sensors, communication
networks, and gateway infrastructure to support applications such as smart cities, personalized
health and autonomous vehicles [1–3]. Such Cyber-Physical Systems (CPS) are also accelerating
the need for, and the use of edge, fog and cloud resources, in a coordinated manner [4]. Edge gateway
devices such as Raspberry Pis and smart phones have non-trivial resource capabilities, and can run
a full Linux stack on 64-bit ARM processors. Fog devices such as NVidia’s TX1 and Dell’s Edge
Gateways have power-efficient Atom processors or low-end GPUs to coordinate and complement
the capabilities of edge devices [5]. The need for such resources comes from the availability of large
volumes of IoT sensor streams that have to be analyzed closer to the edge to conserve bandwidth
(e.g., video surveillance), or for processing data streams with low latency (e.g., smart grids) [6, 7].
At the same time, captive edge and fog devices do not have the seemingly infinite on-demand
resource capacity of the cloud, which is necessary for scalable processing by some IoT applications.

Production deployments of IoT are seen as part of smart city utilities, intelligent transportation
and personalized healthcare [8]. Here, edge and fog devices, along with sensors and actuators, are
deployed as part of the physical infrastructure by the city, by service providers or by consumers, and
this will accelerate as 5G communication gets rolled out [9]. At the same time, there is also active
research at the intersection of IoT, CPS, and edge, fog and cloud computing that is investigating
application scheduling, resiliency, big data platforms, and so on [10, 11]. However, a critical gap is
the ability to validate these deployments at-scale before they go on the field, or to verify the research
outcomes on real or realistic IoT environments. Simulation environments make many idealized
assumptions and do not allow actual applications to be deployed [12–15]. Access to large-scale IoT
testbeds with 100s of edge and fog resources (let alone 1000s present in a city) is limited, given
the high cost and the overheads for maintenance and customization. Manually launching and
configuring containers for virtual IoT deployment is time-consuming and error-prone.
At present, there does not exist any virtualized IoT environment that emulates the computing

and network ecosystem of a real deployment without the need to purchase, configure and deploy
the edge, fog and networking devices. Such a “cyber” environment is often common to many
CPS domains. Here, we propose VIoLET, a Virtual Environment for validating Internet of Things at
Large-scales. VIoLET is not a simulator but an emulator that allows real software to execute and real
data to flow through the network links. The VIoLET Virtual emulation Environment (VE) offers
several essential features that make it valuable for CPS researchers and planners.

(1) It emulates realistic compute resources comparable to edge, fog and cloud resources present in
IoT deployments using virtualized containers, and includes models for resource dynamism
and device failures.

(2) It allows the easy definition of diverse network topologies, and imposes bandwidth and latency
limits between containers.

(3) VIoLET supports virtual sensors that generate data with various distributions within the
containers, and can interface with external physical system simulators, mimicking local
sensing devices.

(4) It can actually run real applications and platforms for software evaluation and validation.
(5) It runs on top of cloud VMs or commodity clusters, allowing it to scale to 1000s of devices,

provided cumulative compute capacity and network bandwidth is available on the host
machines.

(6) Lastly, the VE is reproducible, allowing accurate comparisons between systems and “what if”
validation.
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Besides its novel use of container-technology, VIoLET also proposes placement strategies for con-
tainers to VMs to efficiently pack devices. These help set up a validation environment that matches
the behavior of city-scale IoT deployments in a fast, reproducible and cost-effective manner. VIoLET
is the first emulation environment to enable such validation of IoT, edge and fog computing.
This article significantly extends our previous work [16] by including support for models of

CPU dynamism, and of device failure and recovery (Section 3.5). It also includes substantially more
detailed experiments that have been completely rerun on Microsoft Azure VM, and additionally
reports micro-benchmarks on the physical devices and host VMs (Section 4.1), compares VIoLET
against a real-world IoT deployment (Section 4.2), scales the VE to 1000 devices and > 4000
device-cores (Section 4.3), and validates the dynamism and reliability features as well (Section 4.4),
besides detailed Appendices with supplementary statistics. The updated VIoLET v1.2 is available
for download from https://github.com/dream-lab/VIoLET.
The rest of this article is organized as follows. We motivate various requirements for VIoLET

in Section 2, describe its architecture design that meets these requirements, along with its imple-
mentation, in Section 3, present detailed results on deploying and scaling VIoLET for different IoT
topologies in Section 4, compare it with related literature and tools in Section 5, and finally present
our conclusions and future work in Section 6.

2 DESIGN REQUIREMENTS
Here, we present the high-level requirements for a Virtual emulation Environment (VE) like VIo-
LET, based on the needs of researchers and developers of applications, platforms and runtime
environments, for IoT, CPS, edge, and fog resources.

Compute environment. The VE should provide the ability to configure computing resources
that capture the performance behavior of heterogeneous IoT resources, such as edge devices, gateways,
fog and even cloud resources. Key resource capabilities to be controlled include CPU rating, memory
and storage capacity, and network. Further, the environment should be able to host software and
applications within these resources [17, 18]. Virtual Machines (VM) have traditionally offered
such capabilities, but are too heavy-weight for the resource-constrained and plentiful IoT devices.
Containers are much more light-weight and provide similar capabilities as VMs. One downside is
the inability to change the underlying Operating System (OS) as it is coupled with the Linux kernel
of the host machine. However, we expect most IoT devices to run a flavor of Linux.

Networking. Communication is central to CPS, and the networking layer is sensitive to various
deployment limitations on the field. Wired, wireless and cellular networks are common, each
with different bandwidth and latency characteristics [18–20]. There is also a distinction between
local and wide area networks, and public and private networks – the latter can limit the visibility of
devices to each other due to firewalls. These affect the platforms and applications in the computing
environment, and can decide who can connect to whom and if an indirection service is required.
The VE needs to capture such diverse network topologies and performance behavior, to evaluate
common application-layer IoT protocols such as MQTT, Constrained Application Protocol (CoAP),
etc.

Sensing and Data Streams. Sensors (and actuators) form the third vital component of IoT.
These are often connected to the edge computing devices by physical links, ad hocwireless networks,
or may even be on-board the device. They form the source of the distributed, fast-data streams
that are intrinsic to IoT deployments. The VE should provide the ability to simulate the generation
of sensor event streams with various sampling rates and distributions at the compute devices for
consumption by hosted or even remote applications [18]. These sensors should also be able to
interface with external physical system simulators [21, 22] to complement the “cyber emulation”
with “physical co-simulation” to support different CPS applications [18].

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Application Environment. IoT, edge and fog computing runtime and applications should be
able to execute on the virtual devices and network. Such IoT middleware, platforms and applications
are often pre-loaded and pre-configured on the devices so that potentially 1000s of devices do
not have to be reconfigured across the wide area network. The VE should allow such platforms
and applications to be pre-deployed and ready-to-use to validate their performance and even
security [17, 19, 23]. Users should not be forced to individually configure each compute resource,
though they should have the ability to do so if required.

(Un)reliability and Dynamism. Cyber-resources in the real-world do not behave identically
to their theoretical performance ratings and exhibit resource variability. Similarly, devices and
networks are prone to failures due to the commodity nature of IoT resources [20]. Since service
providers may manage these, failed resources may also be able to recover based on the Service
Level Agreement (SLA) offered. These factors are important since we may need to validate the
IoT middleware or applications upon such variations on the field. The VE should capture resource
dynamism, failure and recovery, with diverse models that can be plugged-in based on the actual
devices and the SLA.

Scalable. IoT deployments can be large, with 1000s of devices and sensors present in 100s of
private and public networks with complex topologies [20, 23]. A VE should be able to scale to much
large deployments with minimal resource and developer overheads. Simultaneously, these devices
offer a real computing environment that requires underlying compute capacities to be available on
the host machine(s). Hence, the VE should weakly scale as long as the underlying infrastructure
provides adequate cumulative compute and network capacity for all the devices. The use of elastic
cloud resources as the host can enable this.

Reproducible. Simulators limit resource realism and the ability to run real applications, but
offer accurate reproducibility of runs. Physical deployments are hard to get access to and suffer
from transient variability that affects reproducibility. A VE should offer a balance between running
applications within a realistic deployment while being reproducible at a later point in time [23].
This also allows easy sharing of deployment recipes for accurate comparisons.

Cost-effective. Clouds offer a lower cost per compute unit due to economies of scale at data
centers and can be leased. But IoT devices, while being commodity devices, are costlier to purchase,
deploy and manage on the field or even in the lab, and are capital rather than an operational
expense. VEs must match the IoT deployment’s resource performance but at a cheaper compute
cost [18, 19, 23]. They should offer a pay-as-you-go model that can be deployed on-demand and
released after completing an experiment or validation.

Ease ofDesign andDeployment. Users should be able to configure large IoT deployments with
ease, and have them deploy automatically and rapidly [23]. It should be possible to both compose
realistic real-world topologies or automatically generate synthetic ones for testing purposes.

3 ARCHITECTURE
We first give an overview of VIoLET’s architecture and our high-level approach, and subsequently
discuss individual components and novel aspects of the design. Fig. 1 shows the top-level architecture
of our framework. Users compose their IoT VE topology as a set of JavaScript Object Notation
(JSON) configuration documents (Appendix A) that declaratively capture their requirements. A
device_types.json document lists the available devices, their types (e.g., Raspberry Pi 3B, NVidia
TX1) and their resource performance and reliability. A sensor_types.json document provides
the virtual sensors and their configurations that are present. The network configuration document,
infra_gen.json, defines the number of private and public networks and their topology, the
numbers and types of devices and sensors present in a network, and the applications hosted on each.
Lastly, the deployment document, infra_config.json, provides the actual runtime mapping from

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.
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devices to networks, binds them to IP addresses and subnets, and specifies their bandwidths and
latencies. The deployment documents can be automatically generated by visually composing the
IoT topology using a WebGML interface, manually specified by the user, or synthetically generated.
The latter allows users to quickly launch sample synthetic deployments with minimal specification
and reduce the time for validation.
The VIoLET admin service takes these documents and determines the number of cloud VMs

of specified configurations necessary to host the device containers, with cumulative resources
equivalent to the required number of devices. It also decides the mapping from devices to VMs while
meeting the compute/memory/disk capacity of the devices, and the network bandwidth and latency
needs of the topology, relative to what is made available by the host VMs. The user provides details
of the available VM types for making these resource provisioning decisions in vm_types.json, and
the specific VM instances for performing the deployment in vm_instances.json (Appendix A).
During the deployment, containers are configured and launched for each device on these VM

instances using Docker, and inter-connected through an overlay network. This allows different
private and public networks to be created in the VE. Further, Traffic Control (TC) and Network
Address Translation (NAT) rules are set in each container to ensure that the requested network
topology, bandwidth and latency limits are enforced. If specified, virtual sensors are then started on
each device and their streams made available on a local network port in the container. Application
environments or startup scripts are also configured or launched, if defined.

After this, VIoLET returns a deployment_output.json document to the user with details of the
mapping from the logical device names in their deployment document to the matching container’s
physical device IPs, and the VMs on which the containers are placed on. Users can access these
devices using the Docker exec command. Further, the port numbers at which various logical sensors
streams are available on each device are also reported to the user in this JSON document. Together,
these give full access to the deployed runtime environment to the user.
If the devices are configured with dynamism and reliability models, then the VIoLET admin

service periodically samples from these distributions and modifies the resource behavior of the
devices, terminates device containers to simulate faults, or restores terminated devices based on
the recovery model.

Next, we examine these various activities and strategies in detail.

3.1 Compute Devices
Containers are emerging as a light-weight alternative to VMs for resource partitioning and multi-
tenancy within a single host. They use Linux kernel’s cgroups feature to offer the benefits of
a custom software environment (except the OS kernel), and resource allocation and isolation,
while having trivial overheads compared to VM hypervisors. They are well-suited for fine-grained
resource allocation and software sand-boxing among trusted applications.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.
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1:6 Baheti, Badiger and Simmhan

Computing devices in VIoLET are modeled as containers and managed using the Docker automa-
tion framework. There are four parts to this: resource allocation and mapping, network configuration,
software configuration, and management of dynamism. The first three are done once at deployment
time, and the last continues to occur while the deployment is active. Docker allows resource
constraints to be specified on the containers [24]. We use this to limit a container’s capacity to
match the CPU and memory available on a native physical device. We perform CPU benchmarks
on the native devices and the host (virtual) machines to decide the compute allocation, and use
their memory and disk capacities as additional constraints. The commonly used CoreMark® [25]
benchmark is currently supported for an Integer-heavy workload, whileWhetstone [26] or other
benchmarks like LinPack [27] are possible future alternatives for floating-point heavy applications.
One subtlety is that while we use the multi-core benchmark rating of the device for the CPU scaling,
this may map to fewer (faster) cores of the host machine. VIoLET pre-defines several common
devices such as Raspberry Pi edge and NVidia Jetson fog devices, and others can be easily added.
Users can also specify the local disk storage capacity available to applications running in the

container of a particular device type. We enforce this using the pquota module in Linux. However,
the contents of the device’s file system are only available when the container is running and
not visible when the container is terminated. So, as a convenience, we allow users to specify a
shared external directory on the VM that is mounted on the device for data persistence beyond the
container’s lifecycle, and for file-based access by external devices and applications. The configuration
of network capabilities are discussed in Section 3.2.
Users also define the application software environment for their devices using a Docker image

file (Dockerfile) that lists the software dependencies and other initialization parameters. This can
be provided for each device type. Public Docker repositories have existing images for standard
IoT middleware, platforms and applications (e.g., Eclipse Californium CoAP, Microsoft IoT Edge,
RabbitMQ, EdgeXFoundry). VIoLET itself has minimal dependencies within a container for its
framework configuration. This approach is similar to specifying a VM image, except that the users
are limited to the host device’s Linux kernel OS 1. Hence, defining a compute device in VIoLET
requires associating a device type for resources and a device image for the software environment.

3.2 Network Topology
Users describe the network topology for the devices based on three aspects: the public or private
networks the device is part of; the visibility of devices to each other as enforced by firewalls; and the
bandwidth and latency between pairs of devices. IoT networks are usually composed of numerous
private networks that interface with each other and the public Internet through gateways. We
allow users to define logical private networks and assign devices to them. For devices with multiple
Network Interface Cards (NICs), each can be on a different network. Users can specify the IP ranges
of these devices, and the subnet of the network. Each private network has a gateway device defined,
and all traffic to/from devices in this subnet to external networks is routed through it. All gateway
devices are part of one or more public networks, besides other devices that may be present on those
public networks. E.g., a Raspberry Pi 3B+ has a Local Area Network (LAN) and a WiFi interface,
and each can be part of its own network, say, one public and one private if it is a gateway.

By default, all devices in a private network are visible to each other, and have a common latency
and bandwidth specified between pairs of devices; and similarly for all devices connected to a
public network. Devices on different public networks can also reach each other and access the
public Internet. However, users can override this visibility between any pair of devices or to the

1Docker recently introduced support for Windows and Linux containers hosted on Windows Server using the Hyper-V
hypervisor. But this is more heavy-weight than Linux containers, and not used by us currently.
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Internet and this is directional, i.e., D1→ D2 need not imply D1← D2. These capabilities allow
users to model the presence of firewalls and other network restrictions that are seen in real-world
IoT deployments.
We implement the bandwidth and latency between devices using Traffic Control (TC) rules

offered by Linux’s iproute2 utility, and the network service that we start on each container using
systemd [28]. Here, every unique bandwidth and latency requirement gets mapped to a unique
virtual Ethernet port (eth), and the rules are enforced on it. This Ethernet port is also connected to
the bridge corresponding to the (private or public) network that the device belongs to. The bridges
physically group devices that are on the same network, and also logically assign a shared bandwidth
and latency to them. All devices on public networks are also connected to a common docker-0
bridge for the VM they are present on, and which allows all-to-all communication between devices
in the public networks, by default. Restricting the routing of traffic in a private network to/from
the public network through its gateway device is enacted by ip commands and NAT rules. These
rules redirect packets from the Ethernet port connected to the private network, to the Ethernet
port connected to the public network. VIoLET fully automates these.

E.g., Fig. 2a shows a sample network topology specified by the user, and Fig. 2b the corresponding
Ethernet ports and bridges configured by VIoLET to enact this. Here, the edge devices E1.1 and
E1.2 are part of the private network PVT-1, with the fog device F1 as a gateway, and likewise E2.1,
E2.2 and F2 form another private network, PVT-2. The bandwidth/latency within these private
networks is uniform: 100Mbps/0.5ms for PVT-1, and 75Mbps/1ms for PVT-2. These are enforced
on the Ethernet port (e0, e1, e2 in Fig. 2b) connected to each bridge (yellow boxes). F1 and
F2 fog devices further form a public network PUB-1 along with the cloud resource, C1, with a
bandwidth/latency of 40Mbps/100ms. Similarly, the two cloud devices form another public network
PUB-2, with 100Mbps/100ms. All these devices are on a single VM, and the public devices are also
connected to the docker-0 bridge for that VM. While the edge devices are connected to a single
overlay network, the fog and cloud devices can be connected to multiple overlay networks, based
on their bandwidth and latency requirements.
The Docker daemon running on a host allows us to define connectivity rules and IP addressing

of containers present within that host machine using custom bridges. However, devices in VIoLET
can be placed on disparate VMs and still be part of the same private network. Docker’s existing
Swarm Mode capability does not give us the flexibility to enforce fine-grained network and system
parameters. Instead, we create a standalone basic container (“swarm classic”) and define custom
Docker overlay networks for communication between Docker daemons on different VMs [29]. For
this, the host machines must be able to access a shared key-value store that maintains the overlay
networking information and is queried by the Docker daemon on each VM for network routing.
VIoLET uses the Consul discovery service as the key-value store, which is hosted in a separate
container on an admin VM.
In summary, the Docker bridges and overlay network allow global routing across containers

and VMs they are hosted on; the different Ethernet ports and NAT rules on them manage more
fine-grained routing and network visibility between devices on different networks; and the TC
rules on the ports enforce bandwidth and latency limits. As can be seen, configuring the required
network topology is complex, time-consuming, and can be error-prone – if done manually for each
IoT deployment. VIoLET helps translate the simple declarative document of the network topology
provided by the user, and performs the heavy-lifting to define the overlay networks, eth interfaces,
and the NAT and TC rules required to enact them. While some IoT deployments operate on ad hoc
wireless networks where packet drops and signal attenuation need to be modeled, this is currently
outside the scope of our work and may require us to interface with a network simulator such as
ns-3 [30] or an emulator like mininet [31].
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3.3 Virtual Sensors
Edge devices are frequently used to acquire IoT sensor data over hardware interfaces like serial,
UART or I2C, and make them available for applications and middleware to process locally and/or
transfer to the cloud. Experiments and validation of IoT deployments require access to such large-
scale sensor data. To enable this, we allow users to define virtual sensors that are collocated on the
device containers. These virtual sensors simulate the generation of sensed events and stream them
at a local network port of the device container, which acts as a proxy for a hardware interface to the
sensor. Applications on that or a remote device can connect to this port, and read the observations
for processing, as required.

A device can have multiple sensors, and we support various configuration parameters for these.
The values for the sensor measurements themselves may be provided either as a text file with
real data collected from the field, or defined as a statistical distribution, such as uniform random,
Gaussian and Poisson, from which we sample and return synthetic values. In addition, the rate at
which these values change or the events are generated is also specified by the user. Here too, we
can set real relative timestamps or a distribution for the inter-event interval.

We implement the virtual sensors as a micro-service that is launched on each container as part of
its startup. It is implemented in Python using the Flask micro-services framework and the Gunicorn
Web Server Gateway Interface (WSGI) application server. The service pre-fetches, or generates
and caches, the observations for the different virtual sensors for that device based on the specified
values or distributions. When a client connects to this service and requests an observation for a
sensor, the service returns the current reading for it based on the observed timestamp. For simplicity,
this is reported as a Comma Separated Value (CSV) string consisting of a user-defined logical sensor
ID, the observation timestamp and a sensed value, but can be easily modified. Access to the sensors
by concurrent clients is also supported.
Notably, users can also provide their own implementation for the virtual sensor micro-service.

The service can push events to an application instead of having it pulled. It can also interface with
an external discrete-event physical systems simulator [21, 22] to provide events from the simulator
to applications within the VIoLET containers accessing this virtual sensor. As future work, this can
be extended to interface with actuation signals as well.

3.4 Resource Mapping and Deployment
A VIoLET service hosted on an admin VM receives the user’s deployment documents as a REpre-
sentational State Transfer (REST) request and enacts the deployment on other VMs in that data
center (Fig. 1). Both Microsoft Azure and Amazon EC2 VMs are supported natively, and this can
be trivially extended to other cloud providers or even a private cluster. To ensure the accurate
performance behavior of the virtual emulation environment, we perform intelligent allocation
of VM resources to a container and the mapping of containers to VMs to satisfy the deployment
requirements.

Several factors affect these decisions. The containers represent compute devices, and the resource
capacity of a container needs to be met by the underlying host VM or machine. At the same time,
multiple containers can (and should) run on a single VM to allow it to be fully utilized and be
cost-efficient, but without overwhelming the CPU, memory or disk capacity of the VM. Likewise, the
bandwidth and latency between VMs are bounded, and we need to consider the network capacity
required between containers on different VMs during their placement. Further, the bandwidth (or
latency) required between containers can exceed (or be smaller than) that across VMs. In such
cases, we need to consider placing these containers on the same VMs since the intra-VM bandwidth
(latency) is much higher (lower) andmaymeet the requirement. Intuitively, this is a form of mapping
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the IoT deployment graph, with devices forming vertices and edges the network connections, onto
the data-center graph where VMs are vertices forming a clique, such that the compute and network
needs of the former are met by the latter.
We address these constraints by using a graph partitioning strategy. Here, we label the vertices

of the deployment graph with the device’s CPU, memory and disk requirements, given as CPU
benchmark metrics (e.g., iterations/sec for CoreMark), and GBs of RAM and disk capacity. These
three form a vector of weights for the vertex. An edge exists between vertices if a source device
can connect to a sink device, and this is weighted with the bandwidth required that network link.
E.g., devices in a private network will form a clique, while there will exist edges between gateway
devices from different private networks and with devices in the public network that are visible to
each other.
We then make an optimistic estimate of the minimum number of VM instances we require of a

given VM type. This is done by adding the vertex weights for CPU, memory and disk separately,
and dividing each by the corresponding capacity of the VM type, and rounding up the largest of
these values. This is the least theoretical number of VMs, say n, of a given type needed to meet the
resource needs of all devices in the deployment.

Using this as the initial resource allocation, we map devices to the VMs by partitioning the device
graph across these n VM hosts. We use gpmetis [32] for this, with the goal of balancing the three
vertex weights (CPU, memory, disk usage) across the hosts and minimizing the sum of edge cuts
(bandwidth usage) between hosts. This tries to collocate devices with high bandwidth inter-connects
on the same host, while spreading the CPU, memory and disk requirements across VMs.

While CPU, memory, disk and network bandwidth are cumulative metrics (they increase as more
containers are placed on/across VMs), latency is an independent metric (it can either be met or not).
We perform the following checks to see if the partitioning gives a valid solution. We check if the
sum of resource needs of all devices assigned to a VM is less than or equal to its respective resource
capacities (CPU, memory, disk); if the sum of the bandwidths on the edge cuts between devices in
each pair of VMs is within the available bandwidth capacity between the VMs; and if the latency
required between any pair of connected devices is greater than the latency possible between the
VMs that these devices are placed on. If these constraints are not satisfied, we increment n by 1 and
repeat the partitioning using one more VM, and so on till we get a correct solution.

It may not be possible to meet the bandwidth or latency required between a pair of devices in a
network in the deployment document by placing them across two VMs. E.g., the inter-VM bandwidth
between two Azure D16 v3 VMs is seen at 7.2 Gbps and the latency at 0.54 ms, while for two
containers on a single VM, the intra-VM bandwidth is 44.6 Gbps and the latency is 0.04 ms. So, as
an additional optimization to achieve a feasible mapping, we “pin” all the devices of a private/public
network, which have a greater bandwidth or smaller latency requirement than possible between
two VMs, onto a single VM. This is done by replacing the vertices for those devices in the graph with
a single meta-vertex that represents the entire network, and which has the sum of their resource
requirements as its weights.

This greedy mapping tries to minimize the number of VM resources while ensuring that we meet
the CPU, memory, disk, bandwidth and latency requirements of the deployment. A valid mapping
may be infeasible if individual bandwidth, latency or resource requirements are more than what is
supported on a single VM. If so, VIoLET will report this and a larger VM type has to be provided.

3.5 Resource Dynamism and Reliability
Real-world devices and networks suffer from variability in their performance relative to their
theoretical rating. As we show later in the experiments for a 25-device physical IoT deployment
(D25, Section 4.2), this dynamism is manifest in the performance of the CPU, network bandwidth
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and latency 2 Such variability can cause the performance of the applications to be affected or
cause the IoT and edge/fog middleware to respond, say, by rescheduling tasks to meet certain QoS
guarantees [33]. Similarly, the devices and network links between them can fail due to the vagaries
of field deployments and the equipment’s commodity nature. Depending on the SLA offered by
the IoT service provider, the devices may recover as well, say, using a standby device or manual
intervention. VIoLET allows users to capture a subset of these dynamism and reliability scenarios.

3.5.1 CPU Dynamism. We offer users the ability to define a model for CPU dynamism. As
part of the device type specification, they can indicate the peak CPU variability, δ , which is the
fraction by which the CPU performance can drop below its theoretical rating ω, e.g., given by
the peak CoreMark value for that device. While we can have different distributions to model the
variability, for simplicity, we assume a uniform distribution of the CPU speed between the range
[(1 − δ ) × ω, ω]. The user also specifies a variability period π , which is the time interval between
which the CPU speed may change based on this distribution.

We coordinate the changes in CPU variability from the admin service. Importantly, this perfor-
mance distribution is independent for each device, and the period is independent as well. So we
must not change the performance for all the devices simultaneously. Hence, we introduce a control
interval ϵ ≪ π at which we probabilistically change the CPU speed for a subset of the devices. If n
is the total number of devices of a particular type, at each time interval ϵ , we select ϵ

π × n of the
devices with equal probability, and for each of these, change their CPU speed to a value between
[(1 − δ ) × ω, ω], with uniform probability. We use Docker’s ability to update the CPU rating for a
container to enact this change, on the fly, without stopping the container.

While other forms of dynamism exist, such as network bandwidth and latency, these can leverage
a similar decision-making model and be enacted using the respective capabilities. We leave these to
future work.

3.5.2 Device Reliability. We allow users to define the Mean Time to Failure (MTTF) and Mean
Time to Recovery (MTTR) for each device type. As is the usual definition, MTTF is the expected
time taken by a device to fail since it was deployed/recovered. Similarly, MTTR is the expected
time to fix the device and restore it, after it has failed. Setting MTTF to ∞ means that a device
never fails, and setting MTTR to ∞ indicates that a device failure is permanent and it will not
come back online. Formally, given the MTTF, µ, and MTTR, λ, for a device type, and a control
interval ϵ ≪ µ and ϵ ≪ λ, as before, the VIoLET admin service performs independent and uniform
sampling of a subset of running devices n of a given type to select ϵ

µ × n of them to terminate at
each control interval. Similarly, it also selects a subset of all failed devicesm of that type, ϵλ ×m,
with equal probability which will be restored. There are other forms of failures that are possible,
such as network link failure or packet corruption, which we leave to future work.

3.6 Usability
Besides the command-line access to launching VIoLET deployments, we also define a Domain
Specific Modeling Language (DSML) for defining the IoT devices and network topology of a
deployment. This DSML uses theWeb-based Generic Modeling Environment (WebGME) [34] that
allows visual composition of the topology from the browser. Once composed, our VIoLET compiler
generates the relevant JSON files from the DSML composition. This makes the deployment definition
interactive and eases the definition of even complex IoT topologies. Fig. 12a in Appendix B shows a
screenshot of configuring a private network with 20 devices using this interface.

2While these may also impact the performance of memory and disk I/O, we consider these resources more as capacity
rather than performance limitations.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.



491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

VIoLET: An Emulation Environment for Validating IoT Deployments at Large-Scales 1:11

Table 1. Expected performance of Devices (top) and VM hosts (bottom) used in the deployments

Device Cores⋆ Speed⋆ CoreMark† Mem. (GB)⋆ Disk (GB)⋆ BW (Mbps) Lat. (ms)† US$

Pi 2B 3 4 900 MHz 11,557 1 1 ⋆LAN: 100 0.6 50
Pi 3B 4 4 1.2 GHz 15,457 1 1 ⋆LAN: 100 0.6 50

Pi 3B+ 5 4 1.4 GHz 17,888 1 1 ⋆LAN: 300 0.5 50
⋆WAN: 300 1.3

NVidia Jetson TX1 6 4 1.9 GHz 7 27,070 4 4 ⋆LAN: 1,000 0.7 499
⋆WAN: 867 8 8.7

Softiron 3000 9 8 2 GHz 77,739 16 16 ⋆LAN: 10,000 0.2 2,400
Azure D16 v3 VM 10 16 2.3 GHz 163,767 64 400 †Inter: 7,373 0.54 0.84/hr

†Intra: 45,670 0.04
Azure D32 v3 VM 32 2.3 GHz 301,269 128 800 †Inter: 15,930 0.58 1.68/hr

†Intra: 47,897 0.04
Azure D64 v3 VM 64 2.3 GHz 598,261 256 1,600 †Inter: 17,749 0.54 3.36/hr

†Intra: 52,300 0.02
⋆ Based on device specifications. † Based on 99th percentile observed during device micro-benchmarks in Fig. 3a.

VIoLET also offers a portal to start and manage the deployment of a VE, designed using the
Angular framework. It executes a series of Flask micro-services in the admin VM that enact the
various stages of the deployment pipeline, such as (optionally) generating a synthetic deployment
from high-level specifications, defining the mapping and placement, starting the Docker containers,
instantiating the sensors, and (optionally) running benchmarks to validate the deployment. It also
provides simple visualization capabilities about the container placement on VMs and resource
usage. Fig. 12b in Appendix B shows a screenshot of using this UI to monitor the partitioning and
mapping phase of the deployment for a 25-device setup.

4 EVALUATION
We offer detailed experiments to validate the efficacy of VIoLET, and specifically focus on its
accuracy in reproducing the performance of the specified devices and network topology, and its
scalability. Table 1(top) summarizes the different edge and fog devices used in our deployments.
We use three generations of Raspberry Pis as edge devices as they are one of the most popular

gateways for IoT deployments. The Pi 2B (released in 2015) has 4 × 900 MHz ARM A7 32-bit CPU
cores, while the Pi 3B (2016) and Pi 3B+ (2018) have 4 ARM A53 64-bit cores rated at 1.2 GHz
and 1.4 GHz, respectively. All three have 1 GB RAM, and 1 GB of nominal disk space for user
applications. In addition, we have two fog-class devices – an NVidia Jetson TX1 with 4 × 1.9 GHz
ARM A57 64-bit cores 11 and 4 GB RAM, and a Softiron Overdrive 3000 server (SI) with an AMD
A1100 CPU having 8 × 2 GHz ARM A57 64-bit cores and 16 GB RAM. All these devices have
on-board LAN Ethernet ports rated at between 100 Mbps – 10 Gbps. The Pi 3B+ and TX1 have
an additional WiFi interface on-board that allows them to be part of two networks, with one
interface connected to the LAN and the other to the Wide Area Network (WAN). While these are
3https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
4https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
5https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
6https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
7https://devblogs.nvidia.com/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines/
8http://images.nvidia.com/content/tegra/embedded-systems/pdf/JTX1-DevKit-Product-sheet.pdf
9https://softiron.com/wp-content/uploads/2015/11/SoftIron-Overdrive-3000-Data-Sheet-Final.pdf
10https://azure.microsoft.com/en-in/pricing/details/virtual-machines/linux/
11While the TX1 has an on-board GPU, we currently do not expose it as part of the container due to technology limitations,
and it is planned for future work.
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Fig. 3. Micro-benchmarks measuring peak performance on physical devices and VMs. Green labels indicate
the 99th percentile peak performance – highest value for CPU and bandwidth, and lowest for network latency.
A blue label at the top indicates the maximum value of the whisker, if truncated.

the device ratings, the network behavior also depends on the network switch they are connected
to, as discussed for relevant experiments. E.g., when using 1 Gbps switches for the LAN, the SI only
offers a bandwidth of 1 Gbps and not the 10 Gbps of its NIC. These devices are also configured with
a nominal available user disk space in our experiments. The Pis cost ≈ US$50 for a working device,
the TX1 development kit costsUS$499 and the SI server costsUS$2, 400, at the time of purchase.
We use Microsoft Azure’s VM instances as our host machines for deploying VIoLET. We use

three different VM types to offer the best price to performance ratio for the different deployment
capacities we attempt. All are part of the Standard D v3 series deployed in the Central India data
center. The D16, D32 and D64 VMs have 16, 32 and 64 CPU cores each, running Intel Xeon E5-2673
v4 at 2.3 GHz, with 64 GB, 128 GB and 256 GB of RAM, respectively. While Microsoft provides
an expected network speed for these VMs of 8, 16 and 30 Gbps 12, we use micro-benchmarks
to empirically estimate their observed performance. The bandwidth and latency, both intra-VM
between containers on the same VM, and inter-VM between multiple VMs, are measured and
reported. This gives a more accurate estimate of the available network capacity that is used during
resource mapping. In our earlier study [16], we have use similarly-sized Amazon EC2 VM instances,
and the results are comparable.

4.1 Micro-benchmarks
While some of the device and VM performance metrics are part of their data-sheets, others need
to be micro-benchmarked to find their baseline performance. Also, specifications like the CPU
clockspeed and cores have to be translated to their practical application performance for comparison.
Lastly, there are some limitations on the possible combinations of bandwidth and latency that
are valid for a given network link. Here, we offer detailed micro-benchmarks to evaluate these
baseline parameters missing from data-sheets, before discussing different VIoLET deployments.
Such micro-benchmarks take a few hours to run per device, and are also performed on each new
IoT device or new VM type that VIoLET needs to support in its deployment configuration.

CPU Benchmarks. CPU clockspeeds cannot be used to uniformly compare application per-
formance across processor types or architectures. Instead, we express the CPU performance of
the devices and the VMs using the CoreMark benchmark [25]. CoreMark internally implements
standard algorithms such as list and matrix operations, stream processing and CRC using ANSI
C, in an architecture and library independent manner that is reproducible across embedded and
server-class CPUs. Specifically, we use it to understand the peak performance for each of these

12Microsoft Azure General purpose virtual machine sizes, https://docs.microsoft.com/en-us/azure/virtual-
machines/linux/sizes-general
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compute resources in order to provision adequate capacity, and also examine their deviation from
the expected CPU performance later on.

The CoreMark benchmark is compiled on each of the devices and VMs to run in a multi-threaded
mode, with as many threads as the number of CPU cores. We run the benchmark in a continuous
loop for 1 hour on multiple instances of each device type and an instance of each Azure VM type.
We perform about 100–300 CoreMark runs per device and VM type, and report their scores as a
Box and Whiskers plot in Fig. 3a. We also label the top 99th percentile score for each device/VM
type, and use this value as the “ideal” or expected peak CPU performance for that resource (see
CoreMark column in Table 1).

The CoreMark trends are similar to what is expected from the respective CPUs and the number of
cores. The three types of Pis have a 99th percentile CoreMark score between 11.56k to 17.89k . The
Pi 2B has an older ARM architecture, while the 3B and 3B+ vary only in their clock speeds. In fact,
the ratio of the clockspeeds of 3B and 3B+ match the ratio of their CoreMarks. The TX1 has a newer
and faster ARM processor than the 3B, and has a score of 27.07k . All these devices have 4 cores.
The Softiron is a low-end server, and its AMD CPU based on the ARM architecture is much faster
and has 8 cores, resulting in a score of 77.74k . The three VM types we use as the host machines run
server-grade Intel CPUs and have a higher per-core performance. They also exhibit fairly linear
scaling with the number of cores. The D16, D32 and D64 VMs have 99th percentile scores of 163k ,
301k and 599k . The scores from all runs on a device type fall within a narrow band, indicating that
these are predictable and reproducible. So we expect low variability and deterministic compute
performance from these devices and VMs.

Latency Benchmarks. Latency values are not typically given as part of device or VM specifi-
cations. Hence, we need to rely on empirical measurements. Latency is also affected by the two
devices that communicate with each other and the network switch they pass through. We measure
the latency distribution for the LAN and Wireless LAN (WLAN) network interface for each device
and VM, as applicable, and report the 99th percentile smallest value as the lower bound of the
expected latency for the resource.
For the physical devices, we use the network topology described later for the D25 setup in

Section 4.2 and Fig. 5. Here, the Pi 2B and 3B use their LAN ports, the Pi 3B+ is connected to two
separate networks using its LAN and WLAN ports, respectively, and the TX1 is connected using its
WLAN port. Separately, we also run experiments using the LAN ports of the TX1 and SI with a Pi
3B+ device to ensure that all devices and their available network ports are evaluated. These devices
are connected throughWiFi routers that support the best protocol supported by the devices’ WLAN
ports, or through Gigabit LAN switches. We perform all-to-all fping between devices in the same
public or private network which are visible to each other, with devices in each network connected
to a common switch. We measure ≈ 100–2000 pings for each device type and port type.
Fig. 3b shows a Box and Whiskers plot of the latency value distributions (in ms), with the 99th

percentile smallest latency labeled in green – this is an indicator of the shortest latency that is
achievable. We see that the LAN interfaces of all devices offer a tighter latency distribution than
the WLAN interfaces, while also being lower with a sub-millisecond 99th lowest percentile latency
for all devices. The WLAN’s latency values are both higher and wider. The Pi 3B+ has a 99th least
percentile latency of 1.3ms but with Q1–Q3 quartile values that span a 52ms range, while the
TX1’s WLAN has a higher 99th percentile of 8.7ms but a relatively narrower distribution that is
within 31ms .

The Azure VMs do not report details on their network port or switch configuration within the
data center. We use two VMs of the same type to perform fping 1000 times for the inter-VM
network latency. For the intra-VM latencies, we create two containers on a single device equivalent
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to a Pi 3B+ device and do 1000 fpings between them. Fig. 3c shows the box plot of observed intra
and inter VM latencies (in ms) for each VM type, with the 99th percentile lowest latency labeled.
The latencies do not vary much as the VM type changes, with inter-VM at 0.5ms and intra-VM at
≈ 0.03ms . The latency distributions are also tight. The intra-VM latency is useful for VIoLET to
co-locate containers on a VM to mimic very low latency IoT networks.

Bandwidth Benchmarks. We do not perform bandwidth micro-benchmarks for the physical
devices since these are specified as part of the network interfaces, switches and routers. Later,
we evaluate their real-world accuracy in Section 4.2. The Azure VMs have an expected inter-VM
bandwidth of 8, 16 and 30 Gbps specified for the three VM types. We empirically verify these
inter-VM bandwidths, and further measure the intra-VM bandwidths. As before, we use two VMs
of the same type for the inter-VM bandwidth experiments, and run the multi-threaded iperf3
TCP benchmark between them for over 300 runs (≈ 1 hour ), with file sizes of ≈ 5MB. The results
using iperf3 are comparable to Microsoft’s ntttcp bandwidth benchmark, which they use within
Azure [35]. For the intra-VM experiments, we create two Pi3B+ class containers on the same
VM, and as before run the iperf3 benchmark for 1 hour . We use 2 threads, which gives the best
bandwidth.
The inter and intra VM bandwidth distributions are shown as box plots in Fig. 3d, with the

99th percentile highest bandwidth indicated, which we use as a measure of their peak expected
bandwidth used during container mapping. All bandwidth values have a tight distribution. We see
that the inter-VM bandwidth for D16 and D32 are close to their rated performance, at 7.2Gbps and
15.6Gbps at their 99th percentile. However, the D64 VM achieves only 56% of its rated performance
at 17.1 Gbps , only modestly above D32 rather than double its value. This may be due to multi-
tenancy or hops across under-provisioned network switches. This is unlike the CPU performance
that increased linearly with the VM size. The intra-VM bandwidths are much higher but do not
vary dramatically across the VM types, with the 99th percentile values ranging from 44–51Gbps .
These appear to be memory bound since such bandwidths are comparable to the peak performance
of DDR3 memory modules that are expected on these machines. This indicates that IoT networks
with high network bandwidths of up to 50 Gbps can be virtually deployed on a single VM, and
those with a total cross-section bandwidth of up to 17 Gbps can be formed across VMs.

Network Configuration Micro-benchmarks. Being able to model network behavior accu-
rately is essential for IoT VEs. Here, we perform more detailed experiments that evaluate the
behavior of specific bandwidth and latency values between different containers that are enforced by
the TC rules. These micro-benchmarks help specify viable network configuration options for larger
VEs. Specifically, we try out 36 different combinations of latency and bandwidth pairs, formed from
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{1, 5, 25, 50, 75, 100}ms × {5, 20, 40, 60, 80, 100} Mbps . Each latency–bandwidth pair is configured
for all devices in a private network in a VIoLET deployment, with each network having 12 devices
selected from among those in Table 1. Each deployment has eight private networks placed on five
D32 VMs, and nine such deployments are conducted. For each private network, we execute multiple
fping and iperf runs between the devices in the network. We calculate the difference between the
observed latency or bandwidth and the expected (i.e., configured) performance as the deviation%,
given as: deviation% = (Observed−Expected)Expected %.
Fig. 4a shows the mean of the deviation% of the observed latency on the Y axis as the expected

latency increases on the X Axis, for each combination of latency–bandwidth pairs. This shows
that the latency deviation is sensitive to the expected latency value. For small latency values of
1ms , it ranges between 12–42%, and when the expected latency increases to 5ms , this variation
range drops to 1.5–7.1%. The deviation asymptotically reduces for higher latencies, with those
over 50ms having just a 0.1% skew. Since we can achieve a sub-millisecond latency across Azure
VMs and even better within a VM, the higher deviation% for low latencies are attributed to the
challenges of enforcing such limits using the software TC rules, where even a small variation of
100 µs in absolute latency can cause a larger effect on the deviation%. For higher latency values,
the deviation% remains small, and independent of the bandwidth of the network that are tested.

Next, we examine the effect of the bandwidth–latency pairs on their bandwidth deviation%. We
report that the deviation in bandwidth is a function of both the expected latency and the bandwidth.
In fact, it is also a function of the TCP window size, which by default is set to 262, 144 bytes in the
containers. The Bandwidth–Delay Product (BDP) [36] is defined as the product of the bandwidth
and latency. For efficient use of the network link, the TCP window size should be greater than this
BDP, i.e.,Window ≥ Bandwidth × Latency. In other words, given a fixed latency and TCP window
size, the Peak Bandwidth = W indow

Latency . Fig. 4b plots the mean deviation% of the observed bandwidth
on the Y axis, for different expected latencies, as the expected bandwidth increases on the X axis. A
marker on the bottom of the X axis shows the peak theoretical bandwidth, for that latency using
the default TCP window size. We observe that for low latencies of 1–25ms (green plus, light blue
cross, dark blue triangle), the bandwidth deviation is limited and falls between −5.1 and 19.4% for
all bandwidths evaluated, from 5–100Mbps ; a positive deviation indicates that a higher bandwidth
was observed than was configured. With the default window size, even a latency of 25ms supports
a peak bandwidth of 83Mbps , and lower latencies support an even higher peak bandwidth. The
positive deviation is also high for low bandwidth values and low for high bandwidth values. This
is because for low values of expected bandwidth, even small changes in the absolute bandwidth
causes a larger change in the relative deviation%.
As the latency increases, the negative deviation% increases as the bandwidth increases. In

particular, as we cross the peak bandwidth value on the X axis, the deviation% becomes more
negative, indicating an inability to meet the expected bandwidth given the window size. E.g., at
75ms , the peak bandwidth supported is only 28Mbps , and we see the bandwidth deviation% for
this latency worsens from −3.2% to 12.2 when the bandwidth configuration increases from 20Mbps
to 80 Mbps . This behavior is as expected from the BDP equation, and indicates that the users of
the container need to tune the TCP window size in the container to enforce bandwidths more
accurately, or select a bandwidth–latency pair that conforms to the default window size. In all the
experiments we subsequently report, we ensure that the latter holds.

4.2 Comparison with Physical Setup (D25)
A key goal for VIoLET is for its virtual environments to have a resource performance that closely
matches the devices and networks in the real-world that they model. However, even for physical
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Table 2. Devices, their mapped VMs and the rated performance, for four different deployment setups

Deployment
Setup→ D25 D100 D400 D1000

Device/ Host Count
∑
CM
(k)

∑
Mem
(GB) Count

∑
CM
(k)

∑
Mem
(GB) Count

∑
CM
(k)

∑
Mem
(GB) Count

∑
CM
(k)

∑
Mem
(GB)

Pi 2B 2 23 2 51 589 51 255 2,947 255 542 6,263 542
Pi 3B 6 93 6 36 556 36 96 1,484 96 292 4,513 292
Pi 3B+ 16 286 16 11 197 11 47 841 47 151 270,1 270
TX1 1 27 4 1 27 4 1 27 4 10 270 40

Softiron - - - 1 78 16 1 78 16 5 389 80
Total devices 25 429 28 100 1,447 118 400 5,377 418 1,000 14,136 1,226
D16 VM 3 491 1,200 - - - - - - - - -
D32 VM - - - 5 1,506 4,000 20 6,025 16,000 - - -
D64 VM - - - - - - - - - 25 14,956 40,000

resources, their rated performance may not match their observed performance. Here, we compare
and contrast the rated performance for the physical devices and the network, against the observed
performance of the physical devices and also the observed performance of the VIoLET deployment.

4.2.1 Setup. We use a real IoT deployment, which we term D25, consisting of 25 physical
devices connected using four networks, as illustrated in Fig. 5 and described in Table 2. It reflects
the heterogeneity typical of a real-world IoT setup, and comprises of 2 Pi 2Bs, 6 Pi 3Bs, 16 Pi 3B+s,
and 1 NVidia TX1. These are grouped into three private networks (P1–P3) and one public network
(Q1). The private networks have 8 devices each connected using their LAN ports, with a Pi 3B+
serving as a gateway to the public network on its additional WLAN port. Devices in P1 and P3
are connected using the LAN ports of two TP-Link TL SF 1008D routers which support 100Mbps
network bandwidth (SW1 and SW3 in Fig. 5) while devices in P2 are connected using the LAN ports
of a TP-Link TL SG 1008D router which supports 1 Gbps (SW2). The effective bandwidth supported
is the lower of the rated bandwidths of the device NIC and the router.While P2 has 8 homogeneous
Pi 3B+ devices, P1 and P3 have multiple Pi types present. The 3 Pi 3B+ gateway devices and the
standalone TX1 on the public network Q1 are connected using their WLAN ports to a TP-Link
TL WR 940N WiFi router which supports the 802.11n protocol at 450Mbps . We place the devices
on WiFi proximate to the router to reduce interference and maximize the network performance
achieved. But the median bandwidth of the WiFi links established by devices in the public network
is only 135 Mbps , which is set as the expected bandwidth of the network. The expected latency
values for these networks are based on the 99th lowest percentile supported by the devices on the
network, given by the earlier micro-benchmarks. These expected bandwidth and latency values for
the four networks are labeled in Fig. 5.

We replicate this deployment as a VE on VIoLET, with matching CPU CoreMark rating, memory
and disk capacity (as per Table 1), and network connectivity and performance (as shown in Fig. 5).
We map the containers for these 25 devices onto 3 D16 VMs, and Fig. 6 shows the corresponding
CPU, memory, disk and bandwidth usage on these three VMs. The device types are denoted by their
color, their heights indicate the relevant metric, and their shading pattern represents the network(s)
they belong to. The gateway devices that belong to both the private and public networks are shown
with the shading of the private network. The green label at the top gives the capacity of the VMs
for that resource. As we see, the container placement is constrained by the CPU capacity of each
VM (CoreMark of ≈ 164k), while there is excess memory (64 GB), disk (400 GB) and bandwidth
(8 Gbps) available on them. Fig. 6a indicates that devices of the private network P2, which hosts
only the faster Pi 3B+s, are mapped to VM V3 exclusively, while devices of P3, having a mix of fast
and slow Pis, are placed on VM V1 along with two devices from P1. The rest of the devices from P1
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three VMs by the 25 VIoLET contain-
ers after mapping, for the D25 deploy-
ment. The VM’s capacity for each metric
is shown in green text on top. The legend
is common to all plots.
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Fig. 7. Box plot of deviation% for the VIoLET containers and the
physical devices from their expected performance, in the D25
setup. The expected performance is labeled in green at the bottom.
The median is a red circle and the mean a red cross. A blue label at
the top indicates the maximum value of the whisker, if truncated.

and TX1 on the public network Q1 are on VM V2. This reflects the graph partitioning algorithm’s
preference for co-locating devices from the same network on the same VM to reduce edge-cuts.
Each virtual device also has three on-board virtual sensors configured.

The cost of the physical compute devices, excluding network routers, is ≈ US$1700. In contrast,
the VMs for the D25 VIoLET setup cost ≈ US$2.52/hour to rent. More details are in Appendix E.

4.2.2 Analysis of CPU Performance. We run three baseline CPU and network validation bench-
marks on the performance of the physical and virtual deployments. These benchmarks are also
used in the evaluation of other deployments discussed in later sections. For the observed CPU
performance, we run CoreMark on all the devices concurrently 15 times, which takes ≈ 7mins to
complete for the D25 setup. Next, we uniformly sample a subset of n

2 links from n(n − 1) possible
ones in each private and public network, and run iperf3 between them to measure the observed
bandwidth, with each concurrent run taking ≈ 10 secs . This benchmark is limited to fewer links
since the overhead for an all-to-all run is high for larger networks. Lastly, we run fping between a
random 2n of the n(n − 1) pairs of devices within each private and public network, and measure
the observed latency. Each run takes < 1 secs . Figs. 7a, 7b and 7c show box plots of the deviation%
between the expected CoreMark, bandwidth and latency, respectively, and the physical and the
VIoLET deployments, grouped by the device types (Table 1) taken cumulatively across networks. A
distribution of their absolute measurements and absolute deviations are given in Appendix D.
In Fig. 7a, the box for the VIoLET containers closely matches the expected 99th percentile

CoreMark (in thousands) of the physical device micro-benchmarks. All values in theQ1–Q3 quartiles
are within a −2% to −9% deviation range for all device types. Among the three Pi devices, we see
that the box is slightly wider for Pi 3B+, partly because it has more number of devices spread across
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all three VMs, compared to the other two device types. We also see that the CoreMark deviation%
of the VIoLET containers is comparable to the physical devices themselves. The Pi 2B and TX1
devices have a low deviation of close to 0%. However, this is wider for Pi 3B and 3B+. We observe
that individual Pi devices have a narrow distribution of their CoreMark values, within a 5% range,
but different Pi devices of the same type vary in their CoreMark values by up to 20%. Since we
have many Pi 3B and 3B+ devices in the D25 physical deployment, their deviation% are worse than
the 1 TX1 device and the 2 Pi 2B devices. A statistical sign test of the CoreMarks of the physical
and emulated devices shows that the Pi3B and Pi3B+ virtual devices statistically out-perform the
physical devices, while Pi2 and TX1 under-perform (more details in Appendix D.3). Figure 13a of
Appendix D also indicates that the absolute CoreMark of VIoLET’s device containers are close
to or better than the physical devices. So the compute capability of the VIoLET container devices is
comparable to a physical device, and our IoT VE can serve as a reasonable replacement for a physical
deployment.

4.2.3 Analysis of Network Performance. Fig. 7b shows that in all cases, except for the physical
deployment of the public network Q1, the bandwidth deviation% is tight, indicating deterministic
performance. The two exceptions are both for the physical networks. For the private physical
network P2, which has a 300Mbps effective connectivity between the Pi3B+ device and router, they
are unable to meet this theoretical bandwidth and show a 20% (60Mbps , Fig. 14b in Appendix D)
lower performance than expected. The P2 network for the VIoLET containers is only marginally
affected. The public physical network Q1 shows a much higher deviation, with a mean reduction of
74.7% (100.9Mbps). This is due to the wireless network whose link connects at ≈ 135Mbps but the
achieved bandwidth is much lower at a median of ≈ 45Mbps . The WLAN also shows a marginally
higher variability in network performance compared to the LAN. One of the future works would be
for VIoLET to be (counter-intuitively) less deterministic to capture the variability of the real-world
wireless networks more accurately.

The network latency deviation% in Fig. 7c are greater than for CPU and bandwidth, for both the
VIoLET and the physical networks, though small in absolute value (Figs. 13c and 14c in Appendix D).
For VIoLET, the median deviation% across the four networks ranges from 16.2% to 29.3% (a mean
reduction of −0.1 to −0.36ms), with a Q1–Q3 quartile variation of no more than 6%. The deviation
inversely correlates with the absolute expected latency values, with lower latency networks having
a higher deviation, as we saw in Fig. 4a. But the Q1 public network has a slightly higher median
deviation% than P1 and P3, despite having a higher absolute latency. This is because the containers
of Q1 are spread across all three VMs while those for each of the three private networks are placed
within a VM. So there is a marginally higher latency variability introduced across VMs for Q1. For
the three private physical networks, the median deviation% are comparable to VIoLET at between
16.3% to 38.8% (a mean drop of −0.12 to −0.31ms). However, the latency for the Q1 public WLAN
network is very high at a median of 1457%, with high Q1–Q3 quartile variability that spans 3193%,
i.e., while the expected latency based on the device rating was 1.3ms , the observed median latency
was 20.25ms . This too is consistent with the earlier micro-benchmarks in Fig. 3b, where the WLAN
latencies were much more variable. We provide additional statistical validation in Appendix D.3.

4.2.4 Analysis of Pub-Sub Application and Virtual Sensors. CPS systems often use a publish-
subscribe model (pub-sub) for sensing and communication with the analytics layer [20]. We run
an application layer ping–pong benchmark to measure the effect of the network performance on
such pub-sub user services deployed on the VE and the physical setup. Here, we deploy the Eclipse
Mosquitto MQTT broker, which uses the MQTT messaging protocol popular for IoT applications, on
each of the four networks’ gateway device. We then randomly choose device pairs in each network
such that all devices are either a publisher or a subscriber. The publisher reads an observation
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from its local virtual sensor (VIoLET) or file (physical) and initiates sending a message of length
68 bytes to a unique topic at the broker, and the subscriber receives this. On receipt of a message,
the subscriber publishes it back to a matching topic in the broker, which in turn is subscribed to
by the first publisher. The messages are read and sent every 1 sec , and repeated for 3mins on the
VIoLET and the physical deployments. Each message effectively passes through four network hops
end-to-end: publisher—broker—subscriber—broker—publisher. Its observed end-to-end latency is
compared against the expected minimum latency to report the deviation% shown in Fig. 7d, and
the absolute values given in Figs. 13d and 14d of Appendix D.
For VIoLET, the median deviation% ranges from 40.6% to 55.7%, which in absolute deviation is

from 0.8–2.3ms (Figure 14d). While the latency errors can accumulate per network hop, these
values are well within 4× the median latency deviation% seen for the latency experiments above.
Further, the expected ping–pong latency does not take into account the nominal message processing
time, which can add to the deviation. The Q1–Q3 quartile deviation% also falls within a modest
9% band. For the physical setup, the median latency deviation% spans between 88.3% to 183.7%
(2.3–4.6ms , Figure 14d). While this too is broadly within the 4× cumulative deviation, it tends
to the higher end of the range, i.e., it exhibits a higher deviation% across the board compared to
VIoLET. In future, client/server experiments can be done for application protocols like CoAP too.

In summary, these CPU and network performance results validate that VIoLET can support a
virtual IoT deployment comparable in behavior to the physical deployment, often erring on the
side of deterministic performance rather than variability, and tending relatively closer to the peak
performance. This gives confidence to users on the practical viability of our framework.

4.3 Evaluation of VE with D100, D400 and D1000 Devices
A key proposition of VIoLET is its ability to model large device deployments in an effortless and
cost-effective manner. We evaluate this by configuring three VE deployments with 100, 400 and
1000 devices each (D100 and D400 and D1000). These deployments are generated using our synthetic
infrastructure generator tool where we specify the number of networks and devices, mix of device
types, and the possible bandwidths and latencies for the links. In these deployments, D100 and D400
have 8 private networks and 2 public networks, while D1000 has 20 private and 5 public networks.
Each private network has 12 devices for D100, and 48 devices for D400 and D1000. Since the accuracy
of modeling the network is sensitive to the BDP, identify the following (bandwidth, latency) pairs
with deviations within−5% to 10% from the benchmarks, and randomly pick one for each private and
public network: [(20, 5), (40, 5), (60, 5), (80, 5), (100, 5), (20, 25), (40, 25), (60, 25), (80, 25), (100, 25),
(20, 50), (40, 50), (20, 75)]. Table 2 lists the count of device of each type, with ≈ 50% being Pi
2Bs, ≈ 30% Pi 3Bs and the rest a mix of Pi 3B+, TX1 and Softiron. These are hosted on 5 and 20
D16 VMs for D100 and D400, and 25 D64 VMs for D1000, with the latter having a cumulative 1600
Intel vCPUs on Azure modeling over 4000 device cores. For the largest D1000 deployment, the VMs
together cost US$84/hour, which is much cheaper than the cost of US$66,000 for purchasing these
devices, on an hourly basis. More details of these VEs are given in Appendix C, and their costs in
comparison to an equivalent physical deployment are provided in Appendix E.
We run CoreMark for 20 minutes on all devices concurrently and report the violin plot for the

deviation% for each of the five device types in Figs. 8a, 8d and 8g, for D100, D400 and D1000. We
see that for the three types of Pis on all deployments, the median CPU deviation% is within ±3 and
having a narrow box distribution as well. This indicates that even with 985 Pi containers running
across the 25 VMs for D1000, the VE is able to provide accurate CPU performance concurrently
across all the devices as measured by CoreMark. This deviation is even better than seen in the D25
micro-benchmarks in Fig. 6a.
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(d) CoreMark CPU (D400)

P1 P2 P3 P4 P5 P6 P7 P8 Q1 Q2
Networks

10

5

0

5

10

Ba
nd

wi
dt

h 
De

vi
at

io
n 

%

40 20 20 100 60 40 60 40 60 40

Private (P#)
Public (Q#)

(e) Bandwidth (D400)

P1 P2 P3 P4 P5 P6 P7 P8 Q1 Q2
Networks

5

0

5

10

15

20

La
te

nc
y 

De
vi

at
io

n 
%

39

5 5 75 25 5 50 25 5 5 5

Private (P#)
Public (Q#)

(f) Latency (D400)

Pi2B Pi3B Pi3B+ TX1 SI
Device types

60

50

40

30

20

10

0

10

Co
re

m
ar

k 
De

vi
at

io
n 

%

11

11557 15457 17888 27070 77739

(g) CoreMark CPU (D1000)
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Fig. 8. Box plot of deviation% of the VIoLET containers from their expected performance, in the D100 (top
row), D400 (second row) and D1000 (bottom rows) setups. The expected performance is labeled in green
at the bottom. The median is a red circle and the mean a red cross. A blue label at the top indicates the
maximum value of the whisker, if truncated.

However, the deviation is worse for TX1 and SI. For TX1, we see a consistent under-performance
in all three deployments, with a median deviation% of up to −18.7%, seen in D400. The median
deviation% for SI is as bad as −49.6% for D1000, but exhibits an over-performance for D400, with
a median 36.1%. There are two factors at play here. As the CoreMark and CPU allocation for a
container increases, the deviation also increases. This was also seen in the earlier micro-benchmark
where the deviation of TX1 was worse than the Pis, and this is further exacerbated for SI. Another
factor is the CPU utilization of the VMs based on the mapping of containers to a VM. We observe
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(c) D1000

Fig. 9. Box plot of CoreMark deviation% by device types, for all VE deployments with CPU dynamism

that with low CPU utilization, the containers over-perform and vice versa. This is why the single
SI device in D400 was faster than expected – the partitioning logic assigned a single SI container
exclusively to the entire VM.
We conduct network experiments similar to D25 (Section 4.2.3). We measure the observed

bandwidth using iperf3 from n
2 links uniformly sampled from n(n − 1) links for each network, and

measure the observed latency using fping between a random 2n of the n(n − 1) pairs of devices
within each private and public network. We plot the bandwidth and latency distributions for all
devices in each private or public network as box plots, in Figs. 8b, 8c, 8e, 8f, 8h and 8i, for the three
VE deployments.

The median bandwidth deviation falls within ±5% with a narrow distribution in most cases, for
all the deployments. This is consistent with the results from the earlier micro-benchmarks for D25
(Fig. 7b), and scales to such larger deployments with many more devices and networks as well.
Occasionally, the bandwidth observed is greater than expected and the median falls between 5–10%,
for network P2 in D400 and network P2 and P7 in D1000. These three are the only networks in
all the deployments with a low bandwidth and a low latency setup of 20Mbps/5ms . So, for a given
BDP and low latency, the bandwidth relaxes to a slightly higher value but causes a larger % change.
This too is similar to Fig. 4b from before.

The latency deviation is also fairly small and tight at ±2% for the median in most networks and
±7% for all of them, across deployments. The few networks for which the latency is at the higher end
are consistently the ones where the latency is low at 5ms and the bandwidth is higher at 60Mbps
or 80Mbps . As seen earlier in Fig. 4a, lower latencies tend to exhibit a larger % deviation as they are
sensitive to even small absolute changes. Interestingly, the latency and bandwidth deviation% do
not increase as the number of VM on which the containers of a network are placed increases. The
low intra-VM latency of < 1ms , high bandwidth of 46–51 Gbps and the network-aware placement
algorithm we use is responsible for this.
In summary, the key performance characteristics of CPU and network behavior are consistent

in these large scale VIoLET deployments of up to 1000 devices and 48 networks on up to 25 VMs.
The high device and network accuracy matches the observations from the smaller benchmarks.
This confirms the scalability of our framework to large-scale real-world VE deployments that is
otherwise infeasible.

4.4 Evaluation of Dynamism and Reliability
4.4.1 CPU Dynamism of Devices. We evaluate the ability of VIoLET to introduce dynamism in

the CPU performance for the devices in the VE at runtime, as described in Section 3.5.1.We configure
the three VEs with a peak CPU variability of δ = 0.2 and a variability period of π = 600 secs for
all device types. So each device is expected to switch its CPU performance to a value between
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Fig. 10. Observed CoreMark, with and without CPU
dynamism, for 19 devices placed on VM #3 of D100
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Fig. 11. MTTF and MTTR observed, per device
(space) and per interval (time)

80–100% of its rated performance every 10mins . The control interval is ϵ = 30 secs , i.e., a random
subset of devices will exhibit CPU dynamism every 30 secs . We run the experiment for 2 hours ,
with a prior 20mins of running the VE without dynamism enabled. Within each device container,
we run CoreMark continuously in a loop for the entire period and also observe the CPU usage for
each container from the host VM. We plot the deviation% of the CoreMark for each device when
considering its dynamic CPU performance, i.e., if a device is supposed to operate at 93% of its speed
due to the dynamism during a time period, then the expected performance is 93% and the observed
is compared against this for the deviation. We plot the CoreMark deviation% per device type at
every control interval as a distribution in Fig. 9 for D100, D400 and D1000.

For all device types except SI, the deviation% for dynamic CPU performance is ±4% in all three
deployments. So the VIoLET framework is able to accurately introduce dynamism as configured
by the user model. However, for SI, the deviation% is worse but consistent with its behavior in
the non-dynamic scenario (Fig. 8). While D100 and D1000 show a median deviation of ≈ −20%
and ≈ −40%, D400 exhibits ≈ +50% due to the container being scheduled exclusively on a VM.
Interestingly, in the latter case, despite a higher deviation%, the Pearson’s correlation coefficient
between the expected and the observed CoreMark is a median of ρ = 0.98 across the execution
time period, i.e., the performance shifts-up by a constant but the dynamism is enacted on this offset
value accurately. The median is ρ ≥ 0.95 for the Pi devices, and ρ = 0.98 for TX1, in D400.

In fact, Fig. 15 in Appendix F shows a timeline of the observed CPU% utilization, as measured
at the host VM, against the expected CPU performance, for four sample containers of different
device types during the 2 hour dynamism period for D100. As we see, the Pi devices have a CPU
usage that closely matches the expected, while the TX1 broadly follows the trend. The SI shows
more muted changes that are not correlated with the expected dynamism. We also see that the
CPU speed changes 10–13 times in this 120min time period (discrete steps in the expected CPU
line), matching the expectation of about one change every 10mins based on the uniform sampling.
This active variation is even more apparent in Fig. 10b where we plot the observed CoreMark

for all 19 devices placed on one of the five D32 VMs in the D100 deployment. Here, we see that
the dynamism is triggered every 30 secs across the entire VE. The three bands that are formed, at
≈ 10k , 15k and 25k CoreMark indicate the 80–100% range for the three device types, Pi2B, Pi3B
and TX1 shown here. In contrast, Fig. 10a illustrates the prior 20mins for these same devices with
dynamism disabled, and their CoreMark variation is barely existent for the Pis and episodic for the
TX1. So there is a real impact of modeling and introducing CPU dynamism.

Also, these changes happen instantaneously, i.e., there is no delay between the CPU variation
being requested at a control interval by VIoLET from a container and the change occurring. The
applications running within the container are also not impacted in any manner and continue
running, other than observing a CPU performance variation. So this makes VIoLET an effective
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framework to model and validate the behavior of applications, IoT platforms and even scheduling
strategies under diverse conditions of CPU variations in the VE.

4.4.2 Device Reliability. Lastly, we validate the ability of VIoLET to simulate device failures
and recovery, as was discussed in Section 3.5.2. The experiment setup is similar to the one for
CPU dynamism. We set the MTTF for all devices as µ = 600 secs , and the MTTR as λ = 300 secs .
The control interval is ϵ = 30 secs . So each device has a ϵ

µ = 5% chance of failing at each interval,
and these are independent for each device in the deployment. Similarly, each failed device has a
ϵ
λ = 10% chance of recovering at each interval. The experiment is run for 2 hours for each of the
D100, D400 and D1000 deployments.
Fig. 11a shows the distribution of the average observed MTTF and MTTR for devices in each

deployment during the complete run. Further, Fig. 11b shows the distribution of the average
observed MTTF and MTTR for devices selected for failure and for recovery, at each of the 240
control intervals. The median observed MTTF for the devices is 598 secs , 622 secs and 623 secs for
the D100, D400 and D1000 deployments, and similarly, MTTR is 292 secs , 304 secs and 302 secs .
These closely match the expected values of 600 secs and 300 secs across a device’s lifetime. There
are some long-tail outliers seen by the whiskers, which indicate that some devices did not fail for a
long time. The observed MTTF and MTTR for devices selected at each control interval are also
comparable. These suggest that these reliability metrics operate independently across space and
time, as is typically the case in the real-world. The timeline of failures and recovery for all devices
is shown in Appendix G for a similar experiment conducted on the D25 setup.

5 RELATEDWORK
The growing interest in IoT and edge/fog computing has given rise to several simulation environ-
ments [37, 38]. iFogSim [13] extends the prior work on CloudSim [39] to simulate the behavior of
applications over fog devices, sensors and actuators that are connected by a network topology. Users
define the compute, network and energy profiles of fog devices, and the properties and distributions
of tuples from sensors. Users can define DAG-based applications with tasks consuming compute
capacity and bandwidth, and their execution over the fog network is simulated using an extensible
resource manager. The goal is to evaluate different scheduling strategies synthetically. YAFS is
another discrete-event simulator that allows for the definition of complex graph-based IoT network
topology, with fog nodes as entities with resource characteristics. Application DAGs, messages and
placement policies for tasks to devices can also be specified. They offer event logging mechanisms
for posterior analysis. Our VIoLET emulator similarly lets users define devices, complex network
graphs and sensors, but actually instantiates them rather than simulate them. While we do not
expose an application model, this is not necessary since users can bring in their actual applications,
schedulers, policies, etc. to be evaluated on the virtual environment that matches reality.

Edgecloudsim [14] offers similar simulation capabilities but also introduces mobility models for
the edge. They simulate network characteristics like transmission delay for LAN and WAN, and
also task failures due to mobility for a single use-case. In a similar spirit, MobFogSim also extends
iFogSim to simulate the mobility of devices and the migration of services among fog devices. It is
used to validate the usefulness of different service migration strategies [40]. VIoLET allows services
to directly be run on the device containers and migrated, and enables CPU dynamism and device
failures. But it does not support device mobility, and in the future, this can be reflected in a network
dynamism model.
In the commercial space, city-scale simulators for IoT deployments in smart cities are avail-

able [15]. These mimic the behavior of not just devices, sensors, actuators and the network, but
also application services like MQTT broker and CoAP services that may be hosted. These offer
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a comprehensive simulation environment for city-planners to perform what-if analysis on the
models. Our proposed VIoLET environment goes a step further and permits realistic devices and
networks to be emulated on elastic cloud VMs and applications themselves to be executed without
physically deploying the field devices.

There has been some work on emulation of IoT and CPS environments. They either focus on the
computing layer and emulate devices using virtual machines [17, 20], TinyOS [18] and Docker [23],
or emphasize accurate the network emulation [19, 38]. ELIoT emulates an IoT platform to validate
the CoAP stack, where Docker containers host the CoAP servers implemented using an Eclipse
Leshan M2M server. While this helps validate CoAP execution patterns, payloads like JSON and
CBOR, and DTLS-based security, it is limited only to CoAP applications. Also, there is no network
topology, device/network performance control or resource dynamism. Others [20] combine a
VM running the ContikiOS to emulate an embedded device with the COOJA wireless network
simulator [41]. This allows CoAP applications on the VM to communicate through COOJA that
handles network packet control and transmission based on different models. Here again, there
is no attempt to accurately model the device performance or dynamism, or scale this to a large
number (100s) of devices. VIoLET attempts to balance both these goals. It uses light-weight Docker
containers benchmarked to real IoT devices and run real IoT and CPS applications, combined with
diverse network topologies and bandwidth/latency shaping, for 100s of devices at scale.

Simulators and emulators are also popular in other domains, such as cloud, network and Software-
Defined Network (SDN) simulators [31, 38, 39, 42]. Discrete event network simulators like ns-3
attempt to mimic the performance of diverse networks and Internet protocols, in a controlled and
reproducible manner [30]. But they do not really send data packets between processes.Mininet [31]
is a popular network virtualization tool that allows complex network topologies and SDNs to be
designed, and real data flows through. But its use of Linux process groups for executing applications
does not restrict the CPU and memory for a host. VIoLET’s use of Linux cgroups in Docker enables
such resource constraints that emulate the performance of physical devices. We also allow the use
of custom device images with pre-deployed libraries and software. Also, support for executing on
distributed machines is limited in MiniNet, with alternatives like MaxiNet proposed. VIoLET is
designed to efficiently scale to 1000s of realistic devices on 10–100s of VMs. Others like COOJA [41]
extend the network simulation to the application layer for the Contiki OS. In the future, one could
combine the capabilities of advanced network simulators and VIoLET in a single platform.
Digital twins and device shadows are emerging concepts that allow a simulation or a virtual

service to act as a proxy for the live physical devices in an IoT or CPS deployment [43]. They
enable lifecycle management of the physical asset by just interacting with the digital twin, which in
turn may have uni- or bi-direction communication with the physical asset [44]. A VE like VIoLET
can serve as a core building-block to model such digital twins, and enable what-if analysis or to
replicate faults for root-cause analysis.
Others have proposed IoT data stream and application workloads for evaluating big data plat-

forms, particularly stream processing ones. Here, large-scale sensor data is simulated with realistic
distributions [45, 46]. These can be used in place of the synthetic sensor streams that we provide.
Our prior work has proposed complex event processing application workloads for IoT domains [11].
These can use VIoLET for evaluating their execution on edge, fog and cloud resources.

Google’s Kubernetes [47] is a multi-node orchestration platform for container life-cycle man-
agement. It schedules containers across nodes to balance the load, but is not aware of network
topology overlays on the containers. It can potentially be a replacement for Docker in VIoLET.
In summary, the uniqueness of VIoLET lies in its ability to emulate the cyber-infrastructure of

IoT and CPS domains at large-scales, allowing users to actually deploy and run their application
within device containers whose performance matches physical devices, and move data between
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Table 3. Feature matrix of using physical systems, simulators and the VIoLET emulation environment

Type Deploy-
ability

Manage-
ability

Flexibility Low
CapEx

Low
OpEx

CPU
Accuracy

NW
Accuracy

Run Code Move Data

Physical system # # # # G#     

Simulation      G# G# # #

VIoLET     #     

them over network overlays whose behavior resembles physical networks. Table 3 summarizes
the relative benefits of a testbed with physical devices, an emulation environment like VIoLET,
and a simulator. It contrasts them along the dimensions of: accuracy of the devices and network;
ease of deployment; ease of management; flexibility in designing custom environments; capital
and operational costs; ability to run real software; and ability to move real data between devices.
As we see, VIoLET attempts to achieve the best of physical systems – with high accuracy in the
compute and network capabilities, and allowing real code to run; and of simulations – with ease of
deployment, management and flexibility, and low capital costs. Its modest operational costs are
much less than the capital costs for a physical setup (Appendix E) and only billed when used.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have motivated the design requirements for an IoT emulation environment and
proposed VIoLET to meet these needs. VIoLET allows users to declaratively create virtual edge, fog
and cloud devices as containers that are connected through user-defined network topologies. This
allows developers to run real cyber-physical platforms and applications, with real data flowing
through the network, and including virtual sensors that can connect to external physical system
simulators. This also offers first-hand knowledge of the performance, scalability and security of
the user’s applications, IoT platforms or scheduling algorithms, similar to a real IoT deployment,
unlike other simulators that currently exist. It is as simple to deploy and run as a simulation
environment, but provides the realism of physical systems, with ease and reproducibility. Our
extensive experiments show that VIoLET is accurate, with performance statistically matching
physical IoT deployments, and it scales to 1000s of devices. It is also affordable, costing just
US$84/hour to deploy 1000 devices on the Cloud. VIoLET is an essential tool for CPS researchers to
validate their cyber-environment, and for IoT managers to virtually test various software stacks
and network deployment models.
There are several extensions possible to VIoLET. One of our limitations is that only devices

for which Docker can launch container environments are feasible. While any device container
that runs a standard Linux kernel using cgroups (or even a Windows device 13) can be run, this
limits the use of edge micro-controllers like Arduino, or wireless IoT motes that run real-time OS.
Also, leveraging Docker’s support for GPUs in the future will help users make use of accelerators
present in devices like NVidia TX1 14. It may also be useful to migrate to Kubernetes for container
orchestration rather than Docker due to its growing support [47]. There is also the opportunity to
pack containers more efficiently to reduce the cloud costs, including over-packing when devices
will not be pushed to their full utilization [48].

Modeling the energy usage of devices and networks is vital for energy-constrained IoT devices.
As future work, we propose to include energy profiling based on CPU, memory, IO and network
usage by applications hosted within containers, along with a model for battery charging and
discharging. This will help evaluate energy-aware schedulers and energy-performance trade-offs.

13Docker for Windows, https://docs.docker.com/docker-for-windows/
14GPU-enabled Docker Containers, https://github.com/NVIDIA/nvidia-docker
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Our network configurations focus on the visibility of public and private networks, and the
bandwidth and latency of the links. However, it does not yet handle protocols at the transport layer
or below, which is necessary to emulate IoT wireless networks like LoRA, 6LoWPAN, etc. This
will require interfacing VIoLET with a network emulator such as mininet in the future. Modeling
variability in bandwidth, latency and link failures, and device mobility are also planned.
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APPENDIX
A JSON Configuration Document

Listing 1. Device Types, device_types.json
"device_types": {
"Pi2B": {
"core_count": "4",
"coremark": "11557",
"whetstone": "-1",
"memory_mb": "1024",
"disk_mb": "1024",
"nic_out_bw_mbps": "100",
"docker_image": "violet:local",
"host_mount": "/tmp/log",
"reliability": {
"mttf_sec": "600",
"mttr_sec": "300",
"cpu_var_max": "0.2",
"cpu_var_period_sec": "600",
"out_bw_var_max": "0.1",
"out_bw_var_period_secs": "1200",
"out_lat_var_max": "0.05",
"out_lat_var_period_secs": "1200",
"out_packet_loss_ratio": "0.00001",
"out_packet_corruption_ratio": "0.0001"

}
},
"Pi3B": {
"core_count": "4",
"coremark": "15457",
"whetstone": "-1",
"memory_mb": "1024",
"disk_mb": "1024",
"nic_out_bw_mbps": "100",
"docker_image": "violet:local",
"host_mount": "/tmp/log",
"reliability": {
"mttf_sec": "600",
"mttr_sec": "300",
"cpu_var_max": "0.2",
"cpu_var_period_sec": "600",
"out_bw_var_max": "0.1",
"out_bw_var_period_secs": "1200",
"out_lat_var_max": "0.05",
"out_lat_var_period_secs": "1200",
"out_packet_loss_ratio": "0.00001",
"out_packet_corruption_ratio": "0.0001"

}
},
...

}

Listing 2. Sensor Types, sensor_types.json
"sensor_types": [
{
"type": "accelerometer",
"id": "true",
"timestamp": "true",
"dist_rate": "uniform",
"rate_params": {
"lower_limit": "1",
"upper_limit": "10",
"unit": "s"

},
"dist_value": "normal",
"value_params": {
"mean": "150",
"variance": "50",
"min_value": "25"

}
},
{
"type": "custom",
"id": "true",
"timestamp": "true",
"dist_rate": "user_defined",
"rate_params": {
"path": "sensors_data_gen/data/time.csv",
"unit": "s"

},
"dist_value": "user_defined",
"value_params": {
"path": "sensors_data_gen/data/data.csv"

}
},
...

]
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Listing 3. Infrastructure Generation,
infra_gen.json

"infra_gen": {
"public_networks":
{
"violet_public_1":
{
"devices":
[
{
"device_type":"Pi2B",
"number_devices":"4",
"number_sensors":"5"

},
{
"device_type":"Pi3B",
"number_devices":"2",
"number_sensors":"5"

}
],
"private_networks_list":
[
"violet_private_1",
"violet_private_2",
"violet_private_3",
"violet_private_4"

]
},
...

}
"private_networks":
{
"violet_private_1":
{
"device_type":"Pi2B",
"number_devices":"11",
"gateway_device_type":"Pi2B",
"number_sensors":"5"

},
"violet_private_2":
{
"device_type":"Pi3B",
"number_devices":"11",
"gateway_device_type":"Pi3B",
"number_sensors":"5"

},
...

},
"network":
{
"public_networks":
{
"bandwidth_mbps":["10", "15", "20", "25", "30",

↪→ "35", "40", "45", "50"],
"latency_ms":["10", "15", "20", "25", "30", "35",

↪→ "40", "45", "50"],
"window_size_bits":"524288"

},
"private_networks":
{
"bandwidth_mbps":["10", "15", "20", "25", "30",

↪→ "35", "40" ,"45", "50"],
"latency_ms":["10", "15", "20", "25", "30", "35",

↪→ "40", "45", "50"],
"window_size_bits":"524288"

}
}

}

Listing 4. Infrastructure Configuration,
infra_config.json

"infra_config": {
"public_global_network": {
"subnet": "10.0.3.0/24",
"bandwidth_mbps": 100,
"ip_range": "10.0.3.0/24",
"devices": [
"Fog-1.1", "Fog-1.2", "Fog-1.3", "Fog-1.4",

↪→ "Fog-1.5", "Fog-1.6", "Fog-2.1",
↪→ "Fog-2.2", "Fog-2.3", "Fog-2.4",
↪→ "Fog-2.5", "Fog-2.6"

],
"latency_ms": 5

},
"block_network_route": [

],
"public_networks": {
"violet_public_1": {
"subnet": "10.0.1.0/24",
"bandwidth_mbps": 20,
"ip_range": "10.0.1.0/24",
"devices": [
"Fog-1.1", "Fog-1.2", "Fog-1.3", "Fog-1.4",

↪→ "Fog-1.5", "Fog-1.6"
],
"latency_ms": 50

},
...

},
"private_networks": {
"violet_private_1": {
"subnet": "192.168.1.0/24",
"bandwidth_mbps": 60,
"latency_ms": 5,
"devices": [
"Edge-1.1", "Edge-1.2", "Edge-1.3", "Edge-1.4",

↪→ "Edge-1.5", "Edge-1.6", "Edge-1.7",
↪→ "Edge-1.8", "Edge-1.9", "Edge-1.10",
↪→ "Edge-1.11"

],
"ip_range": "192.168.1.0/24",
"gateway": "Fog-1.1"

},
...

},
"devices": {
"Edge-5.8": {
"sensors": [
{
"count": 2,
"sensor_type": "accelerometer"

},
{
"count": 2,
"sensor_type": "gyroscope"

},
{
"count": 1,
"sensor_type": "custom"

}
],
"port": 37893,
"device_type": "Pi2B"

},
...

}
...

}
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Listing 5. VM Types, vm_types.json
"vm_types": {
"Standard_D4_v2": {
"core_count": "8",
"coremark": "102341",
"whetstone": "-1",
"memory_mb": "28672",
"disk_mb": "409600",
"out_bw_mbps": "2048",
"out_latency_ms": "1.11",
"local_bw_mbps": "39116",
"local_latency_ms": "0.053",
"shared_mount": "/tmp/log/"

},
"Standard_D16_v3": {
"core_count": "16",
"coremark": "163767",
"whetstone": "-1",
"memory_mb": "63488",
"disk_mb": "409600",
"out_bw_mbps": "2048",
"out_latency_ms": "1.11",
"local_bw_mbps": "39116",
"local_latency_ms": "0.053",
"shared_mount": "/tmp/log/"

},
"Standard_D32_v3": {
"core_count": "32",
"coremark": "301269",
"whetstone": "-1",
"memory_mb": "128000",
"disk_mb": "819200",
"out_bw_mbps": "2990",
"out_latency_ms": "0.45",
"local_bw_mbps": "28364",
"local_latency_ms": "0.018",
"shared_mount": "/tmp/log/"

},
...

}

Listing 6. VM Configuration,
vm_instances.json

"vm_config": {
"admin_VM": {
"VIoLET_admin": {
"hostname_ip": "10.0.0.4",
"key_path": "/home/centos/id_rsa",
"user": "centos"

}
},
"container_VM": {
"AEP-1": {
"hostname_ip": "10.0.0.9",
"key_path": "/home/centos/aep_rsa",
"user": "centos",
"vm_type": "Standard_D32_v3"

},
"AEP-2": {
"hostname_ip": "10.0.0.10",
"key_path": "/home/centos/id_rsa",
"user": "centos",
"vm_type": "Standard_D32_v3"

},
"AEP-3": {
"hostname_ip": "10.0.0.11",
"key_path": "/home/centos/aep_rsa",
"user": "centos",
"vm_type": "Standard_D32_v3"

},
"AEP-4": {
"hostname_ip": "10.0.0.12",
"key_path": "/home/centos/aep_rsa",
"user": "centos",
"vm_type": "Standard_D32_v3"

},
"AEP-5": {
"hostname_ip": "10.0.0.13",
"key_path": "/home/centos/aep_rsa",
"user": "centos",
"vm_type": "Standard_D32_v3"

}
}

}

B Composition and Deployment User Interfaces

(a) Visual composition using WebGME DSML (b) Deployment Management Portal

Fig. 12. Web-based user interfaces for enhanced usability of VIoLET

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.
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C VE Configuration for the Larger Deployments

Table 4. Configuration of private (Pi ) and public (Qi ) networks in D100 deployment

Network Device
type

Device
count 15

Expected
Bandwidth
(Mbps)

Expected
Latency
(ms)

P1 Pi2B 12 60 5
P2 Pi3B 12 40 50
P3 Pi2B 12 100 25
P4 Pi3B 12 100 25
P5 Pi2B 12 100 25
P6 Pi3B 12 100 25
P7 Pi2B 11 20 25

TX1 1
P8 Pi3B+ 11 80 5

SI 1

Q1 Pi2B 4 20 50
Pi3B 2

Q2 Pi2B 3 20 75
Pi3B 1
TX1 1
SI 1

Table 5. Configuration of private (Pi ) and public (Qi ) networks in D400 deployment

Network Device
type

Device
count 16

Expected
Bandwidth
(Mbps)

Expected
Latency
(ms)

P1 Pi2B 48 40 5
P2 Pi3B 48 20 5
P3 Pi2B 48 20 75
P4 Pi2B 48 100 25
P5 Pi2B 48 60 5
P6 Pi3B 48 40 50
P7 Pi3B+ 47 60 25

TX1 1
P8 Pi2B 47 40 5

SI 1

Q1 Pi2B 10 60 5
Pi3B 1

Q2 Pi2B 10 40 5
Pi3B 1
TX1 1
SI 1

15Note that the same device can be part of both a public and private network. Hence the sum of device counts will be ≥ 100
though only 100 distinct devices are present.
16Note that the same device can be part of both a public and private network. Hence the sum of device counts will be ≥ 400
though only 400 distinct devices are present.
17Note that the same device can be part of both a public and private network. Hence the sum of device counts will be ≥ 1000
though only 1000 distinct devices are present.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Table 6. Configuration of private (Pi ) and public (Qi ) networks in D1000 deployment

Network Device
type

Device
count 17

Expected
Bandwidth
(Mbps)

Expected
Latency
(ms)

P1 Pi2B 48 60 5
P2 Pi2B 47 20 5

TX1 1
P3 Pi3B 48 60 5
P4 Pi2B 48 80 25
P5 Pi3B+ 48 60 5
P6 Pi2B 48 80 25
P7 Pi2B 47 20 5

SI 1
P8 Pi3B 48 80 5
P9 Pi2B 48 40 50
P10 Pi3B 48 20 75
P11 Pi3B+ 48 40 25
P12 Pi2B 48 20 25
P13 Pi3B 48 20 50
P14 Pi2B 48 60 25
P15 Pi3B+ 48 80 25
P16 Pi2B 48 100 25
P17 Pi2B 47 20 25

TX1 1
P18 Pi3B 48 40 25
P19 Pi2B 48 80 25
P20 Pi3B 48 20 75

Q1 Pi2B 5 40 50
Pi3B 2
Pi3B+ 2
TX1 2
SI 1

Q2 Pi2B 5 60 5
Pi3B 2
Pi3B+ 2
TX1 2
SI 1

Q3 Pi2B 5 60 25
Pi3B 2
Pi3B+ 2
TX1 2
SI 1

Q4 Pi2B 5 80 25
Pi3B 2
Pi3B+ 2
TX1 2
SI 1

Q5 Pi2B 5 40 50
Pi3B 2
Pi3B+ 2
TX1 2
SI 1

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2020.
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D Statistical Data for D25 Experiments
This section provides additional statistical details for the D25 physical and VIoLET experiments
conducted in Section 4.2 of the main article.

D.1 Distribution of Absolute Values. The Figures 13 show the probability distributions of the
absolute values of CoreMark, bandwidth, latency and the application ping-pong performance
benchmarks, for the D25 VIoLET and Physical configurations. These complement Figures 7 in the
main article, that show the % deviation of these absolute values from the expected performance.
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Fig. 13. Probability distributions for the performance benchmarks for VIoLET containers and the physical
devices in the D25 setup. A red vertical dashed line indicates the expected performance.
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D.2 Distribution of Absolute Deviations. The Figures 14 show the absolute deviations of the D25
VIoLET and Physical configurations from the ideal behavior. These complement the % deviations
reported in the main article in Figures 7.
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Fig. 14. Box plot of absolute deviation for the VIoLET containers and the physical devices from their expected
performance, in the D25 setup. The expected ideal performance is labeled in green at the bottom. The median
is a red circle and the mean a red cross. A blue label at the top indicates the maximum value of the whisker, if
truncated.

D.3 Statistical Tests. The value distributions for the various performance metrics do not clearly
correspond to a normal distribution. Further, the data points collected are not paired for the physical
and virtual experiments since they run independently, and the number of data points collected
also vary substantially, from < 10 to > 1000, depending on the experiments. So we perform a
simple non-parametric sign test 18 to evaluate if the performance of the VIoLET virtual environment
is statistically better than the median physical environment, and if the virtual and the physical
environments are statistically performing within f % of the ideal performance. The sign test returns
the statistical probability (p-value) of the hypothesis that a series of values y ≥ x is not just due to
pure chance, on a binomial distribution.

CoreMark. We use the sign test to test the hypothesis that the CoreMark of the virtual devices are
greater than the median CoreMark of the physical devices. For Pi2B and TX1, we get a p-value of
p < 0.95, rejecting the hypothesis. In fact, the results statistically show that the physical devices
out-perform the virtual devices. For Pi3B and Pi3B+, we get a p-value of p ≥ 0.99, supporting the
hypothesis and helping us conclude that the virtual devices out-perform the physical devices.
18Applied Nonparametric Statistical Methods, Ch: 2.3 The Sign Test, P. Sprent and N.C. Smeeton, 2001, Chapman and Hall/CRC
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Next, we test the hypothesis that the CoreMark of the virtual devices (or the physical devices) is
greater than f % of the CoreMark of an ideal device. The table below shows the largest values of f %
at which this hypothesis holds with a p-value of p ≥ 0.95 for the sign test. Greater the value of
f % and closer it is to 100%, the better; cells shaded green denote the better of the virtual or the
physical device. We have between n = 15–240 data points per VIoLET device, and n = 201–3196
data points per physical device.

Device Type Pi2 Pi3B Pi3B+ TX1
Physical 99% 89% 86% 99%
VIoLET 91% 94% 95% 92%

Bandwidth. We similarly use the sign test to test the hypothesis that the bandwidth of the virtual
network (or the physical network) is greater than f % of the bandwidth of the ideal network. The table
below shows the largest values of f % at which this hypothesis holds with a p-value of p ≥ 0.95.
Greater the value of f % and closer it is to 100%, the better. Here, we have a limited number of data
points of n = 2–4 for the physical and the VIoLET networks.

Network Type P1 P2 P3 Q1
Physical 94% 79% 94% 22%
VIoLET 98% 95% 98% 97%

Latency. We use the sign test to test the hypothesis that the latency of the virtual network (or the
physical network) is lower than (100+ f %) of the latency of the ideal network. The table below shows
the smallest values of f % at which this hypothesis holds. Smaller the value of f % and closer it is to
0%, the better. Here, we only have a few data points, between n = 8–16, for the physical and the
VIoLET networks.

Network Type P1 P2 P3 Q1
Physical 24% 45% 22% 7825%
VIoLET 19% 28% 18% 34%

Ping-pong application latency. We test the hypothesis that the ping-pong latency of the virtual
network (or the physical network) for the pub-sub application is lower than (100 + f %) of the latency
of the ideal network. The table below shows the smallest values of f % at which this hypothesis
holds, using the sign test. Smaller the value of f % and closer it is to 0%, the better. Here, we have
between n = 360–720 data points for the physical and the VIoLET applications.

Network Type P1 P2 P3 Q1
Physical 98% 185% 96% 96%
VIoLET 42% 57% 42% 45%
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E Monetary Costs for the Different Deployment Setups
Table 7 shows the hourly VM rental costs for deploying the VIoLET containers and the expected
costs for purchasing the devices for a corresponding physical deployment for the different setups.
This draws upon details from Tables 1 and 2 in the main article. We also show the number of
hours/days for which the VE has to be run for its cost to match the physical deployment cost.
As we can see, the capital costs for physical devices are high, costing over $1000 for just 25

devices, and over $66, 000 for 1000 or more devices. There may be additional management and
operational costs for maintaining the physical testbed that is not included here. In contrast, VIoLET
is billed per hour (or even per minute) of its usage on the VMs. These cost only $2.52/hour for
a 25-device setup, and $84/hour even with 1000 devices. In other words, one can run the VE for
about 30 days continuously before its operational costs match the capital costs of a physical setup.
Typically, the VE would be used for 10s of hours during testing, debugging and evaluation, and
instantiated on demand for what-if and fault analysis.

Table 7. Devices, their mapped VMs and the actual cost, for four different deployment setups

Deployment Setup→ D25 D100 D400 D1000
Physical Device/VM Host Count

∑
Cost ($) Count

∑
Cost ($) Count

∑
Cost ($) Count

∑
Cost ($)

Pi 2B 2 100 51 2,550 255 12,750 542 27,100
Pi 3B 6 300 36 1,800 96 4,800 292 14,600
Pi 3B+ 16 800 11 550 47 2,350 151 7,550
TX1 1 499 1 499 1 499 10 4,990

Softiron - - 1 2,400 1 2,400 5 12,000
Total 25 $1,699 100 $7,799 400 $22,799 1,000 $66,240

D16 VM 3 2.52/hr - - - - - -
D32 VM - - 5 8.40/hr 20 33.60/hr - -
D64 VM - - - - - - 25 84/hr

VE Runtime for Phys. Cost 674 hrs (28 days) 928 hrs (37 days) 679 hrs (28 days) 789 hrs (33 days)
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F Observed vs. Expected CPU Performance with Dynamism Enabled
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Fig. 15. Observed CPU utilization% and expected CPU% performance for sample devices of four types, on
D100
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G Reliability Timeline for D25
Fig. 16 shows the reliability timeline for all 25 devices of the D25 VE for a 2 hour experiment with
unreliability enabled, with a configuration of MTTF as µ = 600 secs , MTTR as λ = 300 secs and
control interval as ϵ = 30 secs . An upward line shows the device is working and a downward line
indicates that it has failed. The right Y axis indicates the average observed MTTF and MTTR for
each device.
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Fig. 16. MTTF/MTTR timeline plot for D25 deployment
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