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Abstract—Cloud infrastructure offers democratized access
to on-demand computing resources for scaling applications
beyond captive local servers. While on-demand, fixed-price Vir-
tual Machines (VMs) are popular, the availability of cheaper,
but less reliable, spot VMs from cloud providers presents an
opportunity to reduce the cost of hosting cloud applications.
Our work addresses the issue of effective and economic use
of hybrid cloud resources for planning job executions with
deadline constraints. We propose strategies to manage a job’s
life-cycle on spot and on-demand VMs to minimize the total
dollar cost while assuring completion. With the foundation
of stochastic optimization, our reusable table-based algorithm
(RTBA) decides when to instantiate VMs, at what bid prices,
when to use local machines, and when to checkpoint and
migrate the job between these resources, with the goal of
completing the job on time and with the minimum cost. In
addition, three simpler heuristics are proposed as comparison.
Our evaluation using historical spot prices for the Amazon EC2
market shows that RTBA on an average reduces the cost by
72%, compared to running only on on-demand VMs. It is also
robust to fluctuations in spot prices. The heuristic, H3, often
approaches RTBA in performance and may prove adequate for
ad hoc jobs due to its simplicity.

I. INTRODUCTION

Cloud computing has become a first-class resource plat-
form for application service providers to host their services
and complement their local computing infrastructure. The
lower barrier to entry, both in the initial infrastructure cost
and the service-based middleware tooling, has made clouds
popular for enterprise and scientific applications [4]. Public
cloud service providers such as Amazon Web Services
(AWS) and Microsoft’s Azure offer access to compute
resources through Virtual Machine (VM) instances with
diverse capabilities, and to persistent storage services.

Cloud providers follow a pay-as-you-go pricing model,
where customers pay for the resources they acquire on-
demand, in well-defined time and resource increments (e.g.
hourly increments, small/medium/large VMs), using a static
price list. Hence acquiring and releasing resources elastically
is important to maximize the utility. While this elasticity is
easy to leverage for repetitive, stateless jobs such as web
services, larger applications can use this elasticity to pick
a VM of the right size and use it exclusively rather than
compete with other jobs on the same VM. This puts the focus
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Figure 1: Amazon EC2 spot prices of medium and large
instances at us-east-la data center in Nov and Dec, 2012.
Fixed-price on-demand VMs are also shown for comparison.
Note that the spot prices of the medium VMs have significant
fluctuations in Nov while being more stable in Dec.

on resource allocation for a single job rather than scheduling
multiple jobs on few resources.

Recently, cloud providers such as Amazon are offering
spot priced VMs. These are typically spare data center
capacity offered at low prices to enhance the data center’s
resource utilization. Customers place their bids for VMs on
the spot market at a price level of their choosing [1]. The
cloud provider periodically publishes the actual spot prices
at which they will offer these VMs. Customers whose bids
are greater than the published spot prices will be given the
VMs. The cloud provider can vary the spot prices over time,
sometimes within minutes. Customers who have acquired a
spot VM pay the current spot price as long as it is less
than their bid price. However, when the spot price increases
beyond their bid, the VM is immediately revoked from the
customer. This is termed as an “out-of-bid event”, and all
the applications, state and data present in that VM are
lost. Thus, while spot VMs are usually cheaper than fixed-
price VMs and perform equally well, they are susceptible
to revocation due to the pricing mechanism of the cloud
provider which in itself is not a true market-based model. For
instance, in Fig.[I] the prices for medium-sized spot VMs are
usually $0.014/hour as compared to $0.13/hour for the fixed-
price ones, but spike to over $8/hour, thus revoking literally
all medium spot VMs. As a result, long running applications
that pay a cumulative higher cost for fixed-price VMs and
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Figure 2: The resource agent accepts jobs from users with
specified deadline constraints. The agent plans strategies to
provision resources and manage checkpoint/migration on
a hybrid cloud to finish the job by the deadline with the
minimum rental cost.

would benefit from using cheaper spot VMs will need to
be resilient, using simple ab initio restart after losing their
prior work, or through checkpoint and resume mechanisms.

Problem. We refer to the diverse and distributed com-
puting resources available to a customer: fixed-price on-
demand VMs E], spot VMs, and limited capacity on “free”
local servers or private clouds they own, as a hybrid cloud
environment (Fig. [2). Cloud VMs further have different VM
sizes and pricing based on computing capabilities. A job
with an expected runtime (core-hours) and a deadline for
completion has to make the best use of the hybrid cloud
to minimize total cost while ensuring completion within
the deadline. Our proposed resource agent makes decisions
on the life-cycle of this job — which resource to start on,
at what price to bid for spot VMs, when to checkpoint,
when to migrate and resume, and when to restart — to
meet the objectives. In particular, the challenge arises from
intelligently using spot VMs at the right bid price to balance
total cost against the deadline, and mitigating the impact of
out-of-bid events through job life-cycle management. This
is a novel problem that confronts real applications, with the
ability to maximize the economic utility of hybrid resources.

Results. With the foundation of stochastic optimization,
we propose a Reusable Table-Based Algorithm (RTBA)
which facilitates the resource agent’s decision-making for
a given job’s life-cycle on hybrid resources. The algorithm
is reduced to Bellman’s equation to meet the deadline and
cost minimization objective, proving the minimum expected
resource cost. We also propose three simpler heuristics (H1-
H3) for making these decisions that may prove adequate and
cost effective for ad hoc jobs. Our simulation study using
different job characteristics and 5 months of Amazon EC2
Spot VM pricing demonstrates the following:

e Our RTBA approach reduces the resource cost by an
1Both ‘fixed-price on-demand’ and ‘spot’ VMs are, in effect, acquired

on-demand. Our terminology is based Amazon AWS’s convention. We use
the terms ‘fixed-price on-demand’ and ‘on-demand’ VMs interchangeably.

average of 72%, compared to running purely on fixed-
price on-demand VMs, for the job workload we study.

o All three heuristics H1-H3 offer less cost savings than
RTBA with average improvements of 43%, 53% and
67%, respectively, compared to purely fixed-price VMs.
The heuristic H3 often performs close to RTBA and
may be more practical due to its simplicity.

« RTBA uses historical spot prices to develop a price
model which offers spot price estimates [2]]. We empir-
ically show the robustness of RTBA to different weakly
reliable price models. The RTBA’s cost performance
varies narrowly for different models but is always better
than on-demand VMs and the heuristics.

The rest of the paper is structured as follows: we present
related work in § define the hybrid cloud system and
job model in § [[Tl} formalize the problem mathematically in
§ develop optimal and heuristic-based solutions in §
and § summarize the results of our simulation study in
§ and offer our future directions and conclusions in
§ [VIII

II. RELATED WORK

Public cloud resources cost real money. Hence, from
a cloud user’s perspective, it is important to minimize
monetary cost, which is distinct from the minimization of
resource usage [24]]. The non-uniform pricing of spot VMs
offers the possibility of using more (but transiently cheaper)
resources for a cost effective solution. As a result, existing
resource minimization algorithms that may suffice for fixed-
price VMs are inadequate for variable-priced spot VMs. Our
work lies in the intersection of several research areas.

Hybrid Clouds. Cloud bursting is a term used when an
organization uses in-house servers to support normal appli-
cation needs and requests additional cloud resources during
workloads spikes [6], [9], [17]. We consider an analogous
but inverse model where jobs are primarily queued and run
on clouds where they have the option of choosing from
different VM types, but can also access limited off-cloud
local servers. This predicates the use of clouds for normal
operations at scale and sparse (but free) local resources as a
backup. One distinction here is that, instead of an overhead
to deploy jobs from local servers to the cloud, there is a cost
for moving the job and its data out of the cloud.

Hosting scientific applications on Amazon EC2 has
attracted significant attention [10], [13]. Some of them
consider cost and deadline factors in provisioning re-
sources [[16], [[L5], [L1]]. For instance, [[L1]] considers a similar
problem of minimizing user-payments with guaranteed task
deadlines. However, they do not consider spot VMs which
can potentially be even cheaper but also requires novel
approaches to ensure job resilience upon VM revocation.

Spot Pricing. The VM spot market was first introduced
by Amazon in Dec, 2009 to exploit their unused data center
capacity [1]. Spot VMs are usually much cheaper than their



fixed-price equivalents though they offer the same perfor-
mance, but without guaranteed resource availability. Spot
prices are influenced more by Amazon’s usage of on-demand
VMs and spare capacity rather than the spot bids received
or spot VM workloads that are submitted. Some studies
have analyzed historical spot prices in an attempt to reverse-
engineer the pricing logic. For instance, [2] speculates that
the prices are determined artificially by a random reserve
price algorithm. Moreover, [8] and [22]] employ Markov
chain models to characterize the spot prices. Importantly,
while [23]] shows the difficulty of predicting the spot prices,
they also demonstrate the effectiveness of probabilistic spot
price modeling and stochastic optimization, which serve as
the basis of our RTBA approach.

Resilience. While bidding at a higher price can reduce the
chance of revocation, the peak spot prices are way higher
than fixed-prices of VMs (Fig. [T), making spot VMs inher-
ently unreliable. Hence, bidding and fault-tolerance mech-
anisms are dual problems, and optimal decision-making
should jointly consider these two dimensions. Checkpointing
is a common approach to enhance resilience of jobs on
unreliable resources. There is rich literature on checkpoint-
ing for HPC applications with the overhead being mea-
sured and modeled [7], [14]. Costs of checkpointing and
migration may be asymmetric. Checkpointing cost may be
trivial for some applications [22], [23] while dominating for
others [19]]. So checkpointing must be done judiciously to
mitigate the overhead and additional resource costs.

[23] proposes an optimization problem which uses the
stochastic resource rental model to plan resource provision-
ing on spot and fixed-price VMs. However, a key simplifying
assumption in their model is that when an out-of-bid event
occurs, the state of the job can be immediately migrated to
an available on-demand VM. This is unrealistic as out-of-bid
events are not notified in advance and occur instantaneously.
Our proposed strategy addresses this lacuna. Specifically,
once a VM is revoked, the job resumes from the last
available checkpoint. In addition, the costs of checkpointing
and migration are modeled and the startup time for
acquiring VMs is considered — these matter in practice. In
other literature, out-of-bid events are handled either through
checkpointing, migration and replication strategies [21]],
[20], or through bidding schemes [3], [[18], [22]. Neverthe-
less, our work is unique since we co-design the bidding price
and fault-tolerance decisions, which together minimize the
cost while meeting the job’s deadline requirement.

III. SYSTEM AND JOB MODELS

A user submits a job J to our resource agent which
makes life-cycle management decisions for it. Both the job

2While both checkpointing and migration result in overhead times,
migration can incur additional network charge if the job and its data are
moved out of the cloud; often, in-cloud bandwidth is free while out-of-cloud
bandwidth is billed.

Table I: Conventional Notations

Variable | Description

C Job’s Compute requirement (core-hours)

D Job’s input data size (bytes)

Ta Job’s deadline constraint (hours)

TN Characteristics of the job J

t Logical time index

at Action taken at ¢

Ty Policy, a series of actions fromt =0to t = ¢
P} Spot price of the VM class ¢ at ¢

P Set of spot prices for all VM classes at ¢

c(t) Job’s progress at ¢

c(t) Job’s residual compute after the last checkpoint
x(t) Job’s state at ¢

A(xz(t)) | Set of available actions for state z(t)

u(t Class of the VM that this job runs on at ¢
p(v(t)) CPU cores available in the VM of class v(¢)
At Index of the time-slot within a whole VM hour
Se(+) Status of the job at ¢

“The notation (-) denotes the omitted argument of a tuple.
bThis is measured as the residual computing that is still needed at .

and the agent are assumed to be in the cloud initially.
The characteristics of the job J are described as a tuple
J(C,D,Tq), where D is the input data size, C' is the
number of core-hours of computation required, and T} is
the deadline by which the job has to be completed. The
followed notations are summarized in Table [Il Further, we
assume that the job speeds up linearly with the number of
CPU cores present on a machine (i.e., it takes a 1-core small
VM twice as long as a 2-core medium VM to finish a job).

Based on offerings from contemporary cloud providers,
the resource types we consider are: on-demand VMs, spot
VMs and off-cloud local servers. VMs further offer multiple
classes, differentiated by the number of cores (see Table
in Fig. ). Each class of on-demand VMs has a fixed
hourly price, depending on the number of cores; fractional
hours used are rounded up to whole hours. Spot VMs are
priced on a different policy: (1) The price of each class
varies independently, with time and orthogonal to the user’s
requests. Notably, the larger VMs with more cores are not
necessarily costlier than the smaller one (see Fig. El) (2)
Spot VMs have to be bid for at a specified bid price.
As long as the user’s bid is higher than the current spot
price, the VM is available to the user. (3) In case of out-
of-bid events, where the spot price increases beyond the
bid, the VM is immediately revoked and terminated with
loss of all state; the partial hour used is not be billed.
Otherwise, billing is by the hourly usage, as for fixed-
price VMs. Both on-demand and spot VMs are associated
with a start-up time — real clouds do not provision VMs
instantaneously. Utilizing off-cloud local machines does not
incur additional expense. However, transferring data from
the cloud to the local machines costs network bandwidth
that is billed proportional to the job’s data size, D.
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Figure 3: The state transition diagram for a job’s life-cycle
managed by the agent. Edges are labeled with actions taken
by the agent from the set A, or forced by the cloud provider.

Both checkpointing and migration use a resource’s time
during which the job cannot progress. The times taken to
perform checkpointing and migration are given as T = ¢(c)
and Ty = %, respectively, where e(c) is a function of
the job-progress E], D is the data size, and BW represents
the bandwidth associated with the direction of data transfer
(i.e., intra-cloud, local machine—cloud, or cloud—local
machine), each of which can be different. While some prior
works have ignored the cost of checkpointing [22], [23], in
practice it can dominate application runtimes [19]], particu-
larly when applications are checkpointed more frequently if
the mean-time between failure of the host machine is small.
We incorporate a swathe of parameters in our framework to
capture real system behavior and offer a wide solution space.
These parameters can be pruned to balance accuracy, ability
to collect the relevant information, and model complexity.

The time taken for checkpointing, migration and VM
startup E] can significantly undermine the economic benefits
indirectly. Specifically, during these operations, a job cannot
progress in its execution, and they cause the deadline to vir-
tually “shrink”. As can be imagined, an imminent deadline
might preclude the use of cheaper spot VMs and force us to
use more expensive resources, such as reliable on-demand
VMs or larger sized VMs, to ensure on-time job completion.
Thus, an intelligent agent, managing a job’s life-cycle, must
plan a series of actions that lead to the job’s completion by
deadline, and with the minimum total cost.

To begin with, we define the following terminology. The
state of a job at time ¢ is encoded by x (¢). A job can
reside in one of the six states, detailed later. The action, a;,
applied at time ¢ refers to the decision the agent makes at that
instant, in response to the observed conditions. The available
actions are given by the set A = {in, pr, ce, cp, cr, mi, wa},
which corresponds to initiating/bidding for an instance (in),
processing the job (pr), starting to checkpoint (ce), con-

3¢(c) models the checkpointing time as a function of the current job
progress. For example, the model in [14], [7] can be used as €(c).

4VMs take time to deploy and boot up. This overhead can be punitive
if one switches frequently between VMs.

tinuing checkpointing (cpf], resuming from a checkpoint
(cr), migrating the job (mi), and waiting for spot price to
drop (wa). The policy, 7T, 1), is a sequence of actions
{ao,ah ...7a(le,1)} from t = 0, ey (le — 1) [5], which
starts from the job’s initial state, through a sequence of
intermediate states, to the completion state.

We introduce the transition diagram, shown in Fig. E} to
describe the life-cycle of a job. It is assumed that the time-
axis is divided into a series of time-slots, and actions are
chosen at the start of a time-slot. There are five active states,
(1) Quiesced, (2) Startup, (3) Running, (4) Checkpointing,
(5) Migrating and (6) Finish, that are indexed by a number,
x(t) € [1,6]. As is shown in the figure, the available actions
at any given state is a subset of A, thus denoted by A (x (t)).

As is shown in Fig. [3] a job starts in the quiesced state.
This state is also entered if under-bidding, out-of-bid events
or strategic waiting (for the spot price to drop) occurs. The
job is in the startup state while it waits for a VM to be
provisioned. This is used to model VM startup cost. A job
that is being processed is in the running state. When a job
enters the checkpointing state from the running state, it stays
there while the checkpoint is completed. Note that both the
running and checkpointing states can be interrupted by an
out-of-bid event. In the migration state, the job transfers
data to a new machine and prepares to resume from that
point. This state captures both the migration time and data-
transfer cost. Lastly, the finish state is reached upon the job’s
completion. A job is assumed to remain in a state for at
least one time-slot. Further, the running and checkpointing
states incur VM rental costs, including partial hours, that are
tracked by a parameter At (illustrated in the next section).

IV. MATHEMATICAL MODEL

The spot price of each class of spot VM fluctuates along
the time-axis, forming a time-series which is described as
a spot price stochastic process (SPSP). Moreover, since
different classes of spot VMs are priced independently [20],
each class is modeled using an independent SPSP. Markov
chain has been exploited in existing literature to model the
spot prices [8], [22]. Similarly, we model each SPSP as a
Markov chain Pf, where ¢ refers to a class of spot VMs,
and t represents the time:

Pr{Pf:a’Pg_lza}:(l—ai) 1

Pr{P/ =b|P/_; =a,P} #a} = f5 (b|P # a)
where a and b refer to two spot prices, «; captures the
rate of price fluctuations, and f5 (-|P # a) is a conditional
probability distribution that describes the price transition
pattern [8].

Given a job tuple J (C, D, Ty;), the resource agent needs
to determine the policy to complete this job by the dead-
line. The status of a job at t is characterized as a tuple

SBefore checkpoining is completed, it is possible to quit checkpointing
and resume at the state where checkpointing has not been started yet.



Se(c(t), d (t), z(t),v(t), At)), where c(t) is the amount of
remaining compute requirements (core-hours), ¢'(t) is the
amount of remaining compute requirement since the last
checkpoint (core-hours), x(t) is the job’s state, v(t) is the
class of the VM this job is residing on, and At is the
index of the time-slot within a complete hour. As stated
in § this parameter tracks whether a complete VM
hour is finished, and users are charged once the whole
hour is reached. Note that despite the similar terminology,
“status” Sy(c(t),c (t),x(t),v(t), At)) and “state” x(t) are
two different concepts.

The life-cycle of a job corresponds to a route, con-
necting edges between nodes in Fig. [3] Here, we
describe mathematically as to how the job’s status,
Se(c(t),  (t), z(t),v(t), At)), is updated with the transition
between nodes (i.e., states) through edges (i.e., chosen
actions) in the state transition diagram. When an out-of-bid
event or a migration occurs, we update ¢(t + 1) = (),
which means the job’s progress is lost, and it has to resume
from the last checkpoint. On the other hand, when a check-
point is completed successfully, we update ¢'(t + 1) = ¢(t),
which implies that if an out-of-bid event occurs later, the
job can resume from this new checkpoint. When the action
pr is chosen, the job progress c(t) is updated as

c(t+1) = (1= Iout—of—biay) % [c(t) = p(v(t))]
+ [{outfoffbid} x ¢ (t)

where [ ) is an indicator function, which is equal to 1 if
the condition holds, and p(v(t)) gives the number of cores
in the VM o(¢) at time ¢.

Given the mathematical definition of the status update, the
objective function can be formulated. Due to the deadline
constraint, we impose the constraint ¢(Ty;) = 0. A policy
T (T4 —1)» @ sequence of actions {a;}, where t = 0, ..., (Tiy —
1), is chosen such that:

Ta—1

Wry-1) = min E Z u(at,S(Hl)) So---S¢, Po... Py
™(Ta1—1) t=0

subject to  ¢(Ty) =0 2)

where W7, _1) is the expected cost spent from ¢ = 0 to
t = Ty, resulting from the policy m(,,_1). The operator E
refers to the expectation over the spot prices, S; and P; are
the job’s status and spot prices at ¢, respectively, a; is the
action taken at ¢, and u (as, S(;41)) denotes the cost function
of that action and the resulting status S(;;1). Note that the
resulting status depends not only on the taken action a; but
also on the (probabilistic) spot prices P(;11), over which the
expectation is performed.

V. OPTIMAL SOLUTION USING RTBA

In this section, the optimal solution for Eq. [2| is found
with the formalism of Bellman equation, and the solution

then inspires our Reusable Table-Based Algorithm (RTBA)
to effectively plan the policy.

A. Optimal Decision-making

Bellman’s equation represents the value of an objective
function at a decision point in terms of the sum of an action’s
cost and the value of the residual objective function that
results from that action [S]]. Given the Markov chain assump-
tion Eq. along with the law of iterated expectations, Eq.
(@) is revised as:

Ta—1
W(szfl) = min [E Z u (at7 S(t+1)) St, Pt
"(Tai-1) t=0

= min E[u (ag, S1)|s0, Po] + Wiz, —2) (3)

ag

We arrive at Bellman’s equation with finite horizon from
t =0,...,(Tyy — 1). This equation reduces the choice of
a policy m(t,,—1) to a sequence of choices of a;. Note that
the subscript of W(r,,_1) should not be interpreted as time.
Instead, it refers to the length of the policy (i.e., the number
of actions), which leads to the cost Wz, _1). In particular,
given the current job state at time ¢ as x(t), we choose,
from the set of applicable actions A (x (t)) the action and
its corresponding sub-policy whose sum is the minimum.
Formally,

a; = arg Irclin E [u (at, S(t+1)) ’st, Pt] +Wiry—t—2y 4

which suggests a recursive relationship for the optimal
decision-making routine.

B. Action Profile

We illustrate in Fig. 4] how the resource agent chooses
the actions in response to spot price fluctuations, termed as
action profiles. The test period of the spot prices is chosen
from 00:00 a.m. to 10:00 a.m. on Dec, 19, 2012, when the
medium spot VM (dotted blue line) has more fluctuations
in the first half of the observation period while the large
spot VM (dashed green line) has more fluctuations in the
second half. Further, the SPSP model is based on the historic
spot prices from Aug, 2012 to Oct, 2012, the job’s compute
requirement (C) is set to 8 core-hours, and the deadline (T};)
is chosen as 10 hours.

In Fig. [ the chosen actions for the job are represented
as a solid orange line, and the out-of-bid events and check-
pointing are identified with X and * signs, respectively. In
the realistic scenario, VMs are initiated after a startup delay;
this is visible in the brief time spent in the Starfup action
prior to the job Running on a VM. There are three out-of-
bid events during the job’s life-cycle — the first two occur
while the VM is starting and the third one revokes the large
spot VM from the resource agent, causing the progress made
after the second checkpoint to be lost.

Since the large spot VMs are cheap at the beginning,
the resource agent selects them initially to run the job.
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Figure 4: The X-axis shows the job’s life time. The primary
Y-axis shows the current spot prices of medium and large
VMs (dotted blue and dashed green lines respectively). The
secondary Y-axis shows various actions taken by the RTBA
algorithm (solid orange line). The X and * signs represent
out-of-bid events and checkpointing.

The resource agent bids a large VM at 2:50 a.m. and then
performs checkpoints of its progress. After an out-of-bid
event strikes the large VM at 4:27 a.m., the resource agent
has to re-bid for a new VM and resume the job from the
previous checkpoint. Interestingly, this time the resource
agent selects a medium spot VM since it predicts that the
price of large VMs is likely to increase (as it does in the
latter half of the test period). The more stable-priced medium
spot VMs are used to finish the job at 7:40 a.m, with period
checkpoints and well ahead of the deadline.

C. Reusable Table-Based Algorithm (RTBA)

As is shown in Eq. 4] the optimal action at any time can
be determined if W is evaluated in a backward fashion from
the base case 7 = 0. Note that the subscript of W refers
to the length of the policy, which leads to the cost W... W,
represents the base case since it corresponds to the deadline,
when no more actions need to be decided. Intuitively, the
base case falls into one of two situations: completed jobs
(c(Ty) = 0) and incomplete jobs (c(Ty) > 0). Since the
latter case fails the deadline constraint, we set its Wy = oo.
On the other hand, the former implies the job has finished
at or prior to the deadline. Hence, Wy = 0 if At = 0;
Wy = po© if At # 0. This is because if a new VM-hour
cycle has not yet started (At = 0), users are not charged.
Else, users are charged according to the VM’s price, p?(o).

Starting from the base case, one can obtain the optimal
policy by solving Eq. ] in a backward fashion, from ¢ =
(Ty — 1) to t = 0, for every combination of (c(t),c (t)).
We solve this using a dynamic programming framework,
which stores the value of the objective function at ¢ = ¢
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Figure 5: Heatmap showing expected cost of running jobs
with different deadline constraints (X-axis, hours:mins) and
compute requirements (Y-axis, core-hours). The costs are
described by a color scale, green being cheap and red costly.
The grey region in the bottom left indicates jobs with short
deadlines that fail to meet the constraint.

for the evaluation of the value at ¢t = (¢ — 1). Thus, the
complexity is O(C?Ty,).

Scanning and plotting the solution space as a heatmap in
Fig. 5 offers visual insight. We build the SPSP model using
historic spot price data from Aug, 2012 to Oct, 2012, and
programmatically solve the optimization problem for diverse
combinations of compute requirements and deadlines. The
value of the objective function for different deadlines (X-
axis) and compute requirements (Y-axis) is depicted using
a color scale. This heatmap highlights the optimal trade-
offs between compute requirements, deadlines and budgets,
and helps answer the following questions: (1) Given a
budget and the job’s compute requirement, what is the
minimum deadline can one set? (2) Given the job’s compute
requirement and deadline, how much would one expect to
spend? and (3) Given a job’s compute requirement, where
is the “sweet spot”, where a small concession on the
deadline offers a significant cost reduction (i.e., sharp color-
transitions in the heatmap)?

This solution inspires our Reusable Table-Based Algo-
rithm (RTBA). Since a table is being constructed when we
solve the optimization problem backwards, this table, termed
as the strategy table, can be queried whenever an action
needs to be decided. Notably, the strategy table is reusable
for other jobs if their compute requirement C' and deadline
constraint 7y fall within this table’s bound. This is because
if the job falls within this bound, there should be an entry in
the strategy table which corresponds to this job, and which
was solved as a sub-problem when constructing the table
using dynamic programming. Essentially, RTBA constructs
a strategy table offline, and when an action is to be decided,
performs a simple table look-up. The table can be reused
and expanded if larger bounds are necessary. Importantly,
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Figure 6: The value of residual compute requirement, ¢(t), is
represented on top as a blue block, and the residual compute
required since the last checkpoint, ¢’ (¢), is represented below
as a yellow block. At the start, ¢/(t) = c(¢t) since no
checkpoints have been made. For H1, ¢/(Tcr) = ¢(0), and
for H2, ¢ (Tor) = ¢(Tor), where Tor remains constant.
For H3, ¢/(Tcr) = ¢(Tcor), but Tog is pushed forward.

while the construction of the strategy table depends on the
modeled SPSP, whose pattern might change over time [2],
we experimentally observe that RTBA is robust over time
due to the probabilistic approach to spot price modeling [23].
Therefore, near-optimal solutions can be achieved even with-
out frequently reconstructing the strategy table to include
recent spot prices.

VI. HEURISTIC-BASED SOLUTIONS

While RTBA offers an optimal solution, constructing the
strategy table can be costly, particularly if the number of
jobs is too small to amortize the construction cost, or
the job diversity is too large to enable reuse. We propose
three heuristics to facilitate agile decision-making for ad
hoc jobs. These heuristics also offer baselines of increasing
sophistication to compare against RTBA.

Spot prices are generally much cheaper than their on-
demand counterparts. Intuitively, the more one uses spot
VMs, the less they are going to spend overall. Essentially,
our heuristics process a job using spot VMs until a potential
out-of-bid event would threaten the job’s feasibility to com-
plete on-time. We define critical point, Tcg, as the time
beyond which a job cannot be completed after resuming
from its checkpoint. This illustrated in Fig. [

&)

Thus, the critical point is a function of ¢/(¢), the job’s
remaining compute requirement at the last checkpoint, and
p (v (t)).the processing capability of its current (spot) VM.
The critical point locates the transition from spot to on-
demand VMs. We refer to the time prior to the critical
point as spot stage and to that after the critical point as
on-demand stage. The three heuristics vary in when they
perform checkpoints. We define the naive critical point by
setting ¢/(t) = C in Eq. [5| The naive critical point is
conservative in choosing the transition point, and ensures
that the job can restart and complete even if no checkpoints
have been performed in the spot stage.

H1:Two-Stage Algorithm. This heuristic uses only the
spot VMs prior to the naive critical point, does not perform
any checkpoints. It restarts the job on the on-demand VMs
if the job is not completed by the naive critical point. This
can lead to over-payments since the expenditure on the spot
stage does not contribute to the job’s completion if it did
not finish before the naive critical point.

H2:Boundary Checkpoint Algorithm. This heuristic is
similar to HI but attempts to transfer the progress made
in the spot stage to the on-demand stage. When the naive
critical point is reached, this heuristic performs a checkpoint
prior to switching to on-demand VMs, and resumes the job
from that checkpoint. However, it is still vulnerable to out-
of-bid events close to the naive critical point.

H3:Rolling Checkpoint Algorithm. This heuristic tries
to push forward the critical point to allow the job to continue
running on spot VMs for longer. Due to the functional
relationship between Teog and ¢/ (t), we periodically check-
point and update ¢'(t). We define the effective frequency,
¢y, as the duration between two consecutive checkpoints.
Ideally, F.s; should allow the job to progress sufficiently
to outweigh the cost of checkpointing. For simplicity, we
fix F,;y to be equal to the average lifetime of a particular
spot CM class multiplied by its number of cores. A more
sophisticated approach can set F.y; as a function of the
current spot price.

VII. RESULTS
A. Simulation Setup

We consider five machine types, (Spot medium, Spot
large, On-demand medium, On-demand large, Local
medium). The medium machines have 2 CPU cores while
the large VMs have 4 cores. We use Amazon EC2’s pricing
policy on us-east-1a data center E} Each time-slot ¢ in our
model spans 10 minutes. The overheads for VM startup,
checkpointing and migration between the cloud and local
machine occupy one time-slot. On the other hand, the
overhead for migration within the cloud needs zero time-
slots, assuming it can interleave with VM startup time. For
the job J(C, D, Ty;), we vary the compute requirement C
between 2 — 8 core-hours while the input data size and
deadline constraint are also varied in 10 minute increments.
Our focus is on long-running jobs (i.e., O(hours)) which
cumulatively cost more and hence have more to gain.

The strategy table of RTBA algorithm is constructed on a
server with 2x8-core AMD Opteron 3.0GHz CPU and 64GB
RAM. The time to construct the strategy table for different
C and Ty values is measured. However, due to the limited
space, we report the time to build the table for an 8 core-hour
job with a 12 hour deadline as 24.74 minutes on average.
For our SPSP model, f% (|P # a) can be obtained through

%Medium VM-hour costs $0.13, Large VM-hour costs $0.26, and the
data transfer-in and -ot costs are $0.00 and $0.12 per GB
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Figure 7: Average cost (Y-axis) to run 8 core-hour job in
Jan, 2013 with various deadlines (X-axis) using RTBA. Plots
show different training data used in the SPSP model. Using
older data reduces cost benefits. Jan, 2013 line is ideal case.

the histogram of the spot price history. Since our SPSP
model implies that the interval between two consecutive
price changes forms a geometric distribution with parameter
a;, we set a; as the inverse of the empirical mean of the
intervals between two consecutive price changes [12]]. We
discretely choose the four most probable spot prices as our
bidding prices, incremented by $0.001 as a safety buffer.

B. Impact of Training Interval

In the first experiment, the impact on cost reductions by
using different training intervals to build the SPSP cost
model is investigated. Four training interval durations in
2012, (Sep-Dec, Oct-Dec, Nov-Dec, Dec-Dec), are used to
build four SPSP models, which are then used by the resource
agent to construct a strategy table for scheduling the 8 core-
hour job with varied deadlines in Jan, 2013. Further, we also
build an SPSP model using Jan, 2013 data post facto as an
ideal case. Fig. [7] reports the average of costs obtained for
running the 8 core-hour job for each deadline, once for every
1 minute sliding window in Jan, 2013, i.e. each data point
is averaged on 31 x 24 x 60 runs.

When the training data is more outdated, the cost re-
duction becomes less. For e.g., in Fig. E], Dec-Dec, 2012
appears closest to the ideal case of Jan, 2013. This ob-
servation agrees with [2], which indicates that Amazon’s
pricing mechanism changes between epochs. Notably, while
the SPSP model trained with older data digresses from
the contemporary price pattern, the performance of RTBA
only degrades slightly, demonstrating the robustness of our
approach. So, it is possible to reuse, rather than often recon-
struct, the strategy table even with varying price patterns.

C. Performance Comparison between Algorithms

In the second experiment, the performances of RTBA, H1,
H2, and H3 are compared. Importantly, we investigate the
influence of diverse job deadlines on the job’s cost. As is
intuitive, more relaxed deadlines offer more opportunities for
the resource agent to help reduce costs. We use 8 core-hours
as our candidate job’s compute requirement.
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Figure 8: Average cost (Y-axis) to run 8 core-hour job with
different deadlines (X-axis) using proposed strategies, in (a)
Nov, 2012 and (b) Dec, 2012. The cost when using only
on-demand medium or large VMs remains flat at $0.52.

We use spot prices from Aug-Oct 2012 as training data for
the SPSP model. Two sets of simulations are conducted — for
jobs submitted in Nov, 2012 and in Dec, 2012. The spot price
patterns for these two months are very different (Fig. [I).
The spot prices in Nov, 2012 have standard deviations of
Omedium = $4.88 and 0jqrge = $0.1419 for medium and
large VMs. Nov is more variable than Dec, 2012 prices,
which have oy,cqium = $0.5284 and 0y4rge = $0.3766 for
the respective VMs. In Fig. [§] we plot the average cost for
completing the 8 core-hour job on the Y-axis with different
deadlines on X-axis when using only on-demand VMs, or
the RTBA, H1, H2, or H3 strategies. As before, we repeat
the job for every 1 minute interval in Nov, 2012 (Fig. [8a)
and Dec, 2012 (Fig. [8a), and report the average costs. Note
that the on-demand approach and the heuristics operate on a
single VM class during a job’s life-cycle. While RTBA can
switch between hybrid resources, we disable the access to
local machine for a fairer, cloud-centric comparison. The
heuristics use a bid price set at the most probable spot
price, incremented by an additional $0.001 to offer a bid
advantage. For H3, the effective frequency is statically set
as the average lifetime of the considered VM class multiplied
by its computing power (i.e., number of cores).

In general, except for the on-demand only approach,
the costs reduce as the deadlines are relaxed for all our
algorithms. RTBA is best able to exploit the looseness of
the deadline and outperforms all others (green dotted line
on the left), providing the minimum (optimal) costs. Further,
we observe a few sharp drops, termed as cost cliffs, for our
proposed strategies. These result from Amazon’s policy of
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to using only on-demand VMs are shown for Nov, 2012.
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while RTBA can switch VM classes. Hence, two columns
(medium and large VM) are shown for each heuristic.

charging in hourly VM increments. Note that these cliffs are
also visible as sharp color transitions in the heatmap (Fig. [3),
that offers a parameter sweep of jobs and deadlines.

In RTBA, the cost cliffs appear earlier and are deeper
than for H3, and similarly with H3 and H2, and with H2
and H1. More sophisticated approaches are more capable of
advanced planning and checkpointing of the job’s progress.
The cliffs are inflection points. Deadlines that are in the
proximity of these cost cliffs can benefit (or suffer) from
small relaxations (tightening) of the deadlines it offer sig-
nificant cost reductions (penalties). On the other hand, the
heuristics also exhibit cases where they overpay, relative
to the on-demand only approach. These result from the
progress lost by the spot VMs due to out-of-bid events. In
particular, H1 is the most vulnerable due to the absence of
checkpointing while the overpayment is alleviated in H2 and
H3. Notably, the performance of H3 is close to that of RTBA
when the deadline constraint is loose, and the spot prices are
stable, as shown at the tail of the curves in Fig. @

D. Impact of Compute Requirement

In the third experiment, we use the same configuration as
the second one except for varying the compute requirement
for the job. The cost reductions achieved for our algorithms,
normalized against using only on-demand VMs, are com-
pared for a range of compute sizes (2, 4, 6, 8 core-hours),
when run in Nov, 2012. The cost reduction for each compute
size is averaged over a range of deadline constraints, from
1x to 3x of the compute size. As can be expected, Fig. 9]
shows that the relative cost reduction of RTBA outperforms
the other heuristics. However, as the compute requirement
becomes larger, the advantage of RTBA shrinks. Further,
the overhead to calculate the RTBA strategy table becomes
acute for job’s with large compute sizes. Given these, the
RTBA and H3 algorithms are complementary; RTBA is
advantageous for small sized or repetitive jobs while H3
is more useful for ad hoc job workloads or large jobs with
punitive costs for building the strategy table.
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Figure 10: The costs (Y-axis) for processing 8 core-hour
jobs with varied input data sizes. RTBA with and without
the local machine converge as the deadline increases.

E. Impact of Input Data Size

We investigate the relationship between a job’s input data
size D and cost to run the job. We retain the 8 core-hour job
with different deadlines, and run it for Nov, 2012, averaging
the costs from over a 1-minute sliding window. We compare
RTBA with the on-demand only VMs, and further compare
RTBA with and without access to local machines. Since the
local machine is “free”, there is an inclination to switch to
them. However, as the job and its input data are initially in
the cloud, there are bandwidth charges proportional to D
that are incurred to ship the job to the local machine.

As is shown in Fig. |10} for the tightest deadline constraint,
the four curves for the RTBA algorithms cost the same as
using only on-demand VMs since there is not enough time
to migrate out of the cloud or to use spot VMs. But, as the
deadlines are relaxed, the difference between RTBA with
and without the local machine narrows as the cost of getting
the work done on cheaper spot VMs approaches the data
transfer cost to the free, but scarce, local machine.

VIII. CONCLUSION AND FUTURE WORK

Our work addresses the issue of effective and economic
use of hybrid clouds for managing the life-cycle of long
running jobs. It actively leverages the cheaply-priced spot
VMs that have been less studied so far. A resource agent
serves as a “personal” adviser for individual jobs running on
exclusive VMs, with the goal of suggesting the right actions
to meet the specified deadlines while minimizing rental
costs. Our system and job models attempt to mimic real-
world clouds and applications. Our simulation study is based
on observed spot and on-demand VM prices on Amazon
EC2, and incorporates both compute costs and asymmetric
network bandwidth rates charged by cloud providers.

While the computational complexity of RTBA makes
it tractable only for repetitive jobs, the H3 heuristic is
simpler while nearing optimality in empirical studies. Hence,
our work goes beyond a theoretical stochastic optimization
problem and can be used in practice for average cost savings
of 60% — 72% for H3 and RTBA.



Our approach can be extended along two dimensions.
RTBA can be modified to accommodate the scenario where
jobs are allowed to spillover the deadline but incur some
penalty. The resource agent tends to be more aggressive
when the penalty is outweighed by the saving which results
from applying speculative strategies. Secondly, the QoS can
be defined in terms of the rate of successful job completions,
allowing the agent to balance risks and rewards.

The agent’s role can be viewed from another perspective.
As a resource broker, the agent owns some local resources
to process end-user requests. By monitoring the spot market,
the agent can decide whether to use its own resources
or cheaper spot VMs to process jobs so that fragmented
computing resources can be leveraged for productive work.
This, in the spirit of the spot market, is a win-win-win
situation for the broker, end-users and the cloud provider.
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