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Abstract—Component-centric distributed graph processing
platforms that use a bulk synchronous parallel (BSP) pro-
gramming model have gained traction. These address the
short-comings of Big Data abstractions/platforms like MapRe-
duce/Hadoop for large-scale graph processing. However, there
is limited literature on foundational aspects of the behavior
of these component-centric abstractions for different graphs,
graph partitioning, and graph algorithms. Here, we propose a
analytical approach based on a meta-graph sketch to examine
the characteristics of component-centric graph programming
models at a coarse granularity. In particular, we apply this
sketch to subgraph- and block-centric abstractions, and draw
a comparison with vertex-centric models like Google’s Pregel.
First, we explore the impact of various graph partitioning
techniques on the meta-graph, and next consider the impact of
the meta-graph on graph algorithms. This decouples the unwieldy
large graph and their partitioning specific artifacts from their
algorithmic analysis. We use 5 spatial and powerlaw graphs as
exemplars, four different partitioning strategies, and PageRank
and Breadth First Search as canonical algorithms. These analysis
over the meta-graphs provide a reliable measure of the expected
number of supersteps, and the communication and computational
complexity of the algorithms for various graphs, and the relative
merits of subgraph-centric models over vertex-centric ones.

I. INTRODUCTION

Distributed graph processing platforms have gained atten-
tion off-late as emerging domains such as social networks,
smart transportation and deep learning grapple with large-scale
graph datasets. Such domains have limited access to high-
end HPC hardware, and instead leverage commodity clusters
and Clouds for Big Data processing. MapReduce is also less
suited for graph computation, given the iterative nature of these
algorithms that causes repetitive 1/0 [/1].

Component-centric  distributed graph processing plat-
forms [2f], [3], [4] inspired by Google’s Pregel [5]] have gained
attraction due to their simplicity and scalability. Pregel offers
a vertex-parallel computation model where application logic
is written from the perspective of a single vertex. The logic
can perform computation on the vertex and pass messages to
neighboring vertices. The execution proceeds in a Bulk Syn-
chronous Parallel (BSP) manner, where vertex computation
and bulk messaging — the pair of which forms a superstep —
alternate and iterate until the algorithm terminates.

While the vertex-computation itself executes in an embar-
rassingly data parallel manner on all vertices, the fine-grained
Pregel model has communication complexity that is often
O(edges), and whose coordination overhead, as measured by

the number of supersteps, is O(diameter) for a given graph. As
a generalization, component-centric models like Giraph++ [4],
Blogel [3] and our own GoFFish [2] have been proposed.
Here, the unit of computation is coarser than a single vertex,
and these mitigate the large communication overheads, lack of
data co-location, and large number of iterations seen in Pregel,
particularly for large-diameter graphs.

While there has been a lot of literature on empirically
evaluating these distributed graph processing platforms for
different graphs and algorithms, they do not offer a formal
basis of analyzing and generalizing these behaviors [[6]. Graph
applications are often irregular, and their runtime characteris-
tics inherently hard to model. Further, these coarser models are
sensitive to data locality and load imbalances caused by graph
partitioning and placement [/]. The large graph structure,
distributed nature of partitions, and non-stationary behavior
of graph algorithms makes them unwieldy to examine, and
their runtime performance hard to predict.

In this paper, we propose a coarser version of the partitioned
graph, that we term meta-graph, as a analytical sketch over
which to model and analyze the characteristics of distributed
graph algorithms. Meta-graph are composed of meta-vertices
that represent coarse components in the partitioned graph, such
as weakly connected components (WCC), and meta-edges that
indicate edges between vertices in the meta-vertices. In partic-
ular, we target coarse-grained component-centric models [2],
[3], and draw a relative comparison of their behavior with
vertex-centric models. Since partitioning is an intrinsic part
of distribute graph processing, we take a two-step approach:
First, we explore the impact of different partitioning strategies
on the meta-graph for a graph. Next, we examine the behavior
of graph algorithms for a given meta-graph that acts as a proxy
for the original graph. This allows us to draw algorithmic
inferences based on the coarse-sketch that is much smaller,
without graph and partitioning specific artifacts.

This work extends our previous work [[8] that was limited to
examining the BFS algorithm for three smaller graphs using a
single partitioning strategy. Here, we generalize that approach
by formally introducing the meta-graph sketch, exploring
three different partitioning strategies, include PageRank in the
algorithmic analysis, and validate these results for 5 large
graphs with spatial and powerlaw topologies.

Our goal is to offer a methodological approach to analyze
and gain insights on graph partitioning and algorithms, a priori



without having to implement complex partitioning and place-
ment code, or run large experiments, for component-centric
models. It is not our direct goal to propose new partitioning
strategies to improve the performance. While we use our
GoFFish [2]] subgraph-centric model to empirically validate the
analysis, this can be generalized to other component-centric
frameworks such as Blogel [3]] as well.

In this paper, we make the following contributions:

1) We introduce four common graph partitioning strategies
used by component-centric programming models, Hash,
Default, Flat and Hierarchical (§ [[II).

2) We present the idea of a meta-graph sketch and offer
a detailed analysis of the impact of these partitioning
strategies on the characteristics of the meta-graph (§ [[V).
We use two spatial and three powerlaw graphs to illustrate
this analysis.

3) We use the meta-graph for a partitioned graph to analyze
the behavior of two canonical graph algorithms, PageR-
ank (PR) and Breadth First Search (BFS), designed using
a subgraph-centric model, and contrast them against a
vertex-centric model (§ [V). The analysis examines the
supersteps, communication and computational complex-
ity of the algorithms, and further correlates this analysis
with the empirical results for these graphs and algorithms
using GoFFish and Giraph.

These contributions are complemented by § where we
examine related work on component-centric graph algorithms,
and analytical models for evaluating graph algorithms; and our
conclusions presented in § [VI]

II. RELATED WORK

We discuss related work on distributed graph processing
platforms as background, empirical means to evaluate and
analyze such graph platforms and algorithms, and formal
methods to examine graph algorithms and other Big Data
platforms.

A. Graph Processing Platforms

Google’s Pregel is an iterative vertex-centric programming
model [5] in which a user has to write the logic for a
single vertex. It uses a BSP execution model where multiple
workers on one or more machines independently operate on
subsets of vertices in a graph, and execute the common user
logic on all their vertices. Vertices are typically hashed onto
workers to balance the number of vertices per worker. The
logic can compute on and update the vertex’s value, process
messages received, and emit messages to neighboring vertices.
A barrier synchronization ensures that messages generated by
vertex computations are delivered in “bulk” to destination
vertices, and then the next iteration of compute starts. The
graph algorithm executes as a series of these supersteps
till all vertices vote to halt and have not generated new
messages in a superstep. Apache Giraph [33] is an open source
implementation of Pregel.

Distributed Graphlab 9] contrasts with Pregel by offering
asynchronous “pull” based state transfers between vertices

rather than barrier-synchronized push of messages at superstep
boundaries. While potentially faster than Pregel, algorithms
are harder to develop, even harder to predictably analyze, and
the distributed locking protocols makes the implementation
difficult.

Other component-centric platforms such as Giraph++ [4],
GoFFish [2]] and Blogel [3]] have a coarse unit of computation
than a vertex. While the former applies the user logic on a
graph partition, the latter two offer a subgraph or a block, or
more generally, a WCC present in a partition as the logical
unit of computation. This allows coarse-grained computation,
such as traversals on all vertices and edges present in the com-
ponent, to take place in a single superstep, and bulk messaging
between partitions/subgraphs happens at superstep boundaries.
The graph is partitioned to increase the connectivity of vertices
held by a worker, and reduce the edge-cuts across workers.
Each component offers a degree of parallelism, and can be
operated by an independent thread. This has the advantage
of using shared memory graph algorithms in a subgraph, and
distributed algorithms across supersteps.

As a result, these frameworks can converge in fewer super-
steps, and the messaging is limited to ones between subgraphs
rather than fine-grained ones between vertices. However, while
these may seem intuitive or be demonstrated experimentally,
a formal analysis of the behavior of the component-centric
programming models for different algorithms and graphs has
not been undertaken as yet. We address this gap.

B. Empirical Analysis and Optimization

Experimental observations have shown that workload im-
balances in distributed graph-processing systems lead to slow
convergence, high communication or computation cost. These
imbalances are a function of the structural properties of
graphs, diverse partitioning approaches and irregular runtime
behavior of algorithms. [[10] offers algorithmic optimizations
such as finishing computations serially, and on-demand edge
cleaning to reduce communication cost and the number of
supersteps. Others [11] describe desirable properties for dis-
tributed graph algorithms and proposed optimizations to some
graph algorithms. System level optimizations such as [12]]
including domain specific languages [13|] have been proposed
to efficiently process large workloads. While a rich area for
research, these optimizations have been proposed to address
anecdotal limitations, and validate through experiments, rather
than a formal analysis of the deficiencies and their resolution.

Efficient graph partitioning is integral to distributed graph
processing systems since it affects the execution efficiency
of jobs. There has been significant work on this NP-hard
problem [[14]]. The vertex-balanced graph partitioning problem
has been extensively researched [15]], [16], and these address
the problem of efficiently partitioning a graph into k-way
vertex-balanced partitions, but do not consider the number of
and sizes of components within each partition. Partitioning
a graph by balancing its edges [17] has also been consid-
ered. Literature shows that if the distributed graph platform
aggregates messages between hosts, like Pregel’s combiner,



the communication cost on an edge-balanced partitioned graph
would be much lesser than a vertex-balanced one.

Formally understanding the impact of the partitioning on
the graphs and graph algorithms is essential to select the
appropriate partitioner, and should not require us to run the
algorithm to understand the impact. Our proposed meta-graph
offers an intermediate analytical sketch based on the parti-
tioning of graphs to analyze their expected performance by
different graph algorithms. We explore the impact of various
partitioning algorithms of the meta-graph as well.

The a priori partitioning strategies are complementary to
runtime strategies that are tuned to specific graphs and al-
gorithms based on performance monitoring. GPS [18] and
Pregel [5]] automatically repartition vertices of the graph across
the nodes of a cluster depending on their messaging patterns
between supersteps. Runtime load monitoring for dynamic
migration of vertices has also been explored in Mizan [19].
Our own work [20] describes elastic placement of partitions
on cloud VMs, based on a priori knowledge of non-stationary
graph algorithms’ behavior. While such dynamic strategies
are beneficial to address minor deviations in the original
partitioning, static analytical models can ensure that the initial
partitioning itself is good to begin with for the given graph
and algorithm. We address this problem.

C. Formal Analysis of Big Data Platforms

There have been formal models developed to analyze the
complexity and capabilities of Big Data programming models
such as MapReduce [21]], [22]. Such foundations help gener-
alize the characteristics of the programming and data models,
and offer stronger guarantees than just empirical results. Such
methodologies are lacking for component-centric distributed
graph processing abstractions, which we address here.

Graph traversal techniques such as BFS, random walks are
used to sample large network topologies [23[]. Authors in [24]]
have used theoretical analysis of BFS and shown that structural
properties of the graph can be used to reduce computational
bottlenecks of BFS. We take a similar approach to the analysis
of distributed BFS and PR, using a meta-graph sketch as proxy
for the partitioned graph.

Coarsening is a common technique used to reduce the size
and complexity of the problem such that the reduced problem
has similar characteristics to the original problem. It has been
used in approximation algorithms for NP hard optimization
problems such as Maximum-Weight Independent Set [25]. In
[26], coarsening is used for computing betweeness centrality
in dynamically changing graphs. Multi-level graph partitioning
techniques also rely on coarsening for getting a good initial
clustering to create smaller graphs which are structurally simi-
lar to the original graph [15]. We leverage such an intuition in
designing our coarse meta-graph sketch, and offer an analysis
of the impact of partitioning on this sketch, and the sketch on
graph algorithms.

III. COMPONENT-CENTRIC PARTITIONING STRATEGIES

In a subgraph-centric framework, such as GoFFish or
Blogel, the graph is partitioned onto distributed machines,
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Fig. 1: Three partition strategies illustrated for a graph G, on
a cluster of 3 machines having 2 cores each.

and subgraphs within partitions identified as components for
computation on those machines. The distribution of subgraphs,
both in terms of their sizes and their numbers — on each
machine and across different machines — has an impact on the
load-balancing on the machines in each superstep. The barri-
ered superstep causes less loaded machines to be idle while
waiting for more loaded machines to complete processing,
thereby reducing the average cluster utilization and increasing
the makespan. Hence, one of the goals of the partitioning
should be to balance the degree of component parallelism in
each machine while also balancing the size of each component.

An extreme form of exposing parallel components and
balancing their sizes is to use a vertex-centric model. So,
to leverage the benefits of shared-memory processing that is
available to coarse components, we should also try to maximize
the size of each component. One intuition that arises from
this is to have as many large components as the number of
processing cores in the cluster, ensure each component is as
large as possible, and also balance their sizes — assuming
all cores are symmetric in their performance. This exposes
as much coarse component parallelism as the number of
processors, and provides the opportunity to process more of
the graph in a few coarse supersteps.

At the same time, the edge-cuts between the partitions
processed by workers should also be minimized. There are
two factors here: the remote meta-edges going between com-
ponents on different machines, and the local meta-edges
between components on the same machine but owned by
different workers/partitions. The former contributes to network
latency in addition to the coordination overhead of spanning
supersteps, while the latter is messaging between processes
within the local host, but still requiring a barriered superstep
for message exchange.

Partitioning large graphs is a hard problem, and there
has been significant work on developing approximate so-
lutions, as we have discussed. Here, we leverage existing,
well-understood partitioning algorithms that are applicable to
component-centric framework, and whose analysis we will
benefit from.

Formally, we consider the given graph that has to be
partitioned as G = (V, E) where |V | = n and |E| = m are the
number of vertices and edges, respectively. We are deploying
the partitions over a cluster of & symmetric machines, each
having ¢ cores. Let M = (V,E) be the meta-graph formed
after the partitioning, where V is the total number of subgraphs
(meta-vertices) created and E the number of meta-edges be-
tween them.



A. Default Partitioning [DP]

A naive partitioning approach is to divide the graph G into
k parts: P = (VhEl), Py, = (V27E2), eeny, Py = (Vk7Ek)
using vertex-balanced partitioning such that (1) Zle |Vi| =
V| and Vi, |V;| ~ %, and (2) the number of edge cuts
between partitions is minimized. We distribute partition P;
to machine ¢, and subsequently identify WCCs that lie wholly
within P;, which form the subgraphs. Existing algorithms such
as METIS [15] offer such vertex-balanced partitioning. Fig. [I]
illustrates this approach, and the two others.

A drawback of this strategy is that in practice, each partition
ends up with one large WCC and hundreds of tiny subgraphs.
Having one partition per machine causes 1 core to be busy with
the large subgraph while the remaining c—1 cores process the
tiny subgraphs quickly in a superstep, and remain idle.

B. Hierarchical Partitioning [HP]

In this strategy, we initially partition G into k vertex-
balanced parts, Py, ..., Py, that attempt to minimize edge-
cuts between them, just like the DP strategy. Each partition is
placed on its own machine, and further divided into ¢ vertex-
balanced partitions, P ., thus creating as many partitions as
the number of cores. The connected components are identified
within each of the k X c¢ partitions to obtain the subgraphs.

Hierarchical partitioning generates as many partitions as
the number of cores and if there is one large subgraph per
partition, it will lower the load imbalance between the cores.
Further, the first level of partitioning identifies &k partitions
that are least connected to each other, and hence can lead to
lower network transfer between supersteps. The second level
of partitioning will, however, introduce intra-machine local
meta-edges between the components in different partitions of
a single machine. These are analyzed in the next section.

C. Flat Partitioning [FP]

In flat partitioning, we directly partition the graph G into k x
c vertex-balanced partitions. We distribute c of the partitions to
each of the & machines, at random. The WCCs are identified
within each partition in a machine to form subgraphs.

This retains the benefit of HP by having as many partitions
as the number of cores. However, since it does not consider
the connectivity between partitions when placing them on
different machines, the number of remote meta-edges and
hence inter-machine communication costs may increase. At the
same time, unlike HP, the total number of meta-edges, both
remote and local together, would be fewer since the single-
level partitioning has a global view of the whole graph. In FP
as well as HP, the increase in the number of subgraphs, relative
to DP, can have a negative impact on number of superstep.
We empirically analyze these performance implications on
different algorithms and graphs next.

D. Hash Partitioning [HA]

For the sake of completeness, we also list hash partitioning
which is used by vertex-centric models, but not by coarse
grained models. Here, form p = k X c partitions, and each

vertex is hashed based on its ID and placed in one of the
p partitions. This trivially ensures vertex balancing across
the partitions and ensures vertex-parallel applications have
uniform access to the CPU core. However, as we see later,
these have poor communication complexity and are less suited
for edge-intensive algorithms.

IV. ANALYSIS OF PARTITIONING STRATEGIES’ IMPACT ON
THE META-GRAPH

We explore the impact of each partitioning strategy on the
structure of the meta-graph, as this affects the analytical and
empirical behavior of distributed graph algorithms that are
discussed later. We introduce the meta-graph concept, and
consider the number of vertices and edges, weights and the
diameter of the meta-graph formed from a partitioned graph.

A. Definitions

Let the undirected graph which is partitioned and on which
computation is performed be G = (V, E') where |V| = n and
|E| = m. A p-way graph partitioning will return partitions,
P ={P,Ps,...,P,} where P, = (V;, E;). V; represents the
vertices in partition P; and J!_, V; =V and V,NV; = @
Vi, j € (1,p).

Each partition P; has one or more the subgraphs, each of
which is a connected component such that their vertices can
be reached using local edges in that partition. As a result of
partitioning, GG is decomposed into a set of g subgraphs SG =
{8G1,8Gs,...,SG,} across all partitions, where ¢ > p. Let
SG, = (V?, E?, R;) where V;° is the set of vertices in the
connected component, I} is the set of local edges wholly
within the connected component, and R; is the set of remote
edges connecting the vertices in this subgraph with vertices in
other subgraphs present in different partitions.

We define a meta-graph as G = (V, E) where each meta-
vertex, v; € V represents a subgraph SG; with ¢ = [V, and a
meta-edge, €5, = (V;, 7)) € E represents the existence of re-
mote edges connecting SG; to SG. A function, weighty [v;]
gives the number of vertices in SG; whereas weight g[v;]
gives the number of internal edges in that subgraph. Similarly,
weight[e;jx] gives the number of edges connecting vertices in
SG; with vertices in SG. The sum of all the meta-vertex
weights will equal n = |V| = Y7, weight[v;], and the
sum of all meta-edge weights will equal the edge cuts across
partitions. For our study, we assume a commodity cluster with
k symmetric machines each having ¢ CPU cores.

The meta-graph offers a useful tool to examine the perfor-
mance behaviour of subgraph-centric graph algorithms on the
partitioned graph. Next, we analyze the relative impact of the
partitioning strategies on the meta-graph structure.

B. Types of Graphs and Partitioning Setup

Graph partitioning is sensitive to the topology of the graph.
We consider two classes of large-scale real-world graphs:
spatial networks, and graphs with powerlaw distribution.

Spatial graphs are characterized by a uniform degree distri-
bution, a large diameter and a planar topology. Road networks



and sensor networks fall under this category. Powerlaw graphs
feature a skewed degree distribution, a small diameter and a
sparse structure. Their number of vertices with degree d is
given by deg(d) = a x d° where 3 < 0. Social networks and
citation network fall in this class. These are shown in Fig.

We use five undirected graphs, three powerlaw social net-
works, CITP E], LIV] E] and ORKT E], and two large diameter
spatial networks, USRN E] and EURN E], described in Table
We use METIS v4.0.1 with a default load factor of 1.03
for vertex-balanced partitioning used by DP, FP, and at both
levels of HP. The sole exception is ORKT, which could not
be partitioned by METIS (due to memory limitations), and
instead we used Blogel’s Vornoi partitioning [3|] for the first
(HP) or sole (DP, FP) level, and METIS for local partitioning
within a machine (HP).

Table [] summarizes the quality of the partitions generated
by each strategy for each graph, for the 5-machine (40 CPU
cores) and 10-machine (80 CPU cores) case. It lists the number
of WCCs (or subgraphs, or meta-vertices) and meta-edges
generated by each strategy, the fraction of vertices that are
present in the large WCCs in each partition, the diameter of
the meta-graph, and the fraction of edges that are cut.

C. Number and Weights of Meta-vertices

The number of meta-vertices represents the number of
WCC (or subgraphs) present in all partitions. The partitioning
strategies proposed have different effects on the number of
meta-vertices for the two types of graphs considered.

Most real-world graphs contains at least one large
WCC [27]. A vertex-balanced partitioning attempts to divide
the vertices of this single large connected component equally
among all partitions to have |V;| = |%| for all partitions
P;, while reducing edges between them. Due to the regular
structure of spatial graphs, the number of large subgraphs
present in ¢ = |V] is close to the number of partitions p,
one per partition, and this holds even for a large number of
partitions. So, after DP performs a k-way partitioning onto
k machines, the resulting number of subgraphs is close to k.
For HP and FP, we create k X c partitions and with one large
subgraph per partition, we have |V| & k x ¢ in both cases.

In Table [, we see that for the EURN and USRN spatial
graphs, the number of WCCs is close to the number of
partitions, for different partitioning strategies and different
number of machines. For e.g., USRN has 7 subgraphs when
partitioned into 5 parts, has 54 subgraphs in 40 partitions,
and only increases to 96 subgraphs with 80 partitions on 10
machines. A similar trend is observed for EURN too, with the
number of WCCs almost the same as the number of partitions,
such as 6 WCCs from 5 partitions for DP on 5 machines,
or marginally higher, with 98 WCCs for 80 partitions using

Uhttp://snap.stanford.edu/data/cit-Patents.html
Zhttp://snap.stanford.edu/data/soc-LiveJournal 1.html
3http://snap.stanford.edu/data/com-Orkut.html
“http://www.dis.uniromal..it/challenge9/download.shtml
Shttp://www.cc.gatech.edu/dimacs 10/archive/streets.shtml

HP on 10 machines. This shows a slow growth in number of
subgraphs ¢ that remain close to the number of partitions p.

We also see that while the number of WCCs in a partition
is close to 1, the largest p WCCs only includes ~ 96% of the
vertices in the graph, on average, with 4% of vertices present
in the remaining (¢ — p) subgraphs. This means that the few
non-dominant subgraphs are however not trivial in size, and
may contain 100,000’s of vertices — such as 3,131,641 for
EURN on 5M using DP.

For powerlaw graphs, |V| has a more subtle relationship
as the number of partitions increase. While applying FP for
powerlaw graphs, the vertex-balanced partitioning tries to
place the top k x c vertices with the highest edge degrees
into different partitions to reduce edge cuts between them.

On the other hand, for HP, in the first level of partitioning,
vertex-balancing places the top k vertices with the highest edge
degrees into k different partitions. Often, graphs like LIVJ and
CITP have vertices that are densely connected components
with a star topology, i.e., a single vertex with high edge degree
connected to many vertices with small edge degrees, as shown
in Fig. [2al where these two graphs primary have vertices with
degrees smaller than 10.

When performing the second level of vertex-balanced par-
titioning within each machine, the subgraph containing the
star-topology vertex may need to be split to ensure vertex
balancing. This can result in partitions containing thousands
of singleton or tiny subgraphs which are connected by remote
edges to a subgraph containing the high edge-degree vertex
present in another partition in the same machine [28]. So,
for HP, the number of meta-vertices |V| will increase much
more rapidly than FP, relative to DP and also as the number of
machines or cores increases. Further, the weights of the meta-
vertices will also have a skewed distribution as it can contain
many meta-vertices with very small weights.

On the other hand, for powerlaw graphs like ORKT which
have a small-world behavior, hence a small diameter, the
first level of partitioning will result in a densely connected
subgraphs within each partitions. As a result, when they are
partitioned further in the second level, they do not result in
many more smaller subgraphs, but do end up having a higher
edge cut% than powerlaw graphs with larger diameters like
LIVJ and CITP (16 and 22, respectively). This is evident in
Fig. 2a] where ORKT has a large fraction of vertices with
edge degree of 75 or more.

In Table [I, the three powerlaw graphs ORKT, LIVJ and
CITP further confirm these behaviors. The number of WCCs
for 5 partitions (on 5 machines) using DP is smaller than for
40 partitions (on 5 machines) using FP for all these graphs.
While for ORKT, the number of subgraphs equals the number
of partitions, at 5 and 40 respectively, due to its small-world
nature, for LIVJ and CITP, the number of subgraphs is much
larger than the number of partitions due to their hub-and-spoke
model with larger diameters. We also see that the number of
WCC:s for HP are significantly higher than for FP for the same
number of partitions (¢ > p), on both 5 and 10 machines, as
we expect based on the above analysis. In fact, for LIVJ, HP



TABLE I: Graph descriptions, and meta-graph details after partitioning on 5 and 10 Machines.

Graph [V] 10° G dia.T Stra- 5 Machines Meta-graph 10 Machines Meta-graph
|E| 108 tegy || Parts.” [ [V[® [ weC%® [ dia! | [E| [ Cu%® || Parts® | [V[* [ WCC%" [ dia.” [ [E| [ Cut%”
EURN 5091 | 15,740+ DP 5 6 94% 2 18 | ~ 0% 10 13 100% 4 4| ~ 0%
108.10 FP 40 49 95% 9 199 | ~ 0% 30 96 99% 17 422 | =~ 0%
HP 40 51 97% 10 196 | ~ 0% 380 98 99% 15 428 | =~ 0%
USRN 23.95 6,262 DP 5 7 93% 4 6 | ~ 0% 10 11 100% 5 36 | ~ 0%
58.33 FP 40 54 96% 11 216 | ~ 0% 80 96 97% 4 428 | =~ 0%
HP 40 49 98% 11 198 | =~ 0% 80 104 95% 4 452 | = 0%
ORKT 3.07 9 DP 5 5 100% 1 20 61% 10 10 100% 1 90 72%
23437 FP 40 40 100% 1 1,560 83% 30 81 99% 2| 6471 44%
HP 40 108 99% 3 1,898 67% 30 116 100% 3 6,616 78%
LIV] 4385 16 DP 5 | 2,239 99% 3 796 2% 10 | 2.251 99% 3 998 16%
86.22 FP 40 | 3,153 99% 4 | 5464 29% 80 | 3,034 99% 3 | 10,854 31%
HP 40 | 6,564 99% 4 | 13,904 28% 80 | 6,393 99% 3 | 19,410 32%
CITP 377 22 DP 5 | 3,771 99% 3 376 8% 10 | 3,762 99% 3 522 10%
33.04 FP 40 | 3,999 99% 3| 3572 15% 80 | 4,285 99% 3 | 11,060 17%
HP 40 | 4,488 99% 3| 4934 16% 80 | 4,306 99% 3 9,682 18%

T Diameter of the original graph or the meta-graph, as applicable.

2 Number of partitions p generated using the stategy.

3 Number of subgraphs ¢ present in the p partitions.

4 Fraction of vertices from the graph contained in the largest p subgraphs
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Fig. 2: Cumulative distribution function (CDF) of vertex frequencies for different edge degrees, in the 5 graphs.

gives twice the number of subgraphs as HP.

We also see that the largest subgraph in each partition has
99% of all vertices in the partition, for LIV]J and CITP, further
validating that a large number of tiny subgraphs totaling up to
1% of vertices in the partition are present. For ORKT, however,
these large subgraphs have 100% of all vertices in most cases,
thus limiting the number of smaller subgraphs.

D. Number and Weights of Meta-edges

Let x(G,p) = > weight[e,;], Ve;; € E, be the number of
edge cuts for a graph G partitioned across p partitions, given
as the sum of its meta-edge weights.

Minimizing x(G,p) for a given p is an NP-complete
problem [[14]]. There exist many heuristics based on multilevel
partitioning [15]], [29] and spectral partitioning [30]. For our
analysis, we use METIS [15] to perform vertex-balanced
partitioning. We treat it as black box and assume that it gives a
near-optimal value of x (G, p). Donath, et al [31] give a lower
bound on the minimum number of edge cuts as:

X(Gp) 2 2 x DN,

where n = |V| and ); is the i*" largest eigenvalue of L(G)
where L(G) is the graph laplacian given by L(G) = deg(G)—
adj(G), where deg(G) is the degree matrix (a diagonal matrix
with degree of vertices) and adj(G) is the adjacency matrix.

For spatial planar graphs, due to an even edge degree
distribution (Fig. and a planar topology, x(G, p) increases
linearly with p. Also, as spatial graphs are easy to partition
optimally, the number of edge cuts are much lower than in
the case of powerlaw graphs. For powerlaw graphs, their
eigenvalues also display a powerlaw distribution [32]. As a
result, x(G,p) initially increases rapidly as the number of
partitions increase from p = 1, but for larger values of p this
growth slows following an exponential decay.

When we consider k partitions for DP with (G, k) meta-
edge weights, both HP and FP, which have a higher number
of k X c partitions, will have a similar relative increase in their
meta-edge weights, x(G, k x c¢), based on the type of graph.
However, if the vertex-balanced partitioning algorithm offers
near-optimal results, the growth in edge cuts, and hence sum of
meta-edge weights, should increase more rapidly for HP than
FP relative to DP or as the number of machines increases. The
intuition is the same as for meta-vertices. For HP, we identify
the k partitions with tightly connected vertices and then try to
further partition each into c parts, causing deeper edge cuts. In
FP, we identify the k x ¢ partitions with minimal connections
between each in a single pass. This effect will be more acute
for powerlaw graphs with dense edge degrees.

We observe these trends in Table [l For the spatial graphs
USRN and EURN, the edge cut fraction is always close to
~ 0%, exhibiting a near ideal partitioning with minimal edge



cuts. For the powerlaw graphs, we consider 5, 10, 40 and 80
partitions created by DP and FP on 5 and 10 machines. There
is a gradual rise in the edge cut % from 5 to 40 partitions, while
it plateaus out between 40 to 80 partitions, in fact reducing
in percentage terms for ORKT from 83% to 44%, indicating
that the absolute number of edge cuts have not gone up much.
HP in general has similar or more edge cut % than FP, with
ORKT on 5 machines being the only exception where FP has
an uncommonly high 83% edge cuts.

E. Structure and Diameter of Meta-graph

Meta-graphs for both powerlaw and spatial graphs exhibit a
recursive behaviour, whereby the structure of the meta-graph
resembles the original graph. This indicate their suitability as
a coarse-grained sketch for analysis. For spatial graph, meta-
vertices represent spatially proximate connected components
and retain a uniform degree distribution and a planar topology.

In case of graphs with powerlaw distribution, as we increase
the number of partitions p, we have a few meta-vertices having
large edge degrees representing subgraphs containing the high
degree vertices of the original graph. These meta-vertices
are in turn connected to many meta-vertices representing
small subgraphs present in other partitions which, as we have
discussed, the partitioning algorithm has placed remotely to
balance the number of vertices in each partition. Moreover we
expect the degree distribution to be more skewed in case HP.
This recursive behavior of degree distribution is empirically
confirmed for both power-law and spatial graphs. For ORKT,
this extends to the meta-graph being a complete graph, being
a consequence of its dense degree distribution.

The diameter of a graph is the longest shortest path between
any two pairs of vertices. The diameter of the meta-graph
G for DP must be less than or equal to the diameter of the
original graph G. The proof for this is straight forward. If
diameter(G) > diameter(G) then the path representing the
diameter in G can be expanded into a larger path in G by
expanding each meta-vertex v; into the subgraph it represents.
As each subgraph contains at least one vertex, we get a path
which is longer than Athe diameter. Hence, by contradiction,
we prove diameter(G) < diameter(G). We can similarly
prove that the diameter of meta-graph from DP is < diameter
of meta-graph from HP since meta-vertices in HP are created
by splitting meta-vertices in DP. However, the diameter of the
meta-graph from FP does not hold such a strict relationship.

V. ANALYSIS OF ALGORITHMS USING META-GRAPH

The above discussions offer a valuable foundational method-
ology which can be extended to other partitioning approaches
as well, and their impact on the meta-graph. Next, we show
how given a meta-graph for a partitioned graph, we can study
their properties to analyze the behavior of subgraph-centric
graph algorithms. We also compare the expected behavior of
the subgraph-centric algorithm with a vertex-centric one.

The overall execution time (or makespan) for the algorithm
in itself depends on various factors for a component-centric
graph algorithm. Specifically, the it relies on the size and

connectivity of each component, the computational cost to
process each component by the algorithm, the communication
cost between components across supersteps, the number of
supersteps, and the skew between the wall-clock times taken
by different partitions. We address these aspects for PR and
BFS algorithms below.

A. Setup for Algorithms

We corroborate the analysis below with empirical results
too. We run the PR and BFS algorithms using several real-
world graphs, with our GoF'Fish subgraph-centric platform [2],
and with Apache Giraph [33] as a baseline vertex-centric
platform based on Google’s Pregel. We use the three powerlaw
social networks graphs (ORKT, LIVJ, CITP) and two large
diameter spatial networks (USRN, EURN) from Sec.
partitioned using DP, FP and HP for GoFFish, and for Giraph,
using its default hash partition (HA).

We run our experiments on a 24-node commodity cluster
with each node having one AMD Opteron 3380 (8 cores,
2.6GHz) CPU, 32 GB RAM and 256 GB SSD connected
by Gigabit Ethernet. We use CentOS 7, and Giraph vl.1,
Hadoop/Yarn v2.6 and GoFFish v2.6 run on JDK v7. GoFFish
was modified to support the different partitioning strategies.

We run BFS and PR algorithms using GoFFish and with Gi-
raph on the above graphs. Specifically, we run a Single Source
Shortest Path (SSSP) algorithm from a source vertex for a
undirected graph with all edge weights 1, which is effectively
a BFS. All experiments we run thrice, using different sources
vertices in case of BFS, and, the averages reported.

B. PageRank (PR)

PageRank is an iterative algorithm that runs for a fixed
number of 30 iterations (supersteps) for both subgraph- and
vertex-centric models [2], [5]. The behavior of each superstep
is identical in terms of time complexity, so we can trivially
extrapolate from a single superstep to several.

A sequential/shared-memory version of PR has a computa-
tion complexity of O.(|V|+ |E|), since for every iteration,
a total of |E| additions and |V| divisions is performed;
and a communication complexity of O,,(|E|), as messages
generated to every neighbor per superstep. Next, we discuss
their behavior for the distributed formulations.

1) Communication Complexity: We distinguish between
communication costs for in-memory message transfer for
vertices (or subgraphs) co-located on the same machine (local
messages), and remote message transfer over network between
vertices (subgraphs) on different machines; the latter is more
relevant and we emphasize that.

For a vertex-centric model, the expected number of remote
edges in a hash partition of p partitions for a graph G is given
by E = (1—2)-|E|, and conversely, the expected number of

local messages is ‘pﬂ) [34]. For larger values of p, E ~ |E|.
So, the remote communication cost, which happens in parallel
across p cores, is gi by O (£l for 1 1 f
, is given by Oy, () for large values of p.
When we consider the messages per superstep for running

PR on Giraph (Fig. [3), we see the total number of messages
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Fig. 3: Number of messages exchanged between components per superstep during the PR.

(both local and remote) is exactly equal to the number of edges
in each graph, for all 5 graphs on both 5 and 10 machine. E.g.,
from Table |I, we have 108 M messages for EURN, for 5 and
10 machines, and 33 M messages for CITP.

In the subgraph-centric approach, subgraphs contain both
internal edges within vertices in the subgraph, and remote
edges to subgraphs in other partitions. Of these remote edges,
for FP and HP, some could be incident on partitions in the
same machine, while others in partitions in different machines,
while for DP, by definition, all remote edges are incident on
partitions in different machines.

In all three partitioning approaches, the total number of
remote messages sent between subgraphs in different partitions
in one superstep for PR will be equal to the sum of their
meta-edge weights, which is also the number of remote edge,

¢, weight[€j]. In platforms such as GoFFish, where logi-
cal messages between the same pair of subgraphs are batched
together into a single physical-message, we will find that the
number of physical messages is the number of meta-edges | E|.
So, the remote physical-message communication complexity
for each superstep of PR using DP, FP and HP, which happens
in parallel across p partitions, is given by Orm(%)

However, in case of HP and FP, ¢ partitions remain inside
a single machine. As result, the real network bandwidth used
per superstep depends on the number of edge cuts between the
machines. For HP the number of edge cuts across machines
is the same as DP, but FP will have a higher number of inter-
machine edge cuts as k x c partitions are randomly placed on
k machines, with ¢ partitions each.

From Table [[] and Fig. [3] we see that the number of physical
messages exchanged between subgraphs in each superstep for
the partitioned graphs is identical to the number of meta-edges
in their respective meta-graphs. For e.g, we see that ORKT on
5 machines passes 20, 1560 and 1898 messages for its DP,
FP and HP partitioning, which is identical to the number of
meta-edges that each of their meta-graphs have in Table [I]

2) Computational Complexity: For a vertex-centric frame-
work using hash partition, the number of vertices |V| will
be equally distributed per partition/core ¢, since |V| > c.
So when running PR on p = k X c partitions, where k
is the number of machines each having c cores, each core

operates on I vertices. Ideally, if the edges are also equally
distributed among the partitions, the computational complexity
per superstep is (’)C(lv‘pﬂ) , and uniform for each core.

This holds true for spatial graphs, but for powerlaw graphs,
the edge degree skew can impact the complexity and cause it
to be unbalanced across cores, i.e., if the difference in edge
degrees between the vertex with the highest degree and the
vertex with the (k x c)*" degree is significant, we can expect
the computation costs to be unbalanced and hence cause non-
uniform utilization of the CPU cores.

In a subgraph-centric model, the computational complexity
for performing PR on one subgraph depends on the internal
vertices and edges for that component as well as its remote
edges, since they all contribute to the PR update calculation.
Hence, we have the computational complexity for a subgraph
SGi = (Ve B3, Ry) given by O.(|V?| + [E3| + | R:)).

The computational cost for a partition is based on the largest
subgraph in that partition, provided one subgraph per partition
dominates, and that for a superstep depends on the largest sub-
graph across all partitions. Thus, when from the meta-graph,
we have the computational complexity for a superstep based
on its largest meta-vertex as OC(maX@e\A/,eﬁeE v (V.B)ed
(weighty [v;] + weight gv;] + weight[e;i])).

Fig. 4a) shows a scatter plot between the expected computa-
tional time, based on our analysis, and the observed makespan
for running PR using Giraph. We see a close correlation
between the two, with the outliers being seen only for the
large graphs EURN and ORKT, on 80 partitions.

C. Analysis for Breadth First Search (BFS)

BFS starts at a source vertex and traverses neighboring
vertices, one level at a time, marking each newly visited vertex
with its distance from the source, until all vertices in the graph
are reached. BFS is a non-stationary algorithm [19], unlike
PR, and hence not all vertices/meta-vertices are active in each
superstep. The superstep count is not a constant either. Here,
we offer an analytical model for the number of supersteps,
communication and computational complexity for BFS.

1) Number of Supersteps: In a vertex-centric model, BFS
progresses by one level in each superstep as each vertex can
only talk to its neighbor. As a result, the upper bound on the
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number of supersteps required to complete the BFS is given
by the diameter of the original graph. For e.g., Fig. [5a] shows
the number of supersteps taken by Giraph to perform BFS on
the five graphs. We note that EURN could not complete BFS
on Giraph even after running it for 3 hours. So its value is not
reported. In all other cases, the number of supersteps taken is
close to and less than the diameter of the graph, as given in
Table Il While for USRN, this value is identical, 6262, for both
5 and 10 machines, CITP takes 13 and 14 supersteps for 5 and
10 machines, given a diameter of 16. Spatial networks USRN
and EURN require a large number of supersteps compared to
powerlaw graphs because of their large diameters.

For the subgraph-centric models, the BFS algorithm first
performs an A-Star [2]], [35] shortest path algorithm on each
subgraph in a superstep, then sends updated shortest distances
from vertices that have changed distances to remote subgraphs
they are connected to. Vertices receiving new distances form
the update vertex set from where A-Star is repeated in the next
superstep, and so on until all vertex distances stabilize.

In this model, the number of supersteps will be equal to the
maximum number of meta-edges that are traversed in any path
between the source vertex and every other vertex in the original
graph. The absolute lower bound of the number of supersteps
is the radius of the meta-graph, i.e., the minimum eccentricity

of any meta-vertex, while the expected lower bound is the
diameter of the meta-graph. This is apparent, since visiting
one vertex in each meta-vertex will require a traversal on a
meta-edge, and the fewest possible such meta-edges is given
by the radius, while the upper bound on the radius is the
diameter. However, BFS using the subgraph centric model can
have revisits [§]], where the shortest path between two vertices
in the same subgraph is through a different subgraph. As a
result, a loose upper bound for the number of supersteps is
the diameter of the whole graph. But this occurs only when
every edge in the longest path in the graph occurs on a meta-
edge. We see that typically, the number of supersteps is close
to the lower bound of the diameter of the meta-graph.

Fig. [5] shows the number of supersteps taken by BFS for
different graphs and partitioning strategies using GoFFish.
Here, we see that the number of supersteps taken is close to the
diameter of their respective graphs shown in Table[l and also
follow a similar relative trend across partitioning techniques.
For e.g., BFS on USRN with 5 machines takes 14, 29 and
27 supersteps using DP, FP and HP, while the diameters of
their respective meta-graphs are 4, 11 and 11, or about 3x
larger than their meta-graph diameter but much smaller than
the USRN graph diameter of 6262. BFS on CITP with 10
machines takes 10, 11 and 10 supersteps for DP, FP and HP,
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for meta-graph diameters of 3 in all these cases, again about
3x more and also fewer than the graph diameter of 22. Since
powerlaw graphs have smaller diameters, the upper and lower
bounds of the supersteps are closer than for spatial graphs.

2) Communications Complexity: In a vertex-centric model,
the total number of messages that will be passed between
vertices across all supersteps will equal the number of edges
|E|, since one traversal message will go on every edge. The
number of remote messages, however, will vary based on the
number of partitions and will be the number of edge cuts in
the partitioned graph. As observed before, the number of edge
cuts and hence, the expected number of remote messages, is
Om((1— 7) |E|). Fig. |§| shows the total number of messages
passed by Giraph across all supersteps, and we can see that
this matches the number of edges in the graph. EURN could
not complete on Giraph in reasonable time, and is not shown.

For the subgraph-centric model, the lower bound on the
number of messages is the number of meta-edges. This in in-
tuitively similar to the discussion on the number of supersteps:
to perform a BFS, every vertex in every meta-vertex has to be
visited at least once, and this can be done only by traversing
each meta-edge once. However, a tight upper bound is harder
to pin down since the number of revisits of a subgraph is
hard to model. Empirically, based on Fig. [l we see that the
communication complexity is O, (a-|E|), where the « scaling
factor is =~ 3—5x. This means that each meta-edge on average

has 3-5 physical messages pass through in across supersteps,
which means, each meta-vertex is revisited that many times.

We see this correlation when we compare the number of
meta-edges in Table [I} and the number of physical messages
passed for the 5 graphs and 3 partitioning strategies, when
running BFS using GoFFish (Fig. [f). We see two things: in
all cases, the number of messages are between 3x (50 for
USRN/5M/DP) to 5x (1159 for USRN/SM/FP) the number of
meta-edges (16 and 216). We also see that the relative trends
between the number of meta-edges are seen in the relative
number of messages as well. For e.g., ORKT on 10 machines
has messages for DP < HP < FP, which is the same trend as
their meta-edge count, and likewise, LIVJ on 10 machines has
message and meta-edge count that follow DP < FP < HP.

3) Computational Complexity: Fig.[7] the makespan for the
different graphs and machines for running BFS using GoFFish
and Giraph. The complexity of BFS depends on the size of its
frontier set. Let the frontier vector distg for G have distq]i]
represent the number of vertices which are of distance ¢ from
the source s. In a vertex-centric model, dists|x] vertices are
active frontiers at superstep x, and all edges of the active
vertices will be processed and send messages in next superstep.
The frontier set of vertices will initially increase until it
reaches a peak size and decreases a%aln [36]. With a perfect
hash partition, we will get O( d”tG[ active vertex on each
core for superstep x, except for mmal and tail supersteps.



For spatial graphs which have uniform degree distribution,
the total computational complexity per core for superstep x
can be given by O, (C”Stcfmx‘i) where d is the mean degree
of vertices in the spatial graph. However, due to skewed degree
distribution in power law graphs, the computational complex-
ity will vary across cores. This is because a partition with
high degree vertex will process a large number of incoming
messages and send large number of outgoing message [9].

For DP using a subgraph-centric approach, we get k large
meta-vertices each having O(7) vertices. This determines the
computational complexity per superstep, given by O(% x
log(%)). Moreover in case of BFS the active vertices moves in
wave from the subgraph with the source vertex s. As a result
the utilization for initial supersteps is even worse than % This
improves as all the meta-vertices become active. For HP and
FP the largest subgraph per partition can be of size O(+%-). So
the computational complexity reduces to O (5 x log(35%2))-
Even though for the initial supersteps the utilization remains
low due to small number of active subgraphs, utilization
increase considerably when all subgraphs become active.

VI. CONCLUSION

In this paper, we have formalized the concept of meta-
graphs as an analytical sketch over large graphs. We see the
distinctive nature of the 3 partitioning algorithms for spatial
and powerlaw graphs, and, further small-world graphs within
them. We offer a sound analytical basis to examine their
impact on the meta-graph’s number of meta-vertices, meta-
edges, weights and diameter, and further validate these using
the meta-graph statistics. Meta-graphs also exhibit a recursive
behavior of their structure with the original graph, indicating
their suitability as a coarse-grained approximation for analysis.

We use this meta-graph sketch to analyze and offer bounds
on the communication and computational complexity for PR
and BFS graph algorithms using a subgraph-centric model, and
complement this with bounds for the vertex-centric model as
well. While in some cases the bounds are tight, such as the
supersteps for BFS, in others, like the communication cost
for BFS, these are relaxed. These are also validated against
experimental results from both GoFFish and Giraph platforms.

These methods offer a formal foundation to examine the
effectiveness of component-centric programming models to
support Big Graph applications. As part of future work, the
meta-graph sketch can also be used for other novel analysis,
such as understanding the behavior of non-stationary algo-
rithms for elastic scheduling [20]. There is also scope to
tighten these bounds and offer formal proofs where possible.
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