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Abstract. Vertex centric models for large scale graph processing are gaining
traction due to their simple distributed programming abstraction. However, pure
vertex centric algorithms under-perform due to large communication overheads
and slow iterative convergence. We introduce GoFFish a scalable sub-graph cen-
tric framework co-designed with a distributed persistent graph storage for large
scale graph analytics on commodity clusters, offering the added natural flexibil-
ity of shared memory sub-graph computation. We map Connected Components,
SSSP and PageRank algorithms to this model and empirically analyze them for
several real world graphs, demonstrating orders of magnitude improvements, in
some cases, compared to Apache Giraph’s vertex centric framework.

1 Introduction

One defining characteristic of complexity in “Big Data” is the intrinsic interconnect-
edness, endemic to novel applications in both the Internet of Things and Social Net-
works. Such graph datasets offer unique challenges to scalable analysis, even as they
are becoming pervasive. There has been significant work on parallel algorithms and
frameworks for large graph applications on HPC clusters [1]3, massively multithreaded
architectures [2], and GPUs [3]. Our focus here, however, is on leveraging commodity
hardware for scaling graph analytics. Such distributed infrastructure, including Clouds,
have democratized resource access, as evidenced by popular programming frameworks
like MapReduce. While MapReduce’s tuple-based approach is ill-suited for many graph
applications [4], recent vertex-centric programming abstractions [5,6], like Google’s
Pregel and its open-source version, Apache Giraph [7], marry the ease of specifying a
uniform logic for each vertex with a Bulk Synchronous Parallel (BSP) execution model
to scale 4. Independent vertex executions in a distributed environment are interleaved
with synchronized message exchanges across them to form iterative supersteps.

However, there are short-comings to this approach. (1) Defining an individual ver-
tex’s logic forces costly messaging even within vertices in one partition. (2) Porting
shared memory graph algorithms to efficient vertex centric ones can be non-trivial. (3)

3 http://www.graph500.org
4 Scaling Apache Giraph to a Trillion Edges, Facebook Engineering, http://on.fb.me/1czMarU



The programming abstraction is decoupled from the data layout on disk, causing I/O
penalties at initialization and runtime. A recent work [6] identified the opportunity of
leveraging shared memory algorithms within a partition, but relaxed the programming
model to operate on a whole partition, without guarantees of sub-graph connectivity
within a partition or implicit use of concurrency across sub-graphs.

In this paper, (1) we propose a sub-graph centric programming abstraction, Go-
pher, for performing distributed graph analytics. This balances the flexibility of reusing
shared-memory graph algorithms over connected sub-graphs while leveraging sub-graph
concurrency within a machine, and distributed scaling using BSP. (2) We couple this
abstraction with an efficient distributed storage, GoFS. GoFS stores partitioned graphs
across distributed hosts while coalescing connected sub-graphs within partitions, to op-
timize sub-graph centric access patterns. Gopher and GoFS are co-designed as part of
the GoFFish graph analytics framework, and are empirically shown here to scale for
common graph algorithms on real world graphs, in comparison with Apache Giraph.

2 Background and Related Work
There is a large body of work on parallel graph processing [8] for HPC clusters [1],
massively multithreaded architectures [2], and GPGPUs [3], often tuned for specific al-
gorithms and architectures [9]. For e.g., the STAPL Parallel Graph Library (SGL) [10]
offers diverse graph data abstractions, and can express level-synchronous vertex-centric
BSP and coarse-grained algorithms over sub-graphs, but not necessarily a sub-graph
centric BSP pattern as we propose. SGL uses STAPL for parallel execution using
OpenMP and MPI, which scales on HPC hardware but not on commodity clusters with
punitive network latencies. Frameworks for commodity hardware trade performance in
favor of scalability and accessibility – ease of use, resource access, and programming.

The popularity of MapReduce for large scale data analysis has extended to graph
data as well, with research techniques to scale it to peta-byte graphs for some algo-
rithms [11]. But the tuple-based approach of MapReduce makes it unnatural for graph
algorithms, often requiring new programming constructs [12], platform tuning [4], and
repeated reads/writes of the entire graph to disk. Google’s recent Pregel [5] model uses
iterative supersteps of vertex centric logic executed in a BSP model [13]. Here, users
implement a Computemethod for a single vertex, with access to its value(s) and outgo-
ing edge list. Compute is executed concurrently for each vertex and can emit messages
to neighboring (or discovered) vertices. Generated messages are delivered in bulk and
available to the target vertices only after all Computes complete, forming one barriered
superstep. Iterative level-synchronized supersteps interleave computation with message
passing. The vertices can VoteToHalt in their Compute method at any superstep;
any vertex that has voted to halt is not invoked in the next superstep unless it has input
messages. The application terminates when all vertices vote to halt and there are no
new input messages available. Pseudocode to find the maximal vertex using this model
is shown in Alg. 1. Apache Giraph [7] is an open source implementation of Google’s
Pregel, and alternatives such as Hama [14], Pregel.NET [15] and GPS [16] also exist.

Despite the programming elegance, there are key scalability bottlenecks in Pregel:
(1) the number of messages exchanged between vertices, and (2) the number of synchro-
nized supersteps required for completion. Message passing is done either in-memory



(for co-located vertices) or over the network, while barrier synchronization across dis-
tributed vertices is centrally coordinated. This often makes them communication bound
on commodity hardware, despite use of Combiners [5] for message aggregation. Sec-
ondly, the default hashing of vertices to machines exacerbates this though better parti-
tioning shows mixed results [16,6]. Even in-memory message passing causes memory
pressure [15]. For e.g., GPS [16] performs dynamic partition balancing and replication
on Pregel and our prior work [15] used a swathe-based scheduling to amortize mes-
saging overhead. But these engineering solutions do not address key limitations of the
abstraction, which also leads to large number of supersteps to converge for vertex cen-
tric algorithms (e.g.∼30 for PageRank, or graph diameter for Max Vertex).

Recently, Tian, et al. [6] recognized these limitations and propose a partition centric
variant, Giraph++. Here, users’ Compute method has access to all vertices and edges
in a partition on a machine, and can define algorithms that operate on a whole partition
within a superstep before passing messages from boundary vertices of the partition to
neighboring vertices. They also partition the graph to minimize average ncuts. Such
local compute on the coarse partition can reduce the number of messages exchanged
and supersteps taken, just as for us. But this approach falls short on several counts.
(1) Though the partitions are called “sub-graphs” in Giraph++, these sub-graphs are
not connected components. This limits the use of shared-memory graph algorithms that
operate on connected graphs, and can lead to a suboptimal algorithm operating collec-
tively on hundreds of sub-graphs in a partition. This also puts the onus on the user to
leverage concurrency across sub-graphs in a partition. Our proposed abstraction and
execution model a priori identifies sub-graphs as locally connected components; users
define their Compute method on these. Our engine also automatically executes sub-
graphs in parallel on the local machine. (2) Their Compute can send messages to only
boundary vertices. We also allow messages to be sent to sub-graphs, fully exploiting the
abstraction. (3) Our distributed graph storage is designed for sub-graph access patterns
to offer data loading efficiencies, and extends beyond just prior graph partitioning.

Algorithm 1 Max Vertex Value using Vertex Centric Model

1: procedure COMPUTE(Vertex myVertex, Iterator〈Message〉M)
2: hasChanged = (superstep == 1) ? true : false
3: while M.hasNext do I Update to max message value
4: Message m←M.next
5: if m.value > myVertex.value then
6: myVertex.value← m.value
7: hasChanged = true

8: if hasChanged then I Send message to neighbors
9: SENDTOALLNEIGHBORS(myVertex.value)

10: else
11: VOTETOHALT( )

Distributed GraphLab [18] is another popular graph programming abstraction, op-
timized for local dependencies observed in data mining algorithms. GraphLab too uses
an iterative computing model based on vertex-centric logic, but allows asynchronous
execution with access to vertex neighbors. Unlike Pregel, it does not support graph
mutations. There are other distributed graph processing systems such as Trinity [17]



that offer a shared memory abstraction in a distributed memory infrastructure. Here,
algorithms use both message passing and a distributed address space called memory
cloud. However, this assumes large memory machines with high speed interconnects.
We focus on commodity cluster and do not make such hardware assumptions.

3 Sub-graph Centric Programming Abstraction

We propose a sub-graph centric programming abstraction that targets the deficiencies of
a vertex centric BSP model. We operate in a distributed environment where the graph
is k − way partitioned over its vertices across k machines. We define a sub-graph
as a connected component within a partition of an undirected graph; they are weakly
connected if the graph is directed. Let Pi = {Vi,Ei} be a graph partition i where Vi

and Ei are the set of vertices and edges in the partition. We define a sub-graph S in Pi

as S = {V,E,R|v ∈ V ⇒ v ∈ Vi; e ∈ E ⇒ e ∈ Ei; r ∈ R ⇒ r 6∈ Vi;∀u, v ∈ V ∃
an undirected path between u, v; and ∀r ∈ R ∃v ∈ V s.t. e = 〈v, r〉 ∈ E} where V is a
set of local vertices, E is a set of edges and R is a set of remote vertices.

Two sub-graphs do not share the same vertex but can have remote edges that connect
their vertices, as long as the sub-graphs are on different partitions. If two sub-graphs on
the same partition share an edge, by definition they are merged into a single sub-graph.
A partition can have one or more sub-graphs and the set of all sub-graphs forms the
complete graph. Specific partitioning approaches are discussed later, and each machine
holds one partition. Sub-graphs behave like “meta vertices” with remote edges connect-
ing them across partitions. The Fig. 1(a) shows two partitions with three sub-graphs.

Each sub-graph is treated as an independent unit of computation within a BSP su-
perstep. Users implement the following method signature:

Compute(Subgraph, Iterator<Message>)

The Compute method can access the sub-graph topology and values of the vertices
and edges. The values are mutable though the topology is constant. This allows us to
fully traverse the sub-graph up to the boundary remote edges in-memory, within a single
superstep and accumulate values of the sub-graph or update values for the local vertices
and edges. Different sub-graphs communicate by message passing, with messages ex-
changed at synchronized superstep boundaries in a BSP model. Several methods enable
this messaging. Algorithms often start by sending messages to neighboring sub-graphs.

SendToAllSubGraphNeighbors(Message)

As other sub-graphs are discovered across supersteps, two other methods are useful:
SendToSubGraph(SubGraphID, Message)

SendToSubGraphVertex(SubGraphID, VertexID, Message)

We allow a (costly) broadcast to all sub-graphs, though it should be used sparingly.
SendToAllSubGraphs(Message)

As with Pregel, the Compute method can invoke VoteToHalt. The application
terminates when all sub-graphs have halted and there are no new input messages.

Alg. 2 presents the sub-graph centric version for finding the maximum vertex value
in a graph. Fig. 1(a) illustrates its execution. The Compute method operates on a sub-
graph mySG. Lines 2–6 are executed only for the first superstep, where each sub-graph’s
value is initialized to largest of its vertices. Subsequently, the algorithm is similar to the



vertex centric version: we send the sub-graph’s value to its neighboring sub-graphs and
update the sub-graph’s value to the highest value received, halting when there is no
further change. At the end, each sub-graph has the value of the largest vertex.

Compared to the vertex centric algorithm, the sub-graph centric version reduces the
number of supersteps taken since the largest value discovered at any superstep prop-
agates through the entire sub-graph in the same superstep. For e.g., for the graph in
Fig. 1(a), the vertex centric approach takes 7 supersteps while we use 4. Also, this re-
duces the cumulative number of messages exchanged on the network. In the worst case,
when a sub-graph is trivial (has one vertex), we degenerate to a vertex centric model.

Algorithm 2 Max Vertex using Sub-Graph Centric Model

1: procedure COMPUTE(SubGraph mySG, Iterator〈Message〉M)
2: if superstep = 1 then I Find local max in subgraph
3: mySG.value← −∞
4: for all Vertex myVertex in mySG.vertices do
5: if mySG.value < myVertex.value then
6: mySG.value← myVertex.value

7: hasChanged = (superstep == 1) ? true : false
8: while M.hasNext do
9: Message m←M.next

10: if m.value > mySG.value then
11: mySG.value← m.value
12: hasChanged = true

13: if hasChanged then
14: SENDTOALLSUBGRAPHNEIGHBORS(mySG.value)
15: else
16: VOTETOHALT( )

Benefits. Our elegant extension of the vertex centric model offers three key benefits.
1) Messages Exchanged. Access to the entire sub-graph enables the application to

make a significant progress within each superstep while reducing costly message ex-
changes that cause network overhead, disk buffering or memory pressure, between su-
persteps. While Pregel allows Combiners per worker, they operate after messages are
generated while we preclude message generation. Giraph++ has similar advantages, but
no better; as sub-graphs in a partition are disconnected, they do not exchange messages.

2) Number of Supersteps. Depending on the algorithm, a sub-graph centric model
can reduce the number of supersteps required compared to Pregel, thereby limiting syn-
chronization overheads. Also, the time taken by a superstep is based on its slowest sub-
graph, with a wide distribution seen across sub-graphs [15]. Reducing the supersteps
mitigates this skew. For traversal algorithms, the number of supersteps is a function of
the graph diameter. Using a sub-graph centric model, this reduces to the diameter of the
meta-graph where the sub-graphs form meta-vertices. In the best case (a linear chain),
the number of supersteps can reduce proportional to the number vertices in a sub-graph,
while for a trivial sub-graph, it is no worse. These benefits translate to Giraph++ too.

3) Reuse of Single-machine Algorithms. Lastly, our approach allows direct reuse
of efficient shared-memory graph algorithms on a sub-graph, while using a BSP model
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Fig. 1: (a) Sub-graph centric Max Vertex using Alg. 2. Dashed arrows show messages
passed. (b) Sub-graph centric data access from GoFS and BSP execution by Gopher.

across supersteps. The change from a simple vertex-centric approach is incremental, but
the performance improvement stark. e.g. In Alg. 2, but for the shaded lines 2–6 which
operates on the whole sub-graph, other lines are similar to Alg. 1. This has two benefits
relative to Pregel and Giraph++: (1) We can leverage optimal single machines algo-
rithms for sub-graphs, even leveraging GPGPU accelerators, with the added guarantee
that the sub-graphs are connected (unlike Giraph++). This ensures traversals reach all
sub-graph vertices and avoids testing every vertex in the partition independently. Sec-
ond, when a partition has multiple sub-graphs, as is often, we can exploit concurrency
across them automatically. While the degree of parallelism is not as high as vertex cen-
tric (Pregel), it is better than treating the partition as one computation unit (Giraph++).

4 Architecture

GoFFish is a scalable software framework for storing graphs, and composing and exe-
cuting graph analytics 5. A Graph oriented File System (GoFS) and Gopher execution
engine are co-designed ab initio to ensure efficient distributed storage for sub-graph
centric data access patterns. The design choices target commodity or virtualized hard-
ware with Ethernet and spinning disks. GoFFish is implemented in Java.
GoFS Distributed Graph Store. GoFS is a distributed store for partitioning, storing
and accessing graph datasets across hosts in a cluster. Graphs can have both a topology
and attributes associated with each vertex and edge. The former is an adjacency list
of uniquely labeled vertices and (directed or undirected) edges connecting them. At-
tributes are a list of name-value pairs with a schema provided for typing. Input graphs
are partitioned across hosts, one partition per machine, using the METIS tool [19] to
balance vertices per partition and minimize edge cuts (Fig. 1(b)).

GoFS uses a sub-graph oriented model for mapping the partition’s content to slice
files, which form units of storage on the local file system. We identify all sub-graphs
in the partition – components that are (weakly) connected through local edges, and a

5 https://github.com/usc-cloud/goffish

https://github.com/usc-cloud/goffish


partition with n vertices can have between 1 to n sub-graphs. Each sub-graph maps to
one topology slice that contains local vertices, local edges and remote edges, with ref-
erences to partitions holding the destination remote vertex, and several attribute slices
that hold their names and values. We use Kryo for compact object storage on disk.

GoFS is a write once-read many scalable data store rather than a database with
rich query support. The GoFS Java API allows clients to access a graph’s metadata,
attribute schema and sub-graphs present in the local partition. Specific sub-graphs and
select attributes can be loaded into memory and traversed. Remote edges in a sub-graph
resolve to a remote partition/sub-graph/vertex ID that can be used to send messages to.

Gopher Sub-graph Centric Framework. The Gopher programming framework im-
plements our proposed sub-graph centric abstractions, and executes them using the
Floe [20] dataflow engine on a Cloud or cluster in conjunction with GoFS. Users im-
plement their algorithm in Java within a Compute method where they get access to
a local sub-graph object and data messages from the previous superstep. They use
Send* methods to send message to the remote sub-graphs in the next superstep and
can VoteToHalt(). The same Compute logic is executed on every sub-graph in the
graph, for each superstep.

The Gopher framework has a compute worker running on each machine and a man-
ager on one machine. The workers initially load all local sub-graphs for that graph
into memory from GoFS. For every superstep, the worker uses a multi-core-optimized
task pool to invoke the Compute on each sub-graph, transparently leveraging concur-
rency within a partition. Send* messages are resolved by GoFS to a remote partition
and host. The worker aggregates messages destined for the same host and sends them
asynchronously to the remote worker while the compute progresses.

Once the Compute for all sub-graphs in a partition complete, the worker flushes
pending messages to remote workers and signals the manager. Once the manager re-
ceives signals from all workers, it broadcasts a resume signal to the workers to start their
next superstep and operate on input messages from the previous superstep. Compute
is stateful for each sub-graph; so local variables are retained across supersteps. When
a worker does not have to call Compute for any of its sub-graphs in a superstep, be-
cause all voted to halt and have no input messages, it sends a ready to halt signal to the
manager. When all workers are ready to halt, the manager terminates the application.

Storage-Compute Co-design. Co-designing data layout and execution models is ben-
eficial, as seen with Hadoop and HDFS. GoFFish uses sub-graphs as a logical unit of
storage and compute; hence our data store first partitions the graph followed by sub-
graph discovery. Partitioning minimizes network costs when loading sub-graphs into
Gopher. We use existing partitioning tools (METIS) to balance vertices and minimize
edge cuts. Ideally, we should also balance the number of sub-graphs per partition and
ensure uniform size to reduce compute skew in a superstep. Further, having multiple
sub-graphs in a partition can leverage the concurrency across sub-graphs. Such schemes
are for future work. We also balance the disk latency against bytes read by slicing sub-
graphs into topology and attributes files. For e.g. a graph with 10 edge attributes but
using only the weight in a Gopher algorithm needs to only load one attribute slice



5 Evaluation of Sub-graph Centric Algorithms on GoFFish

We present and evaluate several sub-graph centric versions of common graph algo-
rithms, both to illustrate the utility of our abstraction and the performance of GoFF-
ish. We comparatively evaluate against Apache Giraph, a popular implementation of
Pregel’s vertex centric model, that uses HDFS. We use the latest development version
of Giraph, at the time of writing, which includes recent performance enhancements.
Sub-graph centric Gopher and vertex centric Giraph algorithms are implemented for:
Connected Components, Single Source Shortest Path (SSSP) and PageRank.
Experimental Setup and Datasets. We run these experiments on a modest cluster of
12 nodes, each with an 8-core Intel Xeon CPU, 16 GB RAM, 1 TB SATA HDD, and
connected by Gigabit Ethernet. This is representative of commodity clusters or Cloud
VMs accessible to the long tail of science rather than HPC users. Both Giraph and
GoFFish are deployed on all nodes, and use Java 7 JRE for 64 bit Ubuntu Linux. The
GoFFish manager runs on one node.

We choose diverse real world graphs (Table 1): California road network (RN), In-
ternet topology from traceroute statistics (TR)), and LiveJournal social network (LJ).
RN is a small, sparse network with a small and even edge degree distribution, and a
large diameter. LJ is dense, with powerlaw edge degrees and a small diameter. TR has a
powerlaw edge degree, with a few highly connected vertices. Unless otherwise stated,
we report average values over three runs each for each experiment.

Graph Vertices Edges Diameter WCC
RN 1,965,206 2,766,607 849 2,638
TR 19,442,778 22,782,842 25 1
LJ 4,847,571 68,475,391 10 1,877

Table 1: Characteristics of graph datasets used in evaluation

Summary Results. We compare the end-to-end time (makespan) for executing an al-
gorithm on GoFFish and on Giraph. This includes two key components: the time to
load the data from storage, which shows the benefits of sub-graph oriented distributed
storage, and the time to run the sub-graph/vertex centric computation. which shows rel-
ative benefits of the abstractions. Fig. 2(a) highlights the data loading time per graph
on both platforms; this does not change across algorithms. Fig. 2(b) give the execution
time for various algorithms and datasets once data is loaded. Also shown in Fig. 2(c) is
the number of supersteps taken to complete the algorithm for each combination.

One key observation is that GoFFish’s makespan is smaller than Giraph for all com-
binations but two, PageRank and SSSP on LJ. The performance advantage ranges from
81× faster for Connected Components on RN to 11% faster for PageRank on TR. These
result from abstraction, design and layout choices, as we discuss. In some, Giraph’s
data loading time from HDFS dominates (TR), in others, Gopher’s algorithmic advan-
tage significantly reduces the number of supersteps (RN for SSSP), while for a few,
Gopher’s compute time over sub-graphs dominates (PageRank on LJ).
Connected Components. Connected components identify maximally connected sub-
graphs within an undirected graph such that there is path from every vertex to every
other vertex in the sub-graph. The sub-graph and vertex centric algorithms are similar to



the Maximum Vertex Value algorithm [21]. In effect, we perform a breadth first traver-
sal rooted at the sub-graph with the largest vertex ID, with each superstep propagating
the value one level deeper till the farthest connected sub-graph is reached. Finally, all
vertices are labeled with the component ID (i.e. largest vertex ID) they belong to.

The computational complexity of this algorithm is O((d+1)×v/p), where d is the
diameter of the graph (specifically, of the largest connected component) constructed by
treating each sub-graph as a meta vertex, v is the number of vertices in the graph and
p is the number of machines (partitions). The key algorithmic optimization here comes
from reducing the number of supersteps (d+ 1) relative to the vertex centric model.

As a result, Connected Components for GoFFish performs significantly better than
Giraph for all three data sets – from 1.4× to 81×. Fig. 2(c) shows the number of super-
steps is much smaller for Gopher compared to Giraph, taking between 5 (TR, LJ) and
7 (RN) supersteps for Connected Components while Giraph takes between 11 (LJ) and
554 (RN). The superstep time in itself is dominated by the synchronization overhead.
The ratio of compute times improvements between Giraph and Gopher is highly corre-
lated (R2 = 0.9999) with the vertex-based diameter of the graph (Table 1), i.e., larger
the vertex-based graph diameter, greater the opportunity to reduce sub-graph-based
diameter, lesser the number of supersteps, and better that Gopher algorithm performs.

The TR graph’s makespan is 21× better for Gopher than Giraph due to much faster
data loading in GoFS (27secs) compared to HDFS (798secs). Giraph’s HDFS, which
balances the vertices across partitions, has to move one vertex with a large edge degree
(O(millions)) that takes punitively long.
SSSP. Intuitively, the sub-graph centric algorithm for Single Source Shortest Path (SSSP)
finds the shortest distances from the source vertex to all internal vertices (i.e. not having
a remote edge) in the sub-graph holding the source in one superstep using DIJKSTRAS
(Alg. 3). It then sends the updated distances from the vertices having a remote edge to
their neighboring sub-graphs. These sub-graphs propagate the changes internally in one
superstep, and to their neighbors across supersteps, till the distances quiesce.

DIJKSTRAS has a compute complexity of O((e·log(v))) per superstep, where e and
v are typically dominated by the largest active sub-graph. The number of supersteps is
a function of the graph diameter d measured through sub-graphs, and this takes O(d)
supersteps. For a partitions with large number of small sub-graphs, we can exploit con-
currency across c cores on that machine. While the time complexity per superstep is
relatively larger for DIJKSTRAS, we may significantly reduce the number of supersteps
taken for the algorithm to converge.

SSSP’s compute time for GoFFish out-performs Giraph by 300× and 2× for RN
and TR, respectively, while it is the same for LJ. Gopher takes reduced supersteps on
RN and TR for SSSP, that is able to offset its higher computational complexity per
superstep. But this complexity impacts LJ which has high edge density, while its small
world network diameter does not reduce the number of supersteps. Hence SSSP for
Gopher only matches, rather than outperforms, Giraph’s compute time for LJ.
PageRank. For each superstep in a vertex centric PageRank [5], a vertex adds all input
message values into sum, computes 0.15/v + 0.85× sum as its new value, and sends
value/g to its g neighbors. The value is 1/v initially, for v vertices in the graph. An
equivalent sub-graph centric approach does not confer algorithmic benefits; it takes the



same ∼30 supersteps to converge and each vertex operates independently in lock step,
with an O(30 · v

p·c · g), for an average edge degree of g.
As shown in Fig. 2(b), Gopher under performs Giraph for PageRank for TR and

LJ by 2.6×. It is 5.5× faster for RN. TR’s makespan offsets compute slowdown with
data loading benefits. As observed, the fixed supersteps used for PageRank negates al-
gorithmic benefits and the computation complexity per superstep for sub-graph centric
is higher than for vertex centric. This also exacerbates the time skew across sub-graphs
in a partition. For e.g., in LJ, many of the partitions complete their superstep within a
range of 23 − 26secs, but these are bound by single large sub-graphs in each partition
which are stragglers, and cause 75% of the cores to be idle. Giraph, on the other hand,
has uniform vertex distribution across machines and each worker takes almost the same
time to complete a superstep while fully exploiting fine grained vertex level parallelism.
This highlights the deficiencies of the default partitioning model used by GoFS that re-
duces edge cuts and balances the number of vertices per machine, without considering
the number of sub-graphs that are present per partition, and their sizes.

Algorithm 3 Sub-Graph Centric Single Source Shortest Path

1: procedure COMPUTE(SubGraph mySG, Iterator〈Message〉M)
2: openset← ∅ I Vertices with improved distances
3: if superstep = 1 then I Initialize distances
4: for all Vertex v in mySG.vertices do
5: if v = SOURCE then
6: v.value← 0 I Set distance to source as 0
7: openset.add(v) I Distance has improved
8: else
9: v.value← −∞ I Not source vertex

10: for all Message m in M do I Process input messages
11: if mySG.vertices[m.vertex].value > m.value then
12: mySG.vertices[m.vertex].value← m.value
13: openset.add(m.vertex) I Distance improved
14: I Call Dijkstras and get remote vertices to send updates
15: remoteSet← DIJKSTRAS(mySG, openset)
16: I Send new distances to remote sub-graphs/vertices
17: for all 〈remoteSG,vertex,value〉 in remoteSet do
18: SENDTOSUBGRAPHVERTEX(remoteSG, vertex, value)
19: VOTETOHALT( )

6 Discussion and Conclusions

We introduce a sub-graph centric programming abstraction for large scale graph an-
alytics on distributed systems. This model combines the scalability of vertex centric
programming with the flexibility of using shared-memory algorithms at the sub-graph
level. The connected nature of our sub-graphs provides stronger guarantees for such al-
gorithms and allows us to exploit degrees of parallelism across sub-graphs in a partition.
The GoFFish framework offers Gopher, a distributed execution runtime for this abstrac-
tion, co-designed with GoFS, a distributed sub-graph aware storage that pre-partitions
and stores graphs for data-local execution.
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Fig. 2: Comparison of GoFFish and Giraph for all Graph Algorithms and Datasets.

The relative algorithmic benefits of using a sub-graph centric abstraction can be
characterized based on the class of graph algorithm and graph. For algorithms that per-
form full graph traversals, like SSSP, BFS and Betweenness Centrality, we reduce the
number of supersteps to a function of the diameter of the graph based on sub-graphs
rather than vertices. This can offer significant reduction. However, for powerlaw graphs
that start with a small vertex based diameter, these benefits are muted.

The time complexity per superstep can be larger since we often run the single-
machine graph algorithm on each sub-graph. The number of vertices and edges in large
sub-graph will impact this. If there are many small sub-graphs in a partition, the number
of sub-graphs becomes the limiting factor as we approach a vertex centric behavior, but
this also exploits multi-core parallelism. For graphs with high edge density, algorithms
that are a linear (or worse) function of the number of edges can take longer supersteps.

We empirically showed that GoFFish performs significantly better than Apache Gi-
raph. These performance gains are due to both the partitioned graph storage and sub-
graph based retrieval from GoFS, and a significant reduction in the number of super-
steps that helps us complete faster. This offers a high compute to communication ratio.

We do recognize some short comings, that offer further research opportunities. Sub-
graph centric algorithms are vulnerable to imbalances in number of sub-graphs per par-



tition as well as non-uniformity in their sizes. This causes stragglers. Better partition-
ing algorithms to balance the sub-graphs can help. The framework is also susceptible
to small-world network graphs with high edge degrees that have high sub-graph level
computational complexity, such as Live Journal. Our software prototype offers further
opportunities for design and engineering optimizations.

References

1. Gregor, D., Lumsdaine, A.: The parallel bgl: A generic library for distributed graph compu-
tations. In: Parallel Object-Oriented Scientific Computing (POOSC). (2005)

2. Ediger, D., Bader, D.: Investigating graph algorithms in the bsp model on the cray xmt. In:
Workshop on Multithreaded Architectures and Applications (MTAAP). (2013)

3. Harish, P., Narayanan, P.: Accelerating large graph algorithms on the gpu using cuda. In:
High performance computing (HiPC). (2007)

4. Lin, J., Schatz, M.: Design patterns for efficient graph algorithms in mapreduce. In: Pro-
ceedings of the Eighth Workshop on Mining and Learning with Graphs, ACM (2010) 78–85

5. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:
Pregel: a system for large-scale graph processing. In: ACM SIGMOD, ACM (2010) 135–146

6. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From ”think like a vertex”
to ”think like a graph”. PVLDB 7(3) (2013) 193–204

7. Avery, C.: Giraph: Large-scale graph processing infrastructure on hadoop. In: Hadoop
Summit. (2011)

8. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph process-
ing. Parallel Processing Letters 17(01) (2007) 5–20
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