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Abstract—Graphs are a key form of Big Data, and performing
scalable analytics over them is invaluable to many domains. There
is an emerging class of inter-connected data which accumulates
or varies over time, and on which novel algorithms both over
the network structure and across the time-variant attribute
values is necessary. We formalize the notion of time-series
graphs and propose a Temporally Iterative BSP programming
abstraction to develop algorithms on such datasets using several
design patterns. Our abstractions leverage a sub-graph centric
programming model and extend it to the temporal dimension.
We present three time-series graph algorithms based on these
design patterns and abstractions, and analyze their performance
using the GoFFish distributed platform on Amazon AWS Cloud.
Our results demonstrate the efficacy of the abstractions to
develop practical time-series graph algorithms, and scale them
on commodity hardware.

I. INTRODUCTION

There is a rapid proliferation of ubiquitous physical sensors,
personal devices and virtual agents that sense, monitor and
track human and environmental activity as part of the evolving
Internet of Things (IoT) [1]. Data streaming continuously
or periodically from such domains are intrinsically intercon-
nected and grow immensely in size. These often possess two
key characteristics: (1) temporal attributes and (2) network
relationships that exist between them. Such datasets that
imbue both these temporal and graph features have not been
adequately examined in Big Data literature even as they are
becoming pervasive.

For example, consider a road network in a Smart City. The
road topology remains relatively static over days. However,
the traffic volume monitored on each road segment changes
significantly throughout the day [2], as do the actual vehi-
cles that are captured by traffic cameras. Widespread urban
monitoring systems, community mapping apps ', and the
advent of self-driving cars will continue to enhance our ability
to rapidly capture changing road information for both real-
time and offline analytics. There are many similar network
datasets where the graph topology changes incrementally but
attributes of vertices and edges vary often. These include Smart
Power Grids (changing power flows on edges, power con-
sumption at vertices), communication infrastructure (varying
edge bandwidths between endpoints) [3], and environmental
sensor networks (real-time observations from sensor vertices).
Despite their seeming dynamism, even social network graph
structures change more slowly compared to the number of
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tweets or messages exchanged over the network 2. Analytics
that range from intelligent traffic routing to epidemiology
studies on how diseases spread are possible on these.

Graph datasets with temporal characteristics have been
variously known in literature as temporal graphs [4],
kineographs [5], dynamic graphs [6] and time-evolving
graphs [7]. Temporal graphs capture the time variant network
structure in a single graph by introducing a temporal edge
between the same vertex at different moments. Others con-
struct graph snapshots at specific change points in the graph
structure, while Kineograph deal with graph that exhibit high
structural dynamism. As such, the exploration into such graphs
with temporal features is at an early stage (§ V).

In this paper, we focus on the subset of batch processing
over time-series graphs. We define time-series graphs as those
whose network topology is slow-changing but whose attribute
values associated with vertices and edges change (or are
generated) much more frequently. As a result, we have a
series of graphs accumulated over time, each of whose vertex
and edge attributes capture the historic states of the network
at points in time (e.g. the fravel time on edges of a road
network at 3PM on 2 Oct, 2014), or its cumulative states over
time durations (e.g. the license plates of vehicles seen at a
road crossing vertex between 3:00PM-3:05 on 2 Oct, 2014),
but whose number of, and connectivity between, vertices and
edges are less dynamic. Each graph in the time-series is an
instance — and we may have thousands to millions of these
instances over time, while the slow changing topology is a
template — with millions to billions of vertices and edges.
Fig. 1 shows a graph template that captures the network
structure and schema of the vertex and edge attributes, while
the instances show the timestamped values for these vertices
and edges.

There is limited work on distributed programming models
and algorithms to perform analytics over such time-series
graphs. The recent emphasis on distributed graph frameworks
using iterative vertex-centric [8], [9] and partition-centric [10]
programming models are limited to single, large graphs. Our
recent work on GoFFish introduced a subgraph-centric pro-

2Each of the 1.3B Facebook users (vertices) with an average of 130
friends each (edge degree) create about 3 objects per day, or 4B ob-
jects per day (http://bit.ly/lodt5aK). In comparison, about 144M edges are
added each day to the existing 169B edges, for about 1% of daily edge
topology change (http:/bit.ly/1diZm50), and about 14% new users were
added in the 12 months, or about 0.04% vertex topology change per day
(http://bit.ly/1fi0A4T)
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Figure 1. Time-series graph collection. Template captures static topology and
attribute names. Instances record temporally variant attribute values.

gramming model [11] and algorithms [12] over single, dis-
tributed graphs that significantly out-performs vertex-centric
models. In this paper, we focus on a programming model for
analysis over a collection of distributed time-series graphs, and
develop graph algorithms that benefit from them. In particular,
we target applications where the result of computation on
a graph instance in one timestep is necessary to process a
graph instance in the next timestep [13]. We refer to this
class of algorithm as sequentially-dependent temporal graph
algorithms, or simply, sequentially-dependent algorithms.

We make the following specific contributions in this paper:

1) We define a time-series graph data model, and propose
a Temporally Iterative Bulk Synchronous Parallel (TI-
BSP) programming abstraction to support several design
patterns for temporal graph algorithms (§ II);

2) We develop three time-series graph algorithms that ben-
efit from these abstractions: Time-Dependent Shortest
Path, Meme Tracking, and Hashtag Aggregation (§ III);

3) We empirically evaluate and analyze these three algo-
rithms on GoFFish, a distributed graph processing frame-
work that implements the TI-BSP abstraction. (§ IV).

II. PROGRAMMING OVER TIME-SERIES GRAPHS
A. Time-series Graphs

_We define a collection of time-series graphs as I' =
(G, G, ty,0), where G is a graph template — the time invariant
topology, and G is an ordered set of graph instances, capturing
time-variant values ranging from { in steps of §. G :A<V, EA>
gives the set of vertices, v; € V, and edges, e; € E: V =V,
common to all graph instances.

The graph instance g € G at timestamp ¢ is given by
(V',E*,t) where v} € V' and ¢!, € E* capture the vertex and
edge values for v; € V and € € E at time t, respectively.
[Vt = |V| and |E!| = |E|. The set G is ordered in time,
starting from ¢(. Time-series graphs are often periodic, in that
the instances are captured at regular intervals. The constant
period between successive instances is 6, i.e., t;41 —t; = 9.

Vertices and edges in the template have a defined set of
typed attributes, A(V) = {id,a1,...,am} and A(E) =
{id, B1,...,Pn} respectively. All vertices of the graph tem-
plate share the same set of attributes, as do edges, with id
being the unique identifier. Graph instances have values for
each attribute in their vertices and edges. The ¢d attribute’s
value is static across instances, and is set in the template. Thus

each vertex v! € V* for a graph instance g* at time ¢ has a set
of attribute values {0;.id,v!.a,...,vf.c.,}, and each edge
el € E' has attribute values {€;.id, 5.3, ..., €}.0,}.

Note that while the template is invariant, a slow changing
topology can be captured using an isExists attribute that
simulates the appearance (isExists=true) or disappearance
(isExists=false) of vertices or edges at different instances.

B. Design Patterns for Time-series Graph Algorithms

Graph algorithms can be classified into traversal, centrality
measures, and clustering, among others, and these are well
studied. With time-series graphs, it helps to understand the
design pattern of an algorithm when operating over instances.

In traversal algorithms for time-series graphs, in addition to
traversing along the edges of the graph topology, one can also
traverse along the time dimension. One approach is to consider
a “virtual” directed temporal edge from one vertex in a graph
instance at time t; to the same vertex in the next instance at
t;+1. Thus, we can traverse either on one spatial or on one
temporal edge at a time, and this enables algorithms such as
shortest path over time and information propagation (§ III).
This also introduces a temporal dependency in the algorithm
since the acyclic temporal edges are directed forward in time.

Likewise, one may gather statistics over different graph
instances and finally aggregate them, or perform clustering
on each instance and find their intersection to show how
communities evolve. Here, the initial statistic or clustering
can happen independently on each instance, but a merge step
would perform the aggregation (§ III). Further, there are also
algorithms where each graph instance is treated independently,
such as when gathering independent statistics on each instance.
Even a complex analytic, such as finding the daily Top-N
central vertices in a year to visualize traffic flows, can be done
in a pleasingly temporally parallel manner.

Based on these motivating examples, we synthesize three
design patterns for temporal graph algorithms (Fig. 2).

1) Analysis over every graph instance is independent. The
result from the application is just a union of results from
each graph instance;

2) Graph instances are eventually dependent. Each instance
can execute independently but results from all instances
are aggregated in a Merge step to produce the final result;

3) Graph instances are sequentially dependent over time.
Here, analysis over a graph instance cannot start (or, al-
ternatively, complete) before the results from the previous
graph instance are available.

While not meant to be comprehensive, identifying these
patterns serves two purposes: (1) To make it easy for algorithm
designers to think about time-series graphs on which there is
limited literature, and (2) To make it possible to efficiently
scale them in a distributed environment. Of these patterns, we
particularly focus on the sequentially dependent pattern since
it is intrinsically tied to the time-series nature of the graphs.
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Figure 2. Design patterns for time-series graph algorithms.

C. Subgraph-Centric Programming Abstraction

Vertex-centric distributed graph programming models [8],
[9], [14] have become popular due to their ease of defining a
graph algorithm from a vertex’s perspective. These have been
extended to partition-, block- and subgraph-centric abstrac-
tions [10], [11], [15] with significant performance benefits. We
build upon our subgraph-centric programming model to sup-
port the proposed design pattern for time-series graphs [11].
We recap its Bulk Synchronous Parallel (BSP) model and then
describe our novel Temporally Iterative BSP (TI-BSP) model.

A subgraph-centric programming model defines the graph
application logic from the perspective of a single subgraph
within a partitioned graph. A graph G = (V, E)) is partitioned
into n partitions, (P, = (V1, E1), -+, P, = (Vp, Ey)) such
that |JVi=V, UE;, =FE, andVi#j:V,NV; =g, ie.
a vethE)l< is presenztiil only one partition, and an edge appears
in only one partition, except for “remote” edges that can span
two partitions. Conversely, “local” edges for a partition are
those that connect vertices within the same partition. Typically,
partitioning tries to ensure that the number of vertices, |V;|, is
equal across partitions and the total number of remote edges,
>r_ |Ril, is minimized. A subgraph within a partition is a
maximal set of vertices that are weakly connected through only
local edges. A partition 4 has between 1 and |V;| subgraphs.

In subgraph-centric programming, the user defines an appli-
cation logic as a Compute method that operates on a single
subgraph, independently. The method, upon completion, can
exchange messages with other subgraphs, typically those that
share a remote edge. A single execution of the Compute
method on all subgraphs, each of which can execute con-
currently, forms a superstep. Execution proceeds as a series
of barriered supersteps, executed in a BSP model. Messages
generated in one superstep are transmitted in “bulk” between
supersteps, and available to the Compute of the destination
subgraph in the next superstep. The Compute method for
a subgraph can VoteToHalt. Execution stops when all
subgraphs VoteToHalt in a superstep and they have not
generated any messages. Each gray box (timestep) in Fig. 3
illustrates this BSP execution model.

The subgraph-centric model [11] is itself an extension of the
vertex-centric model (where the Compute logic is defined for
a single vertex [9]), and offers better relative performance.
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Figure 3. TI-BSP model. Each BSP timestep operates on a single graph
instance, and is decomposed into multiple supersteps as part of the subgraph-
centric model. Graph instances are initialized at the start of each timestep.

D. Temporally Iterative BSP (TI-BSP) for Time-series Graphs

Subgraph-centric BSP programming offers natural paral-
lelism across the graph topology. But it operates on a single
graph, i.e., corresponding to one box in Fig. 2 that operates
on a single instance. We use BSP as a building block to
propose a Temporally Iterative BSP (TI-BSP) abstraction that
supports the design patterns. A TI-BSP application is a set of
BSP iterations, each referred to as a timestep since it operates
on a single graph instance in time. While operations within
a timestep could be opaque, we use the subgraph-centric
abstraction consisting of BSP supersteps as the constituents of
a timestep. In a way, the timesteps over instances form an outer
loop, while the supersteps over subgraphs of an instance are
the inner loop (Fig. 3). The execution order of the timesteps
and the messaging between them decides the design pattern.

Synchronization and Concurrency. A TI-BSP application
operates over a graph collection, I', which, as defined earlier,
is a list of time ordered graph instances. As before, users
implement a Compute method which is invoked on every
subgraph and for every graph instance. In case of an eventu-
ally dependent pattern, users provide an additional Merge ()
method for invocation after all instance timesteps complete.

For a sequentially dependent pattern, only one graph in-
stance and hence one BSP timestep is active at a time.
The Compute method is called on all subgraphs of the
first instance to initiate the BSP. After the completion of
those supersteps, the Compute method is called on all sub-
graphs of the next instance for the next timestep iteration,
and so on till the last graph instance is reached. Users
may also VoteToHaltTimestep (); the timesteps are run
on either a fixed number of graph instances like a For
loop (e.g., a time range, t;..t;4+20), or until all subgraphs
VoteToHaltTimestep and no new messages are emitted,
similar to a While loop. Though there is spatial concurrency
across subgraphs in a BSP superstep, each timestep iteration
is itself sequentially executed after the previous.



In case of an independent pattern, the Compute method can
be called on any graph instance independently, as long as the
BSP is run on each instance exactly once. The application ter-
minates when the timesteps on all the identified instance time
range complete. Here, we can exploit both spatial concurrency
across subgraphs and temporal concurrency across instances.
An eventually dependent pattern is similar, except that the
Merge method is called after the timesteps complete on all
instances in the identified time range within the collection.
The parallelism is similar to the independent pattern, except
for the Merge BSP supersteps which are executed at the end.

User Logic. The signatures of the Compute method and
the Merge method (in case of an eventually dependent pat-
tern) implemented by the user is given below. We also intro-
duce an EndOfTimestep () method the user can implement;
it is invoked at the end of each timestep. The parameters are
passed to these methods by the execution framework.

Compute (Subgraph sg, int timestep, int

superstep, Message[] msgs)
EndOfTimestep (Subgraph sg, int timestep)
Merge (SubgraphTemplate sgt, int superstep,
Message[] msgs)

Here, the Subgraph has the time variant attribute values
of the corresponding graph instance for this BSP in addition to
the subgraph topology that is time invariant. The t imestep
corresponds to the graph instance’s index relative to the
initial instance ¢;, while the superstep corresponds to the
superstep number inside the BSP execution. If the superstep
number is 1, it indicates the start of an instance’s execution,
i.e., timestep. Thus it offers a context for interpreting the list
of messages, msgs. In case of a sequentially dependent appli-
cation pattern, messages received when superstep=1 have
arrived from its preceding BSP instance upon its completion.
Hence, it indicates the completion of the previous timestep, the
start of the next timestep and helps to pass the state from one
instance to the next. If, in addition, the t imestep=1, then
this is the first BSP timestep and the messages are the inputs
passed to the application. For an independent or eventually de-
pendent pattern, messages received when the superstep=1
are application input messages since there is no notion of a
previous instance. In cases where superstep>1, these are
messages received from the previous superstep inside a BSP.

Message Passing. Besides messaging between subgraphs
in supersteps supported by the subgraph-centric abstrac-
tion, we introduce additional message passing and ap-
plication termination constructs that the Compute and
Merge methods can use, depending on the design pattern.
SendToNextTimestep (msg), used in sequentially depen-
dent pattern, passes message from a subgraph to the next
instance of the same subgraph, available at the start of the
next timestep. This can be used to pass the end state of an
instance to the next instance, and offers messaging along
a temporal edge from one subgraph to its next instance.
SendToSubgraphInNextTimestep (sgid, msg), iS Simi-
lar, but allows a message to be targeted to another subgraph
in the next timestep. This is like messaging across both space

(subgraph) and time (instance). SendMessageToMerge (msg)
is used in the eventually dependent pattern by subgraphs in
any timestep to pass messages to the Merge method, which
will be available after all timesteps complete. VoteToHalt (),
depending on context, can indicate the end of a BSP timestep,
or the end of the TI-BSP application in case this is the last
timestep in a range of a sequentially dependent pattern. It is
also used by Merge to terminate the application.

III. SEQUENTIALLY DEPENDENT TIME-SERIES
ALGORITHMS

We present three algorithms: Hashtag Aggregation, Meme
Tracking, and Time Dependent Shortest Path (TDSP), which
leverage the TI-BSP subgraph-centric abstraction over time-
series graphs. The former is an eventually dependent pattern
while the latter two are sequentially dependent. Given its
simplicity, we omit algorithms using the independent pattern.
These demonstrate the practical use of the design patterns and
abstractions in developing time-series graph algorithms.

A. Hashtag Aggregation Algorithm (Eventually Dependent)

We present a simple algorithm to perform statistical ag-
gregation on graphs using the eventually dependent pattern.
Suppose we have the structure of a social network and the
hashtags shared by each user in different timesteps. We need
to find the statistical summary of a particular hashtag in the
social network, such as the count of that hashtag across time
or the rate of change of occurrence of that hashtag.

The above problem can be modeled using the eventually
dependent pattern. In every timestep, each subgraph calcu-
lates the frequency of occurrence of the hashtags among
its vertices, and sends the result to the Merge step using
SendMessageToMerge function. In the Merge method,
each subgraph receives the messages sent to it from its
own predecessors at different timesteps. It then creates a list
hash[] with size equal to the number of timesteps, where
hash[i]=msg from the i*" timestep. Each subgraph then
sends its hash [] list to the largest subgraph present in the
1%¢ partition. In the next superstep, this largest subgraph in the
18t partition aggregates all lists it receives as messages. This
approach mimics the Master.Compute model provided in
some vertex-centric frameworks.

B. Meme Tracking Algorithm (Sequentially Dependent)

Meme tracking helps analyze the spread of ideas or memes
(e.g. viral videos, hashtags) through a social network [16], and
in epidemiology to see how communicable diseases spread
over a geographical network and over time. This helps dis-
cover: the rate of spread of a meme over time, when a user
first receives the meme, key individuals who cause the meme
to spread rapidly, and the inflection point of a meme. These
are used to place online ads, and to manage epidemics.

Here, we develop a sequentially dependent algorithm for
tracking a meme in a social network (template), where tem-
poral snapshots of the tweets (e.g., message that may contain
the meme) generated during each period 6, starting from time
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to, is available as a time-series graph. Each graph instance
at time t; has the tweets (vertex attribute) received by every
user (vertex) in the interval ¢; to ¢;41. The unweighted edges
show connectivity between users. As a meme typically spreads
rapidly, we can assume that the structure of social graph is
static, a superset of which is captured by the graph template.

Problem Definition. Given the target meme 1 and a time-
series graph collection ' = (G, G, ty, ), where v] € V7 has
a set of tweets received by vertex v; € V in time interval t;
to tj11, and t; = j - 0 + to, we have to track how the meme
1 spreads across the social network in each timestep.

The solution to this is, effectively, a temporal Breadth First
Search (BFS) for meme p over space and time, where the
frontier vertices with the meme are identified at each instance.
For e.g., Fig. 4 shows a traversal from a vertex A in instance
¢° that has the meme at ¢, spreads from A — D in g', from
A— E,D— Bin g2 and B|D — C in g%

At timestep to we identify all root vertices R that currently
have the meme in each subgraph of the instance g° (Alg. 1,
Line 4), and initiate a BFS rooted from the root vertices in
each subgraph. The MEMEBFS traverses each subgraph along
contiguous vertices that contain the meme until it reaches a
remote edge, or a vertex without the meme (Alg. 1, Line 10).
We notify neighboring subgraphs with remote edges from a
meme vertex to resume the traversal in the next superstep
(Alg. 1, Line 12). At the end of timestep tg, all new vertices
in v) containing the meme in this subgraph form the frontier
colored set CY. These vertices are printed, accumulated in the
overall visited vertices for this subgraph, C*, and passed to
the same subgraph in the next timestep (Alg. 1, Line 17-20).

For the instance ¢° at timestep t;, we use the vertices
accumulated in the colored set C* until ¢;_; as the root vertices
to find and print C?, and to add to C*. Also, in MEMEBFS,
we only traverse along vertices that have the meme, which
reduces the traversal time. The algorithm uses the output of
the previous timestep (C*) to start the compute of the current
timestep, and this follows the sequentially dependent pattern.
This allows us to incrementally traverse from only a subset of
the (colored) vertices in a single timestep, rather than all the
vertices in the subgraph instance, thereby reducing the number
of cumulative vertices visited.

C. Time Dependent Shortest Path (Sequentially Dependent)

Time Dependent single source Shortest Path (TDSP) finds
the Single Source Shortest Path (SSSP) from a source vertex
s to all other vertices, for time-series graphs where the edge

Algorithm 1 Meme Tracking, given meme

1: procedure COMPUTE(Subgraph SG, timestep, superstep, Message[ ] M)
2: R+ o Set of Root Vertices for BFS
3: if superstep = 0 and timestep = O then Starting app
4: R + v, Yv € SG.vertez| | & p € v.tweets| ]
5: else if superstep = 0 then Starting new timestep
6: R + C* + [Umsg.vertexr Ymsg € M

7 else Messages from remote subgraphs in prior superstep

8 R < RUmsg, Ymsg € M & pu € msg.vertex.tweets| |

9: end if

10: RemoteVerticesTouched < MEMEBFS(RootV ertices)

11: for v € RemoteVerticesTouched do

12: SENDTOSUBGRAPH (v.subgraph, v)

13: end for

14: VOTETOHALT()

15: end procedure

Called at the end of a timestep, t

16: procedure ENDOFTIMESTEP(Subgraph SG, Timestep t)

17: C? « {vertices colored for first time in this timestep}

18:  PRINTHORIZON(v.id,t), Vv € C! Emit result

19: C*«+~cCcryct Pass colored set to next timestep
20: SENDTONEXTTIMESTEP(C*)
21: end procedure

timesteps

@D Vertices with final TDSP before timestep
) Vertices with unknown TDSP at timestep

(a) SSSP (estimated 7, in red for
gO; actual 35, in magenta) Vvs.

TDSP (actual 14, in green)

(b) Frontier vertices of TDSP per
instance as it progresses through
timesteps

weights (representing time durations) vary over timesteps. It is
a widely studied problem in operations research [13] and also
important for transportation routing. We develop an algorithm
for a special case of TDSP called discrete-time TDSP where
the edge weights are updated at discrete time periods ¢ and a
vehicle is allowed to wait on a vertex.

_Problem Definition. For a time-series graph collection I' =
(G, G, to,d), where e! € EJ has a latency attribute that gives
the travel time on the edge e; € E between time interval t;
to t;41, given a source vertex s, we have to find the earliest
time by which we can reach each vertex in 1% starting from
the source s at time tg.

Naively performing SSSP on a single graph instance can
be suboptimal since by the time the vehicle reaches an
intermediate vertex, the underlying traffic travel time on the
edges may have changed. Fig. 5a shows three graph instances
at sequential timesteps separated by a period § = 5 mins, with
edges having a different latencies across instances. Suppose we



start at vertex .S at time ¢( the optimum route for S — C will
go from S — A during ¢y in 5 mins, wait at A for 5 mins
during 1, and then resume the journey from A — C' during ¢
in 4 mins, for a total time of 14 mins (Fig. 5a, green path).
But if we follow a simple SSSP on the graph instance at %,
we get the suboptimal route: S — E — C' with an estimated
time of 7 mins (red path) but an actual time of 35 mins
(magenta path), as the latency of £ — C changes at ¢;.

To solve this problem we apply SSSP on a 3—dimensional

graph created by stacking instances, as discussed below. For
brevity, we assume that tdsp[v;] is the final time dependent
shortest time from s — vJ starting at o, for vertex v; € V.
o Between the same vertex v; in graph instances at timestep
t; and t; 1, we add a uni-directional temporal edge from v§ to
v}“, representing the idling (or waiting) time. Let this idling
edge’s weight be idle[v]].
o Let tdsp'[v;] be the calculated TDSP value for vertex v; at
timestep ¢; and tdsp‘[v;] < (i+1)-, then tdsp[v] = tdsp'[v;].
Hence, we do not need to look for better tdsp values for v;
in future timesteps due to uni-directional nature of the idling
edges. However, if tdsp'[v;] > (i + 1) - § then we have to
discard that value as at time instance ¢; we do not yet know
about the edge values after time ¢4

Using these two points, we get the idling edge weight as:

) if tdsp[v;] < i0
(i+1)0 — tdsplv] if i < tdsplv;] < (i +1)d
N/A otherwise

idle[vj—] =

In the first case, tdsp for vertex v; is found before ¢; so
that we can idle for the entire duration from ¢; to ¢;4;. In
the second case, tdsp for v; falls between t;..t;11. So upon
reaching vertex v;, we can wait for the rest of the time interval.
In the third case, as we cannot reach v; before ¢, there is
no point in waiting so we can discard such idling edges.

Using these observations, we find the tdsp[v;], Yv; € V by
applying a variation of SSSP algorithms like Dijkstra’s. We
start at time to and apply SSSP from source vertex s in g°.
However, we will finalize only those vertices whose shortest
path time is < §. Let these frontier vertices for ¢° be FC.
For all other vertices, their shortest time label will be retained
as co. Now for a graph at time ¢;, at the beginning, we will
label all the vertices in F with time value § (as given by the
idling edge values above). Then we start SSSP for the graph
at t; using the labels for vertices v € FO, and traverse to all
vertices whose shortest path times are less than 2 - §, which
will constitute F'. Similarly, for graph irllstance at t;, we will

initialize the labels of all vertex v € |J F* to i -, and use
k=0

these in the SSSP to find IF?. The first time a vertex v is added

to a frontier set F set, we get its tdsp[v] value.

The subgraph-centric TI-BSP algorithm for TDSP is given
in Alg 2. The result of the SSSP for a graph instance at t; is
used as a input to the instance at ¢;;;, which follows the
sequentially time-dependent pattern. Here, MODIFIEDSSSP
takes a set of root vertices and finds the SSSP for all vertices
that can be reached in the subgraph in less than the end of

Algorithm 2 TDSP from Source s
1: procedure COMPUTE(Subgraph SG, fimestep, superstep, Message[ | M)

2 R+ o Init root vertex set

3 if superstep = 0 and timestep = O then

4 v.label < oo, Yv € SG.vertex| ]

5: if s € SG.vertex| ] then

6: R« {s}, s.label + 0

7 end if

8 else if superstep = 0 then Begining of new Timestep
9: F < Umsg.vertex, Vmsg € M| ]

10: v.label < timestep - 6, Yv € F

11: R+ F

12: else

13: for msg € M do Message from Other subgraphs
14: if msg.vertez.label > msg.label then

15: msg.vertex.label < msg.label

16: R + RUmsg.vertex

17: end if

18: end for

19: end if

20: RemoteSet < MODIFIEDSSSP(R)
21: for v € RemoteSet do
22: SENDTOSUBGRAPH (v.subgraph, {v, v.label})
23: end for
24: VOTETOHALT()
25: end procedure
Called at the end of a timestep, t
26: procedure ENDOFTIMESTEP(Subgraph SG, int timestep)
27: Ftimester ¢4 VYo ¢ F & v.label # oo
28: OUTPUT(v.id, timestep, v.label), Vv € Ftimestep
20: FeT U Ftimestep
30: SENDTONEXTTIMESTEP(v), Yv € F
31: end procedure

current time step, starting from the root vertices. It returns a
set of remote vertices in neighboring subgraphs along with
their estimated labels, that are subsequently traversed in the
next supersteps, similar to an subgraph-centric SSSP.

IV. EMPIRICAL ANALYSIS

In this section, we empirically evaluate the time-series graph
algorithms designed using the TI-BSP model, and analyze their
performance, scalability and algorithm behavior.

A. Dataset and Cloud Setup

For our experiments, we use two real world graphs from the
SNAP Database as our template *: California Road Network
(CARN) * and Wikipedia Talk Network (WIKI) 5. These
graphs have similar numbers of vertices but different struc-
tures. CARN has a large diameter and a small uniform edge
degree, whereas WIKI is a small world network with power
law degree distribution and a small diameter.

Graph Template

California Road Network (CARN)
Wikipedia Talk Network (WIKI)

[[ Vertices Edges Diameter

1,965,206 2,766,607 849
2,394,385 5,021,410 9

Time-series graphs are not yet widely available and curated
in their natural form. So we model and generate synthetic
instance data from these graph templates for 50 timesteps:

3http://snap.stanford.edu/data/index.html
“http://snap.stanford.edu/data/roadNet-CA.html
Shttp://snap.stanford.edu/data/wiki-Talk.html



e Road Data For TDSP: We use a random value for fravel
latency for each edge (road) of the graph, and across timesteps.
There is no correlation between the values in space or time.
e Tweet Data For Hashtag Aggregation and Meme Tracking:
We use the SIR model of epidemiology [17] for generating
tweets containing memes (#hashtags) for each edge of the
graph. Memes in the tweets propagate from vertices across
instances with a hit probability of 30% for CARN and 2% for
WIKI. We vary the hit probability to get a stable propagation
across 50 time steps for both the graphs.
Across 50 instances, each CARN dataset has about 98M
vertex and 138\ edge attribute values, while each WIKI
dataset has about 120M vertex and 251 M edge values.
These four graph datasets (CARN and WIKI using Road
and Tweet Generators) are partitioned into 3, 6 and 9 hosts,
using METIS ©. These 12 dataset configurations are loaded
into GoFFish’s distributed file system GoFS with a temporal
packing of 10 and subgraph binning of 5 [18]. This means that
10 instances will be temporally grouped and up to 5 subgraphs
in a partition will be spatially grouped into a single slice file on
disk. This leverages data locality when incrementally loading

time-series graphs from disk at runtime.
100
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m GoFFish TDSP 50x
GoFFish SSSP 1x

WIKI

m 3-Partitions
m 6-Partitions
9-Partitions

100

| | I

Hash: Hash: Meme: Meme: TDSP: TDSP:
CARN  WIKI CARN WIKI CARN  WIKI

(a) Time on GoFFish for 3 Algorithms

[
o

Time (Secs)
Time (Secs)
)
&

o

Figure 5. Time taken by different algorithms on time-series graph datasets

We run our experiments on Amazon AWS Infrastructure
Cloud. We use 3, 6 and 9 EC2 virtual machines (VMs) of
the m3. large class (2 Intel Xeon E5-2670 cores, 7.5 RAM,
100GB SSD, 1 GB Ethernet), each holding one partition. We
use Java 1.7 with 6GB of heap space for the JRE.

B. Summary Results and Scalability

We run the three algorithms (HASH, MEME, TDSP) on the
two generated graphs (CARN, WIKI) for different numbers
of partitions/VMs. Fig 5a summarizes the total time taken by
each experiment combination on GoFFish.

We can observe that for both TDSP and Meme, going from 3
to 6 partitions offers strong scaling for CARN (1.8 speedup)
and for WIKI (1.67 — 1.88x), that is close to the ideal of 2x.
CARN shows better scalability going from 3 to 9 partitions,
with an average of 2.5x speedup compared to WIKI’s 1.9x.
This can be attributed to the structure of the two graphs.

SMETIS uses the default configuration for a kway partitioning with a load
factor of 1.03 and tries to minimizes the edge cuts.

(b) SSSP on Giraph & GoFF-
ish for 1 Instance vs. TDSP
on GoFFish for 50 Instances

CARN has a large diameter and small average degree, and
can be partitioned into 3 ~ 9 partitions with few edge cuts.
On the other hand due to its small world nature, the number
of edge cuts in WIKI increases significantly as we increase
the partitioning, as shown in the table below. An increase in
edge cuts increases the number of messages between a larger
number of partitions, which mitigates the benefits of having
additional computation VMs.

PERCENTAGE OF EDGES THAT ARE CUT ACROSS GRAPH PARTITIONS

9 Partitions

0.020%
26.170%

6 Partitions

0.012%
17.190%

Graph [[ 3 Partitions

CARN 0.005%
WIKI 10.750%

For TDSP the time taken for WIKI is unexpectedly smaller.
However, this is an outcome of the algorithm, the network
structure and the instance values. The TDSP algorithm reaches
all the vertices in WIKI within only 4 timesteps, requiring
processing of much fewer instances, while it takes 47 timesteps
for CARN. Despite the random edge latency values generated,
the small world nature of WIKI causes rapid convergence.

For our eventually dependent HASH algorithm, there is the
possibility of pleasingly parallelizing each timestep before the
merge. However, this is currently not exploited by GoFFish.
Since the timesteps themselves perform limited computation,
the communication and synchronization overheads dominate
and it scales the least.

C. Baseline Comparison with Apache Giraph

No existing graph processing framework has native sup-
port for time-series graphs. So it is difficult to perform a
direct comparison. However, based on the performance of
these systems for single graphs, we try and extrapolate for
iterative processing over a series of graphs. We choose Apache
Giraph [14], a popular vertex-centric distributed graph pro-
cessing system based on Google’s Pregel [9]. Giraph does
not natively support the TI-BSP model or message passing
between instances, though with a fair bit of engineering, it is
possible. Instead, we approximate the upper bound time for
computing TDSP on a single graph instance by running SSSP
on a single unweighted graph of CARN and WIKI’. SSSP on a
single instance also gives the lower bound time on computing
TDSP on ’n’ instances if implemented in Giraph since TDSP
across 1 or more instances touches as many or more vertices
than SSSP on one instance. If 7 is the SSSP time for one
instance, running Giraph as TI-BSP, after re-engineering the
framework, on n instances takes between 7 and (n X 7).

We deploy the latest version of Giraph v1.1 which runs on
Hadoop 2.0 Yarn, with its default settings. We set the number
of workers to the number of cores. Besides running Giraph
SSSP on a single unweighted CARN and WIKI graphs on 6
VMs, we also run SSSP using GoFFish on them as an added
baseline. Fig 5b shows the time taken by Giraph and GoFFish

7Running SSSP on an unweighted graph degenerates to a BES traversal,
which has lesser time complexity. So the number will favor Giraph



for running SSSP, and also shows the time taken by GoFFish
to run TDSP on 50 graph instances and 6 VMs.

From Fig 5b, we observe that even for running SSSP on a
single unweighted graph, Giraph takes more time than GoFF-
ish running TDSP over a collection of 50 graph instances, for
both CARN and WIKI. So, even in the best case, Giraph ported
to support TI-BSP cannot outperform GoFFish. In worst case,
it can be 50x or more slower, increasing proportionally with
the number of instances as data loading times are considered
since all instances cannot simultaneously fit in memory. This
motivates the need for distributed programming frameworks
like GoFFish particularly designed for time-series graphs.

For comparison, we see that GoFFish’s SSSP for a single
CARN instances is about 13x faster than TDSP on 50
instances, due to the overhead of processing 50 graphs, and
the associated timesteps and supersteps. We can reasonably
expect a similar increase in the time factor for Giraph.

D. Performance Optimization for Time-series Graphs
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(b) Time taken per timestep for MEME on WIKI

Figure 6. Time taken across time steps for 3,6 and 9 partition

We next discuss the time taken by different algorithms
across timesteps. Fig 6 shows the time taken by TDSP on
CARN and MEME on WIKI for 3, 6 and 9 partitions. We see
several patterns here. One is the spikes at timesteps 20 and 40
for all graphs and algorithms. This is an artifact of triggering
manual garbage collection in the JVM using System.gc ()
at synchronized timesteps across partitions. Since there are
graph objects being constantly loaded and processed, we no-
ticed the default GC gets triggered when a memory threshold
is reached, and this costly operation happens non-uniformly
across partitions. As a result, other partitions are forced to
idle while GC completes on one. Instead, by forcing a GC
every 20 timesteps (selected through empirical observations),
we ensure individual GC time is avoided. As is apparent, the 3
Partition scenario has less distributed memory and hence has
more memory pressure compared to the 6 and 9 partitions.

Hence the GC time for it is higher than 6, which is higher
than 9.

We also see a gentle increase in the time at every 10th
timestep. As discussed in the experimental setup, GoFFish
packs pack subgraphs into slice files to minimize frequent disk
access and leverage temporal locality. This packing density is
set to 10 instances. Hence, at every 10th timestep we observe
a spike caused by file loading for both the algorithms. Some
of these loads can also happen in a delayed manner since
GoFFish only loads an instance if it is accessed. So inactive
instances are not loaded from disk, and fetched only when they
perform a computation or received a message. We also observe
that piggy bagging GC with slice loading gives a favorable
performance.

It is also clear from the plots that the 3 Partition case
has a higher average time per timestep, due to the increased
computation required by fewer VMs. However, the 6 and 9
Partition cases take about the same time. This reaffirms that
there is scope for strong scaling when going from 3 to 6
Partitions, but not as much from 6 to 9 Partitions.

E. Analysis of Design Patterns for Algorithms
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Figure 7. Utilization of different CPU and The Progress of Algorithm for 6
Partitions

Next, we discuss the behavior of time dependent algorithms
across timesteps and their relationship with resource usage.
Fig 7a shows the number of vertices whose TDSP values
are finalized at each timestep for CARN on 6 partitions. The
source vertex is in Partition 2, and the traversal frontier moves



over timesteps as a wave to other partitions. For some like
Partition 6, a vertex is finalized in them for the first time as
late as timestep 26. Such partitions remain inactive early on.

This trend loosely corresponds to the CPU utilization by the
partitions (VMs) as shown in Fig 7b. The other time fractions
shown are the time to send messages after compute completes
in a partition (Partition Overhead), and time for the BSP
barrier sync to complete across all subgraphs in a superstep
(Sync Overhead). Partitions that are active early have a high
CPU utilization and lower fraction of framework overheads
(including idle time). However, due to the skewed nature of
the algorithm’s progression across partitions, some partitions
exhibit compute utilization of only 30%.

For MEME, we plot the number of new memes discovered
(colored) by the algorithm in each timestep (Fig 7c). Since
the source vertices having memes are randomly distributed
and we use a probabilistic SIR model to propagate them over
time and space, we observe a more uniform structure to the
algorithm’s progress across time-steps. Partitions 2 and 3 have
more numbers of memes as compared to other partition, and
so we see that they have a higher compute utilization (Fig 7d).
These however are at the expense of other partitions with fewer
memes and hence lower CPU utilization.

These observations open the door to new research oppor-
tunities on time-series graph abstractions and frameworks.
Partitions which are active at a given timestep can pass
some of their subgraphs to an idle partition if the potential
improvements in average CPU utilization outweighs the cost
of rebalancing. In the subgraph-centric models, partitioning
produces a long tail of small subgraphs in each partition
and one large subgraph dominates. So these small subgraphs
could be candidates for moving, or alternatively, the large
subgraphs could be broken up to increase utilization even if
it marginally increases communication costs. Also, we can
use elastic scaling on Clouds for long-running time-series
algorithms jobs by starting VM partitions on-demand when
they are touched, or spinning down VMs that are idle for long.

V. RELATED WORK

The increasing availability of large scale graph oriented
data sources as part of the Big Data avalanche has brought
a renewed focus on scalable and accessible platforms for
their analysis. While parallel graph libraries and tools have
been studied in the context of High Performing Computing
clusters for decades [19], [20], and more recently using
accelerators [21], the growing emphasis is on using commodity
infrastructure for distributed graph processing. In this context,
current graph processing abstractions and platforms can be cat-
egorized into: MapReduce frameworks, Vertex-centric frame-
works, and online graph processing systems. Map/Reduce [22]
has been a de facto abstraction for large data analysis, and
has been applied to graph data as well [23]. However its
use for general purpose graph processing has shown both
performance and usability concerns [9]. Recently, there has
been a focus on vertex-centric programming models exempli-
fied by GraphLab [8] and Google’s Pregel model [24]. Here,

programmers write the application logic from the perspective
of a single vertex, and use message passing to communicate.
This greatly reduces the complexity of developing distributed
graph algorithms, by managing distributed coordination and
offering simple programming primitives that can be easily
scaled, much like MapReduce did for tuple-based data. Pregel
uses Valiant’s Bulk Synchronous Parallel (BSP) model of
execution [25] where a vertex computation phase is interleaved
with a barriered message communication phase, as part of iter-
ative supersteps. Pregel’s intuitive vertex-centric programming
model and the runtime optimization of its implementations and
variants, like Apache Giraph [8], [14], [26], [27], make it better
suited for graph analytics than MapReduce. There have also
been numerous graph algorithms that have been developed for
such vertex-centric computing [12], [28]. We adopt a similar
BSP programming primitive in our work.

However, vertex-centric models such as Pregel have their
own deficiencies. Recent literature, including ours, have
extended this to coarser granularities such as partition-,
subgraph- and block- centric approaches [10], [11], [15].
Giraph++ uses an entire partition as the unit of execution and
users’ application logic has access to all vertices and edges,
whether connected or not, present in a partition. They can
exchange messages between partitions or vertices in barriered
BSP supersteps. GoFFish’s subgraph-centric model [11] offers
a more elegant approach by retaining the structural notion
of a weakly connected component on which existing shared-
memory graph algorithms can be natively applied. The sub-
graphs themselves act as meta-vertices in the communication
phase, and pass messages with each other. Both Giraph++ and
GoFFish have demonstrated significant performance improve-
ments over a vertex-centric model by reducing the number of
supersteps and message exchanges to perform several graph
algorithms. We leverage GoFFish’s subgraph-centric model
and its implementation in our current work.

As such, these recent programming models have not ad-
dressed processing over collections of graphs which may also
have time evolving properties. There has been interest in the
field of time-evolving graphs where the structure of the graph
itself changes. Shared memory systems like STINGER [29]
allow users to perform analytics on temporal graph. Hinge [30]
enables efficient snapshot retrieval on historical graphs on
distributed system using data structure such as delta graph
which stores the delta update to the base graph. Time-series
graph, on the other hand, handle slow changing or invariant
topology with fast changing attribute values. These are of
increasing importance to streaming infrastructure domains
like Internet of Things. This forms our focus. Some of the
optimizations of time-evolving graphs are also useful for time
series graphs as it enables storing compressed graphs. At
the same time, research into time evolving graphs are not
concerned with performing large-scale batch processing over
volumes of stored time-series graphs, as we are.

Similarly, online graph processing systems such as Kineo-
graph [5] and Trinity [31] emphasize heavily on the analysis
of streaming information, and align closely with time evolving



graphs. These are able to process a large quantity of infor-
mation with timeliness guarantees. Systems like Kineograph
maintain graph properties like SSSP or connected component
as the graph itself is updating, almost like view maintenance
in relational databases. In a sense, these systems are concerned
with time relative to “now’ as data arrives, while our work is
concerned with time relative to what is snapshot and stored for
offline processing. As such these framework do not offer a way
to perform global aggregation of attributes across time, such as
in the case of TDSP. Kineograph’s approach could conceivably
support time-series graphs using consistent snapshots with an
epoch commit protocol, and traditional graph algorithms can
then be run on each snapshot. However, rather than provide
streaming or online graph processing, we aim to address a
more basic and as yet unaddressed aspect of offline bulk
processing on large graphs with temporal attributes.

As such, this paper is concerned with the programming
models, algorithms and some runtime aspects of processing
time-series graphs. As yet, it does not investigate other in-
teresting concerns with distributed processing such as fault
tolerance, scheduling and distributed storage.

VI. CONCLUSIONS

In summary, we have introduced and formalized the notion
of time-series graph models as a first class data structure. We
propose several design patterns for composing algorithms on
top of this data model, and define an Temporally Iterative
BSP abstraction to compose such patterns for distributed
execution. This leverages our existing work on sub-graph
centric programming for single graphs. We illustrate the use
of these abstractions by developing three time-series graph
algorithms to perform summary statistics, trace a meme over
space and time, and find time-aware shortest path. These
extend from known algorithms for single graphs such as
BFS and SSSP. The algorithms are validated empirically by
implementing them on the GoFFish framework, that includes
these abstractions, and benchmarking them on Amazon AWS
Cloud for two graph datasets. The results demonstrate the
ability of these abstractions to scale and the benefits of
having native support for time-series graphs in distributed
frameworks. While we have extended our GoFFish framework
to support TI-BSP, these abstractions can be extended to other
partition- and vertex-centric programming framework too.
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