
Efficient Parallel GPU Implementation of
ACO-RFD Hybrid Algorithm to Solve Travelling

Salesman Problem
Ankit Shrivastava, Krishna Manglani

Department of Computational and Data Sciences
Indian Institute of Science, Bangalore, India

ankitvaibhava@gmail.com, krish2100@gmail.com

Abstract—The Travelling Salesman Problem(TSP) is one of
the most paradigmatic NP-problem.Over years many heuristic
algorithms have been proposed to solve TSP.Ant colony optimiza-
tion(ACO) and river flow dynamics(RFD), two related swarm
intelligence methods have been used to solve TSP in past.In this
paper we solve TSP using a parallel implementation of hybridized
ACO-RFD on GPU. We have used different strategies to hybrid
ACO with RFD and compared the solution quality.We have
implemented these algorithms on GPU using both task parallel
and data parallel approach and compared the speedup with serial
and existing parallel versions.

I. INTRODUCTION

Ant colony optimization (ACO) algorithm model the
behaviour of real ants.Real ants uses the pheromone
deposited by other ants to follow the path.This behaviour has
been used while designing ant algorithm where artificial ant
constructs a solution for a given problem by carrying out
random walk on graph.The probability of traversing a certain
edge depends on the pheromone level deposited on that edge.

River formation dynamics (RFD) is another swarm method.
RFD is based on copying how river path is formed in nature
due to erosion and sedimentation. These feature has been
used in RFD algorithm. Each node is assigned some value
called altitude.Artificial drop traversing a path in graph
chooses its edge based on maximum negative gradient of the
edge.Here gradient is difference of altitudes of nodes divided
by edgelength.Thus, RFD can be considered as gradient
version of ACO.

The paper by Rabanal, Pablo and Rodrguez [1] mentions
that the standard ACO algorithm tends to stuck in local
cycle.Whereas in RFD this local cycle is not possible due to
its gradient based approach.Also RFD has other advantages
over ACO such as fast reinforcement of new shortcuts and
a localized method to punish blind alleys. Another paper by
Rabanal, Pablo and Rodrguez [2] says that although RFD has
advantages over ACO, but the application of RFD to TSP
is less natural than application of ACO to TSP.In general
solutions constructed by RFD are better, though ACO obtains
acceptable solutions faster.

Hence need of hybrid algorithm arises. This hybrid
algorithm tends to obtain best characteristics of ACO and
RFD.By using hybrid algorithm our focus is on getting
better result than ACO but with very little compromise in
speed.Instead of using ants and drops to traverse the node a
new entity ant-drop that contains all the attributes of ants as
well as all the attributes of drops is created.

Since in hybrid algorithm there will be large amount of
ant-drop entity which randomly chooses the starting nodes
and independently traverse the graph without any interaction
among each other it provides a great opportunity to implement
this code on GPU using NVIDIA CUDA.In GPU a thread or
thread block can act as an ant-drop entity.

The rest of the report is organised as follows: In Section-2,
Related Work of our hybrid execution is summarised.Section-
3 We talks about our hybrid implementation methodology
wherein we describe all the steps in details. In Section-
4, experiment setup and results are presented along with
analysis.We finally conclude in Section-5.

II. RELATED WORK

For years many have proposed improved version of
ACO.Dorigo, M. and Gambardella, L.m. [3] discusses the
ACO to solve TSP. In this they have shown that ACO have
shown some favourable results with other algorithms like
genetic algorithms, evolutionary programming, and simulated
annealing. They have also concluded that constructive
methods to generate good starting solutions can be considered
as good strategy.

Rabanal, Pablo [2] discuss the implementation of hybrid
ACO-RFD algorithm to solve TSP problem.They tries to
extract best feature of both ACO and RFD.Thus they are
able to get reasonable solution as compared to ACO with
reasonable time as compared to RFD.

Uchida, Akihiro [4] discusses the parallel implementation of
ACO on GPU. They have tried to parallelize tour construction
stage and pheromone update stage using data parallel ap-
proach.They were able to conclude that with their new parallel



algorithm compared to its sequential counterpart executes up
to 82x faster while preserving the quality and 8.5 times faster
than other existing parallel implementation on GPU.

III. METHODOLOGY

In this section, we provide a complete description of
the algorithm that we employed for the ACO-RFD hybrid
implementation on CUDA. Algorithm 1. explains basic
scheme of ACO-RFD hybrid algorithm as explained by
Rabanal, Pablo and Rodrguez [2]. This scheme consists of
following phases:

• initializePheromonesAndNodes
• initializeAntDrops
• moveAntDrops
• depositPheromones
• evaporatePheromones
• erodePaths
• depositSediments

Algorithm 1 Hybrid Algorithm Scheme
initializePheromonesAndNodes()
initializeAntDrops()
while not endingCondition() do

moveAntDrops()
depositPheromones()
evaporatePheromones()
erodePaths()
depositSediments()
analyzePaths()

end while

We have implemented moveant() phase algorithm using
three different strategies on CUDA which we will be dis-
cussing one by one.

Following are the three strategies
• hybrid-1 (HB1) using task parallel
• hybrid-2 (HB2) using task parallel
• hybrid-2 (HB2) using data parallel

Before starting any execution in CUDA first we execute
two phases in CPU i.e. initializePheromonesAndNodes where
we initialize pheromone level at each edge by INI TPH and
altitude of each node by INIT ALT.Then we initialize each
ant-drop by putting them in one of the nodes of the graph.Once
initialization is done complete data is loaded into GPU.Thus
the pheromone level, altitude of each node and cost matrix
are stored in global memory of GPU to which each thread has
access.

A. Hybrid-1 (HB1) using task parallel

First weightage of w aco and w rfd is fixed before
execution. Here in GPU each thread work as an ant-drop.
Each thread has access to their separate respective array such
as entity-path, edge-probability stored in global memory.

Then the thread in moveantdrop phase chooses the next path
in parallel using following equation

P (i, j) = wacoPant(i, j) + wrfdPdrop(i, j)

Algorithm 2. explains the basic scheme of HB1 moveant-
drop() phase

Algorithm 2 Move Agents Kernel (Task Parallel HB-1)
for each AntDrop in parallel do

Set Visited Array to zero
Set CurrentCity = id mod num cities
Set City = 0
while City < num cities do

i = CurrentCity
Schedule(City) = CurrentCity
visited(i) = 1
for each unvisited city j do

Pant(i, j) =
(ταij)(η

β
ij)

Σj(ταij)(η
β
ij)

Pdrop(i, j) =
decreasingGradientij

ΣjdecreasingGradientij
P (i, j) = wacoPant(i, j) + wrfdPdrop(i, j)

end for
CurrentCity = arg maxj P (i, j)
City++

end while
Set pathlength(id) = find cost(Schedule)

B. Hybrid-2 (HB2) using task parallel

Here similar to previous algorithm each thread act as
separate entity and execute moveant phase in parallel. The
only difference is that instead of calculation the probability
by thread to choose next path, it first randomly decides the
nature whether it will act as an ant or as a drop before
starting moveant() phase as per following equation.

if (nature = 0)
P (i, j) = Pant(i, j)

else
P (i, j) = Pdrop(i, j)

C. Hybrid-2 (HB2) using data parallel

Here similar to previous algorithm each entity first
randomly decides the nature whether it will act as an ant or
as a drop before starting moveant(). But major difference in
this strategy is that instead of each thread acting as separate
entity here each thread block act as separate ant-drop entity
with fixed number of threads for each thread block.This
further help in parallelizing moveant() phase.Also another
benefit here is that earlier each entity had to acess global
memory again and again during a single moveant() phase
this time it will have to access its own shared memory. Also
while computing the pathlength parallel reduction takes place



which further parallelize the algorithm. Algorithm 4. explains
the basic scheme of HB2-data parallel moveantdrop() phase.

Algorithm 3 Move Agents Kernel (Data Parallel HB-2)
for each thread in threadBlock in parallel do

sharedVariables: nature,CurrentCity,nextCity[N ],prob[N ]
Set Visited Array to zero collectively
Master thread sets:

CurrentCity = id mod num cities
nature

City = 0
while City < num cities do

i = CurrentCity
Master Thread Sets:

Schedule(City) = CurrentCity
visited(i) = 1

prob(threadId) = 0
temp = 0
for each unvisited and associated city j do

if (nature = 0)
temp = Pant(i, j)

else
temp = Pdrop(i, j)

if (prob(threadId) < temp)
prob(threadId) = temp
nextCity[threadId] = j

end for
syncthreads()

Compute arg maxj P (i, j) using parallel reduction
and store in master thread

Master thread sets CurrentCity = nextCity(Master
ThreadId)

City++
syncthreads()

end while
Find cost of schedule in parallel and store in Master

thread
Master Thread Sets Set pathlength(id) = schedule cost

Once all threads complete traversing the graph we parallely
update pheromone and altitude data in rest of the phases such
as depositpheromone,evaporatepheromene, as explained by
Dorigo, M. [3] and depositesediment, erode path as explained
by Rabanal, Pablo [5]

The above phases are repeated for next iterations and
the complete algorithm is executed for specified number of
iterations.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

The following results were obtained by running on Tesla
K40m cluster with driver version 7.5. It contains 2880 CUDA
cores, 745 mhz as GPU max clock rate.

B. Results

The main motive behind parallelizing the hybrid algorithm
was to obtain best possible optimal tour in fastest possible
way available.The table clearly shows that for 1000 iterations
we are able to get better results using hybrid algorithm over
simple ant colony algorithm individually.

TABLE I
COST RESULTS COMPARISON FOR 1000 ITERATIONS

City ACO HB1 HB2 Optimal path
berlin52.tsp 8093 8009.2 8172 7544.4
kroa100.tsp 9282 9238 9244.03 7944.8

a280.tsp 3343 3149.7 2830 2586.8
pcb442.tsp 58758.5 58953 58530.4 50783.5

It is clear from the figures Fig.1. and in Fig.2. that we are
able to achieve speedups in all the cases.For smaller graphs
the computation is low so we get low speedup. As the size
increases the computation plays major role hence higher
speedup is achieved

Fig. 1. Speed-ups for HB1

Fig. 2. Speed-ups for HB2

In case of task parallel algorithm all variables are stored
in global memory and all thread tries to access their part



of global memory during each phase of algorithm. Because
of this the global memory access time plays a major role.
While in data parallel while finding next edge the pheromone
array is accessed by many threads in such a way that access
locations are consecutive. This leads to memory coalescing
effect which increases memory throughput and thus increase
speedup. Also the computation of pathlengths is done with
the help of shared memory and parallel reduction which
improves the speed of kernel. Hence we get more speed-up
in data parallel than in task parallel.

We have also compared the results of ACO-RFD hybrid
CUDA implementation with that of results by Molly A.
ONeil [6] in Fig.3 anf Fig.4 .

The multiprocessor occupancy analysis is done to choose
the optimal thread block size. The multiprocessor occupancy
is ratio of active warps to the maximum number of warps
supported on a multiprocessor of the GPU. The occupancy
is determined by amount of shared memory and registers
used by each threadblock. Maximizing occupancy can help
to cover memory latency during global loads and increase
overall throughput of GPU. The GPU occupancy calculator
can assist in choosing thread block size based on shared
memory and register requirements. With the kernels provided
in methodology, the maximum occupancy with HB-1 strategy
was found to be 63 % where as with HB-2 strategy, it was
found to be 100 % with the best choice of thread block size
of 256.

Fig. 3. Performance comparison of ACO-RFD hybrid with standard paper
by A. ONeil [6]

V. CONCLUSIONS

River flow dynamics is relatively new algorithm with very
little work done.We believe that such effective use of RFD
in ACO-RFD hybrid algorithm to solve TSP very efficiently
have been proposed for first time by As Rabanal, Pablo
and Rodrguez [2].Hence we believe that we are the first to
parallelize this hybrid algorithm to best of our knowledge.

There is a lot of scope in improving RFD algorithm which
inturn help in improvement of ACO-RFD hybrid algorithm. In

Fig. 4. Quality comparison of ACO-RFD hybrid with standard paper by A.
ONeil [6]

our CUDA based hybrid algorithm all phases of algorithm was
executed by GPU hence if openMP-CUDA or MPI-CUDA hy-
bridization is used the complete computation-dominated phase
can be done by GPU and memory-access-dominated phase can
be done by CPUs.Further parallelization of remaining phases
of algorithm is also possible.

REFERENCES

[1] P. Rabanal, I. Rodrguez, and F. Rubio, “Solving dynamic tsp by using
river formation dynamics,” 2008 Fourth International Conference on
Natural Computation, 2008.

[2] ——, “An aco-rfd hybrid method to solve np-complete problems,” Fron-
tiers of Computer Science Front. Comput. Sci., vol. 7, no. 5, p. 729744,
2013.

[3] “Ant colony system: a cooperative learning approach to the traveling
salesman problem,” IEEE Transactions on Evolutionary Computation
IEEE Trans. Evol. Computat., vol. 1, no. 1.

[4] A. Uchida, Y. Ito, and K. Nakano, “An efficient gpu implementation of
ant colony optimization for the traveling salesman problem,” 2012 Third
International Conference on Networking and Computing, 2012.

[5] P. Rabanal, I. Rodrguez, and F. Rubio, “Using river formation dynamics
to design heuristic algorithms,” Lecture Notes in Computer Science
Unconventional Computation, p. 163177.

[6] M. A. Oneil, D. Tamir, and M. Burtscher, “A parallel gpu version of
the traveling salesman problem,” in 2011 International Conference on
Parallel and Distributed Processing Techniques and Applications, 2011,
pp. 348–353.


