
Parallel hybrid Implementation of Cascade Support
Vector Machine (SVM) with parallelized Sequential

Minimal Optimization (SMO) for classification.
Md. Imbesat Hassan Rizvi, Prateek Kushwaha

Supercomputer Education and Research Centre
Indian Institute of Science, Bangalore, India

imbesatrizvi@ssl.serc.iisc.in, prateek@ssl.serc.iisc.in

Abstract—Support Vector Machines (SVMs) are powerful but
computationally expensive machine learning (ML) algorithm for
supervised classification task whihc is frequently witnessed in
the ML domain. For optimization of objective function SMO is
widely used while for large dataset Cascading approach is well
suited. Both of these are parallelizable in orthogonal sense i.e.
independent of each other. Motivated by these, in this project, we
have implemented a hybrid version of both the above mentioned
techniques with SMO being implemented using CUDA while
cascading being implemented using MPI.

I. INTRODUCTION

Support vector machines (SVMs) are a set of supervised
learning methods used for classification, regression and out-
liers detection.This is currently a most powerful tool due
to its effictveness in higher dimension spaces but usually
accompanied by high compute requirements which arises due
to the need of solving a Quadratic Optimization problem
(or Quadratic Programming, QP) for determining Lagrange
Multipliers and Support Vectors. General-purpose QP solvers
tend to scale with the cube of the number of training vectors
(O(k3)).

The standard two-class soft-margin SVM classification
problem (C-SVM), which classifies a given data point x ∈ Rn

by assigning a label y ∈ {1, 1}.

A. SVM Training

Given a labeled training set consisting of a set of data
points xi, i ∈ {1, ..., l} with their accompanying labels yi, i ∈
{1, ..., l}, the SVM training problem can be written as the
following Quadratic Program:

max

l∑
i=1

αi −
1

2
αTQα (1)

s.t.0 ≤ αi ≤ C, ∀i ∈ 1...l

yTα = 0

where αi are the lagrange multipliers (weights, one for each
training points), which are being optimize to determine SVM
classifier. C is a parameter which trades off wide margin with
a small number of margin failures and Qij = yiyjφ(xi, xj),
where φ(xi, xj) is a kernel function. We are using the standard
Gaussian kernel function φ(xi, xj) = exp{−γ ‖xi − xj‖2}.

B. SVM Classification

The SVM classification problem is as follows: for each data
point z which should be classified, compute

z′ = sgn

{
b+

l∑
i=1

yiαiφ(xi, z)

}
(2)

where z ∈ Rn is a point which needs to be classified, b is the
bias derived from the solution to the SVM training problem
(1), and all other variables remain as previously defined.

II. RELATED WORK

Solving the quadratic optimization problem with several
linear constraints is a combinatorial search method over the
linear constraints. The problem becomes more gruesome when
the dataset for classification becomes too large. Hence, several
approaches have been proposed and tried to tackle with both
these issues.Standard approaches for solving QP like Gradient
Projection method, Interior Point Method etc are already there.

However, much research has been done to accelerate the
training time. The training time for SVM can significantly
be reduced if the optimzation problem, which is the core
of the SVM, can be parallelized. Some of these techniques
are Osunas decomposition approach (Osuna et al., 1997)
[1], Sequential Minimal Optimization (SMO) algorithm (Platt,
1999) [2]. The popularity of SMO is due to it’s better scaling
properties than standard chunking algorithms that uses Pro-
jected Conjugate Gradient or other optimization techniques.
Works have also been done to parallelize the standard QP
optimization techniques such as Parallel Gradient Projection
(PGP) Technique by Zanni et al (2006) [3] and Parallel Interior
Point Method (PIPM) by Wu et al (2006) [4]. Collobert et
al (2002) [5] proposes a method where the several smaller
SVMs are trained in a parallel fashion and their outputs
weighted using a Artificial Neural Network. Since then, several
combination based SVMs have been proposed.

On the front of dataset decomposition also, which is par-
ticularly useful for large datasets, several attempts have been
made to parallelize the SVM. The Cascade SVM introduced
by Graf et el (2005) [6] uses a method of Divide and Conquer
to solve SVM over large training datasets. A similar approach
with only one level of computation and label determination by

Fig. 1: Binary cascade SVM. TD: Training data, SVi: Support
vectors produced by optimization i.

maximum agreement among processors, usually referred to as
baggage approach, is also there.

III. METHODOLOGY

A. The Cascade SVM

Cascade support vector machines have been introduced as
extension of classic support vector machines that allow a fast
training on large data sets.It is a filtering process which elem-
inates the non-support vectors early from the optimization.he
method described by Graf et al. [6]
• Divide data into n disjoint subsets of preferably of equal

size.
• Independently train an SVM on each of the data subsets.
• Combine the SVs two-by-two to create new subsets for

next layer.
• Continues until only one set of vectors is left.
In the original paper, Graf et el. also discussed the multiple

run strategy for cascade SVM to obtain global optimum. Often
a single pass through cascade produces satisfatory accuracy.
For speed reasons we only perform one pass of through the
cascade.

B. SMO Algorithm

Sequential Minimal Optemization is an iterative algorithm
for solving a quadratic programming(QP) optimization prob-
lem that arises during the training of SVM.It takes advantage
of the sparse nature of the support vector problem and the
simple nature of the constraints in the SVM QP to reduce
each optimization step to its minimum form: updating two
i weights. The bulk of the computation is then to update
the Karush-Kuhn-Tucker(KKT) optimality conditions for the
remaining set of weights and then reduce to find the two
maximally violating weights, which are then updated in the
next iteration until convergence.

The optimality conditions can be tracked through the vector
fi =

∑l
j=1 αiyiΦ(xi, xj)−yi, which is constructed iteratively

as the algorithm progresses. Following (Keerthi et al., 2001)

[7], we partition the training points into 5 sets, represented by
their indices:

Algorithm 1 Sequential Mininal Optimization

Input: training data xi,labels yi, ∀i ∈ {1....l}
Initialize: αi = 0, fi = −yi, ∀i ∈ {1....l}
Compute: bhigh, Ihigh, blow, Ilow
Update αhigh and αlow

repeat:
Update fi, ∀i ∈ {1....l}

Compute bhigh, Ihigh, blow, Ilow
Update αhigh and αlow

untill blow ≤ bhigh + 2τ

1. (Unbound SVs) I0 = {i : 0 < αi < C}
2. (Positive NonSVs) I1 = {i : yi > 0, αi = 0}
3. (Bound Negative SVs) I2 = {i : yi < 0, αi = C}
4. (Bound Positive SVs) I3 = {i : yi > 0, αi = C}
5. (Negative NonSVs) I4 = {i : yi < 0, αi = 0}

where C remains as defined in the SVM QP. We then define
bhigh = min{fi : i ∈ I0 ∪ I1 ∪ I2}, and blow = max{fi :
i ∈ I0 ∪ I3 ∪ I4}, with their accompanying indices Ihigh =
argmini∈I0∪I1∪I2 fi, and Ilow = argmaxi∈I0∪I3∪I4 fi.

As shown in algorithm 1, at each iteration we search for
the values of blow and bhigh. Then update their α weights
according to following:

α
′

low = αlow +
ylow(bhigh − blow)

η
(3)

α
′

low = αlow + ylowyhigh(αlow − α
′

low) (4)

where η = φ(xIhigh
, xIhigh

) + φ(xIlow , xIlow) −
2φ(xIhigh

, xIlow). To ensure that this update is feasible,αIlow

and αIlow must be clipped to the valid range 0 ≤ αi ≤ C.
After the α update, the optimality condition vector f is
updated for all points as follows:

f
′

i = fi + (α
′

Ihigh
− αIhigh

)yIhigh
φ(xIhigh

, xi)

+(αIlow − αIlow)yIlowφ(xIlow , xi) (5)

The majority of work is performed during above updation

in this algorithm. The bias is given by b =
(bhigh + blow)

2
.

C. Cascade Implementation using MPI

Initially the data(l × m, l instances and m fetures) are
divided into p processors i.e. each processor will get approx
l

p
number of instances to learn for first level (i.e. level 0) of

cascade.
At a given level, the processors with rank%2level = 0

are only active and idependently performs SVM computation
for their subset of data, thereby, learning α and b. The SVs
represented by the indices of non-zero components of α,
calculated by the odd numbered processes of current level, are
then communicated to even numbered processes for generating
the new subset for the next level.

For the sake of simplicity, we have considered number of
processors only to be powers of 2. At the final level, the
processor with rank = 0 learns the α vector as well as the
bias b, which is then broadcasted to all the other processors
for the testing purpose.
For the testing purpose, the test data set is also divided into
p processors and each of them calculate class predictions for
the test cases. The total number of correctly predicted cases
are then communicated to processor with rank = 0 using
MPI Reduce.

D. SMO Implementation using CUDA

There are two CUDA kernel implementations. First is for
formation of kernel matrix, which is one time computation
and it resides in global memory so that each block can access
the matrix required for further computation in each iteration
of SVM training. The second one is for calculating update
f

′
, which reflects the impact of the optimization step on the

optimality condition of the remaining data points.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

We used Gaussian Kernel in our experiment, since it is
widely employed. The dataset used is Adult dataset [?], [?]
presents the task of classifying a persons income region
being greater or less than $50,000/year based on US census
data.There are 32561 instances and 14 features with real and
categorical data. The features were processed and transformed
into a total size of 123 feature components. These components
were obtained by converting the real valued data into quartiles
and categorical data into indivial features per category. Thus
the final feature set had at most 14 features with a value 1
indicating that the data were present only for these while the
rest had a value of 0. The data is divided as 80% for training
purpose and 20% for testing purpose and we used the value
of C = 100 and γ = 0.5.

The variation in the number of processors used are 2, 4 &
8, which leads varying amount of data decomposition. Work
for each processor reduces as the number of processor is
increased.

B. Results

The hybrid implementation of Cascade SVM using MPI
with SMO on the GPU is compared with Sequential SVM
with SMO implementation as well as only GPU and only
MPI implementation with processor numbers 2, 4 and 8. The
implementations were compared in terms of both accuracy
and Speedup for both training as well as testing cases.

The results obtained are reported in the following table:

TABLE I: Performance report of various implementations.

Fig. 2: SpeedUp comparison among different implementations
for Training

Fig. 3: SpeedUp comparison among different implementations
for Testing

Approach Training
time (sec)

Training
Speedup

Testing
time (sec)

Testing
Speedup

Accuracy
(%)

Sequential 143.274 1 22.156 1 81.15
Only Cuda 64.357 2.226 1.751 12.653 81.15
Only MPI
Processors 2 65.274 2.195 1.813 12.221 73.46
Processors 4 55.837 2.566 1.367 16.208 71.53
Processors 8 47.321 3.028 0.986 22.471 65.29
Hybrid (Cuda + MPI)
Processors 2 36.126 3.96 0.701 31.65 73.76
Processors 4 30.324 4.75 0.653 33.92 71.53
Processors 8 27.198 5.26 0.609 36.38 65.29

The reports as obtained in TABLE I suggests that although
with increasing number of processors, the execution time
is decreasing, there is also an increasing amount of error
introduced while classifying the test data. This is usually the
trade off and the decision to select the number of processors
is dependent on the size of the dataset. The larger the set, the

Fig. 4: Accuracy comparison among different implementations

more number of processors one can utilize for the cascading
effect with little accuracy loss over sequential implementation.

Another point to note is that although the speedup for
training phase is not as impressive as that shown in the case
of testing, but since the training is to be performed once and
testing is often performed repeatedly for the datasets being ob-
tained in future, this significant improvement is encouraging.

As the Speedup results are highly dependent on the dataset
representation, dataset decomposition and the machine spec-
ifications. Moreover, we have implemented a hybrid version
of SVM and hence direct comparisons with existing papers
which have considered the parallelization job in isolation either
for cascade SVM or for parallelized SMO only. Neverthe-
less, we are reporting the execution times at least for the
income dataset which we found to be used and reported by
Catanzaro et.al [9] for parallelized SMO. Comparison with
LibSVM tools was also performed in the same paper. The
training time, testing time, training Speedup, testing speedup
and accuracy percentage over the LibSVM obtained for the
Income classification dataset were 36.312 sec, 0.570 sec,
15.1, 132.5 and 82.73 %. The reason for the contrasting
speedup compared to our implementation is mostly due to
the execution time of sequential implementation of LibSVM
on their machine being 550.178 sec for training and 75.65 sec
for testing. As for cascade SVM, we were not able to find any
MPI implimentation since most of the cascade parallelization
available were implemented on Map Reduce framework.

V. CONCLUSIONS

A clear improvement in training and testing time for Hybrid
implementation is observed over Sequential, Only Cuda and
only MPI implementations. However, it is also advisable
to decide the number of decompositions, hence, number of
processors to be used be obtained as a trade off between
execution time and accuracy. This will greatly depend on the
dataset under consideration. The suitable number of processors
in our case came out to be either 2 or 4.

It is also to be noted that, we have performed the analysis
by considering the training and testing times only. However,
cross-validation is also an important aspect in all the machiner
learning techniques, which are used for deciding the best
or near to best suited values of hyperparameters like the
Regularizer constant C and γ. The present work can be
extended to encompass the cross-validation phase too.

REFERENCES

[1] Osuna, E., Freund, R., Girosi, F. (1997). An improved training algorithm
for support vector machines. Neural Networks for Signal Processing
[1997] VII. Proceedings of the 1997 IEEE Workshop, 276-285.

[2] Platt, J. C. (1999). Fast training of support vector machines using
sequential minimal optimization. In Advances in kernel methods: support
vector learning, 185208. Cambridge, MA, USA: MIT Press.

[3] Zanni, L., Serafini, T., Zanghirati, G. (2006). Parallel software for training
large scale support vector machines on multiprocessor systems. J. Mach.
Learn. Res., 7, 14671492.

[4] Wu, G., Chang, E., Chen, Y. K., Hughes, C. (2006). Incremental ap-
proximate matrix factorization for speeding up support vector machines.
KDD 06: Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining (pp. 760766). New York, NY,
USA: ACM Press

[5] Collobert, R., Bengio, S., Bengio, Y. (2002). A parallel mixture of svms
for very large scale problems. Neural Computation, 14, 11051114

[6] Graf, H. P., Cosatto, E., Bottou, L., Dourdanovic, I., Vapnik, V. (2005).
Parallel support vector machines: The cascade svm. In L. K. Saul, Y.
Weiss and L. Bottou (Eds.), Advances in neural information processing
systems 17, 521528. Cambridge, MA: MIT Press.

[7] Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., Murthy, K. R. K.
(2001). Improvements to Platts SMO Algorithm for SVM Classifier
Design. Neural Comput., 13, 637649.

[8] Asuncion, A., Newman, D. (2007). UCI machine learning repository.
[9] B. Catanzaro, N. Sundaram, and K. Keutzer, Fast support vector machine

training and classification on graphics processors, in Proceedings of the
25th international conference on Machine Learning, ser. ICML 08.ACM,
2008, pp. 104111.

