Finding Maximum Clique in Hybrid System

Rintu Panja*, Ponnezhil Dass M P*
*Department of Computational and Data Sciences
Indian Institute of Science, Bangalore, India
{rintu,ponnezhil } @ grads.cds.iisc.ac.in

Abstract—Finding Maximum Clique in a graph is an NP-
Complete problem. So, when the size of the input graph increases
the time to solve the problem increases exponentially. We present
a new hybrid approach (using multi-core CPU and GPU) to
find a upper and lower bound of the size of the clique. Our
algorithm finds these bounds within few seconds for real world
large graphs. These bounds helps us to prune out more than 90 %
of the vertices of these real world graphs. In final step we find
out the exact clique recursively searching over all possible cases
using open-mp threads and successively pruning out vertices that
already has been searched. The pruning at last step help us to
further reduce the search space.

I. INTRODUCTION

In a given graph, a clique is a sub-graph in which all the ver-
tices are connected to each other. Given a graph G = (V, E)
with |V vertices and |E| edges we are interested in finding
maximum of all such sub-graphs. The naive algorithm to
find maximum clique checks all possibilities by including all
vertices one by one if it can be a part of the maximum clique
or not. So, if the graph has n vertices it checks for all 2"
such possibilities. This puts the problem into the interesting
category of NP-hard problem.

The Maximum Clique problem has huge application in
Social Networking, Biological Networks, Retweet Networks,
Wikipedia Links, Web Links and Collaborative Networks. In
Social Network we are often interested in largest group of
people who are connected to each other. In Networking we
are interested in largest part of the network where each part
is connected to each other or in in Retweet network largest
group of people who tweet to each other.

We have implanted a new hybrid approach to find a heuristic
clique of any given graph. Low cost high performance GPU
have already caught the attention of many researches. Its
thousands of cores gives massive parallelism than CPU. Now
many commodity clusters contains a high end GPU device.
If we can utilize this GPU device along with CPU then it
will help us to solve the problem faster. This motivated us to
solve the Maximum Clique problem using both CPU and GPU
system.

The primary problem to properly utilize both the system
simultaneously is to reduce the communication cost between
CPU and GPU. The best way to resolve the problem is to
partition the graph in such a way that two devices can work
independently and combine the results at the end.

Let G = (V, E) be a graph with V' vertices and F edges.
A sub-graph H = (W, E|W) Induced by set W is a core of
order k if Vo € W : degy(v) > k and H is the maximum

sub-graph with that property [1]. If the graph contains a clique
of size k then all the vertices of that clique will have degree at
least k— 1. Hence, maximum core value gives the upper bound
of the clique size of any graph. Prior works using sequential
algorithm to determine core number.

The maximum core number gives a upper bound of the
size of the clique. If the maximum core number is denoted as
K (G) and size of the maximum clique of the graph is M C(G)
then MC(G) < K(G) + 1. As there is a high probability of
containing the vertex which has higher core number taking
vertices in decreasing order of their core number helps to find
heuristic clique faster. If the size of the heuristic clique is same
as K(G)+1 then we have found the maximum clique and the
algorithm ends. For some real world graphs heuristic clique
size reaches K(G) + 1. If we denote heuristic clique size by
HC(G), then HC(G) < MC(GQ) < K(G) + 1 [2]. So, after
finding this i.e HC(G), we can prune the vertices with core
number less than HC(G). We have found in real world graphs
it is pruning 90% of the vertices on an average and for some
large graphs with more than 500M edges, it is pruning more
than 99% of the vertices.

After pruning the graph becomes smaller. Then finally
perform exhaustive search technique to find the exact clique
searches in the newly reduced graph. Hence, for larger graphs
with millions of vertices and more than 500 millions of edges
it takes few minutes to find the maximum clique.

Our Contribution:

A. We are partitioning the graph according to the size that
GPU can accommodate using PaToH' partitioning tool and
renaming the vertices in each local partition to reduce the
required storage space.

B. We have implemented a new hybrid core finding algo-
rithm that will work on two different partitions simultaneously
one in GPU and another in multi-core CPU and at the same
time sort the vertices in decreasing order of their core number.

C. We have implemented a new iterative algorithm to find
heuristic clique using core ordering of the vertices.

D. While extensively searching for all the vertices using
multiple threads we are pruning out vertices that cannot be a
part of maximum clique.

II. RELATED WORK

Schmidt et al. [3] has implemented parallel maximum clique
in distributed system. But instead of partitioning the graph

'bmi.osu.edu/umit/software.html

they are copying the entire graph to every nodes. So, for large
graphs a huge memory will be wasted. Cruz et al. [4] has
implemented maximum clique in GPU using matrix vector
multiplication but they are checking for all possible cases by
making vector element 1 or 0. So, if the graph has n vertices
they are checking for all 2™ possibilities which bound the
algorithm to work for small graphs only. Pattabiraman et al.
[5] has used branch and bound and after finding heuristics
they are pruning large number of vertices. But they are using
serial method. Rossi et al. [2] has implemented on top of
Pattabiraman et al. work and using k core computation to find
a stronger bound with openmp threads. But they are finding k
core sequentially.

III. METHODOLOGY

A. Graph Partitioning

We are implementing the algorithm to work on CPU and
GPU simultaneously. To reduce communication overhead at
every step we are making variable partitioning of the graph
according to memory GPU can accommodate for any graph
size. We rename the vertices individually in each partition.
The potential clique may contain the ghost vertices so we are
copying edges between ghost vertices to every partition. So
there is no intermediate communication. To partition the graph
we use a partitioning tool called PaToH(Partitioning Tools for
Hypergraph).

B. Finding K-core Number

A vertex induced sub-graph is said to be a core of order
k if all the vertices in the sub-graph has a degree at least k.
The core number of a vertex v is the largest k£ such that v
is in core of order k. If the graph contains a clique of size
k then all the vertices of that clique will have degree at least
k — 1. Hence, maximum core value gives the upper bound on
the maximum clique size of the graph. There exists an O(FE)
sequential algorithm [1] to determine the core number of all
the vertices of the graph. A modified parallel algorithm [6] for
finding the core number of the vertices is given in algorithm
1. A modified version of this algorithm is used in GPU. We
are using the level synchronous approach used in [7] for BFS
to find core number in GPU.

C. Finding Heuristics

We order the vertices of the graph according to their
core number (decreasing) at the time of computation of core
number. As the potential clique has a higher probability to
contain vertices with larger core numbers. We then search
iteratively using open-mp threads for a potential clique. If it is
equal to maximum (corenumber + 1) then we have already
found a maximum clique. If not then prune all the vertices that
have core number less than the size of the heuristic clique. This
will reduce the size of the graph significantly. The algorithm
for the heuristic clique is given in algorithm 2.

Algorithm 1 Parallel Find Core Number

1: procedure FIND CORE NUMBER (G = (V| E))
2: for all v € V do

3 corelv] + degree[v]

4 end for

5 level < 1

6: remaining < |V|

7 while remaining > 0 do

8 current_set < FIND CURR SET(level)

9 while |current_set| > 0 do

10: remaining < remaining — |current_set|
11: next_set < FIND NEXT SET(current_set)
12: current_set < next_set

13: end while

14: level < level 4+ 1

15: end while

16: end procedure
17: procedure FIND CURR SET(level)

18: current_set = ()

19: for i =1to |V] do > In Parallel
20: if core[i] == level then

21: Add 7 to current_set

22: end if

23: end for

24: return current_set

25: end procedure
26: procedure FIND NEXT SET(current_set, level)

27 next_set = ()

28: for i = 1 to |current_set| do > In Parallel
29: for all v € adjacent to current_set[i] do
30: if corelu] > core[v] then

31 atomic_decrement(corelu], 1)

32: end if

33: if core[u] <= level then

34: corelu] = level

35: Add u to next_set once

36 end if

37: end for

38: end for

39: return next_set

40: end procedure

D. Finding exact Clique

The finding of the maximum clique procedure is done only
on the multi-core CPU. We begin with the pruned graph and
naive way is search exhaustively through all combinations. But
for large graph this takes longer time even in parallel systems.
So we use intelligent stopping criteria (or) bounds. Paralleliza-
tion strategy we have used is exploratory parallelization. We
did further optimization of pruning the graph even further. The
algorithm for the exact clique is given in algorithm 3. The
input for the procedure Clique Finder is the graph remaining
after pruning.

Algorithm 2 Finding heuristic Clique

Algorithm 3 Find Exact Clique

1: procedure FIND HEURISTIC CLIQUE(G = (V, E), core)
2 ub < max(core) + 1

3 max_Cl_size < 0

4: clique <+ ()

5: for i =1 to |V]| do > In Parallel
6 v+ Vi

7 candidate <+ ()

8 if core[v] > max_Cl_size then

9 for all u € adjacent to v do

10: if core[u] > max_Cl_size then

11: Add u to candidate

12: end if

13: end for

14: if |candidate| > maz_Cl_size then

15: Sort candidate by core

16: Add v to clique

17: loop

18: m < first vertex from candidate
19: Add m to clique
20: upd < candidate N adjacent(m)
21: if |upd| == 0 then
22: if |clique| > max_Cl_size then
23: Update clique
24: Update max_Cl_size
25: end if
26: break;
27: if max_Cl_size == ub then
28: Stop Procedure

29: Communicate to other cores
30: end if

31: else

32: candidate < upd

33: end if

34: end loop

35: end if

36: end if

37: end for

38: end procedure

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

All our experiments were performed on a GPU server
consisting of a dual octo-core Intel Xeon E5-2670 2.6 GHz
server with CentOS 6.4, 128 GB RAM, and 1 TB GB hard
disk. The CPU is connected to two NVIDIA Kepler K20
cards. We denote the existing parallel CPU code of Rossi
et al. as pmc. We have compared results of every step with
our standalone CPU code. We are performing the last step
of finding exact clique of both the partitions separately in
CPU. At every step of GPU we are comparing with pmc code
also. We are creating variable partitioning using Patoh tool
according to the data size GPU can accommodate. We are

1: procedure CLIQUE FINDER(G' = (V, E))
2 max_Cl_size + 0

3 clique < ()

4 for i =0 to |V] do > In Parallel
5: N < neighbours of Vi

6 if |[N|+ 1 > max_Cl_size then

7 EXPAND(N, 0, clique)

8 end if

9: prune V'[i]

10: end for

11: return clique

12: end procedure

13: procedure EXPAND(NV, prev_clique, clique)

14: while |N|!=0do

15: if |N| + |prev_clique| < |clique| then
16: return

17: end if

18: v < first vertex from N

19: Add v to prev_clique

20: N = N N neighbour(v)

21: if [N| == 0 then

22: if [prev_clique| > |clique| then
23: clique < prev_clique

24: end if

25: else

26: EXPAND(N, prev_clique, clique)
27: end if

28: Remove v from N

29: Remove v from prev_clique

30: end while

31: end procedure

also comparing this hybrid version with all the three algorithm
mentioned above.

Graph Vertices | Edges
Gowalla 196k M
dblp 425k 2M
youtube 1.1IM 6M

discogsaffiliation 1.7M 10.6M
patentcite 3. M 33M

orkut M 234M
dbpdia 4M 25M
liveJournal 4M 69M

wikipedialink 12M 576M

wikieng 18.2M | 181M

TABLE T

TABLE 1 : GRAPHS FOR EXPERIMENTS

B. Results

The graphs used in our experiments are shown in
Table 1. We have made the graphs symmetric so if
there is an edge between (u,v) we are making an edge

(v,u) also. We have taken the graphs from the Stanford
Network Analysis Platform (SNAP) and Koblenz Network
Collection. The graphs belong to different kind of applications.

Fig 1: k-core computation time comparison

100%
||

9% -

80%
0%
20%

o0l =

D

B Hybrid Time

GPU Time
B CPU Parallel Time
B CPU Seria Time

Execution Time

First we are finding the core number of all the vertices and
we have compared the result of this step with existing pmc
work(Fig 1). From that graph we can see that our CPU parallel
algorithm is always performing better than existing algorithm.
But our GPU algorithm is sometimes performing bad because
to find the core number we are increasing the core number
one by one starting from 1 (refer Algorithm 1). So, when the
core number is high, at every step we need to synchronize
with CPU to increase the core number to next level. So, we
are getting a huge synchronization overhead that makes the
performance to degrade.

100%
-
80%

70%

60%

50%

40%

30%

20%

10%

- 1 N

gf

Fig 2: Finding Heuristic Clique

§$]

Graphs

W Hybrid Time
GPUTime

Execution Time relative)

&

§

3
e
o,
e, .
s

We are finding the heuristic clique using Algorithm 2. Pre-
vious work was using recursion to search heuristic clique. But
recursion always have the stack overhead and also using some
local vectors to store. We have optimized and introduced a
new iterative algorithm which reduces these overheads and our
CPU always performing faster than their pmc algorithm(Fig
2) and sometimes we are able to get good bounds also
compared to their version. In hybrid as we are partitioning the
graph in two partitions and finding heuristic for two different
partition simultaneously it is even performing better than CPU
standalone version.

Fig 3: Speedup comapred to pmc

9
g
74
6
e B
o
2 4
E 3
Ez W Speedup
o i
A=.nBlslnnl
F & S 8 F & & &5
QVVQ@'&-?%&'“’
@5‘@“ @“§§6§ g
g@ggo&f ':-Q?.P
@ -‘?89&21 é",s*‘g‘?

Graphs

After finding the lower bound and pruning the vertices
we are performing the last step in CPU for finding exact
clique. In the final experiment we have taken the whole time
taken by CPU and compared the execution time taken by
pmc algorithm. We are getting descent speedup compared to
pmc(Fig 3).

V. CONCLUSIONS

We were able to find maximum Clique on a graph of
size (12 million vertices, 576 million edges) within couple of
minutes. We have proposed a new heuristic finding algorithm
on hybrid system that performs better in terms of time and
in some cases a better bound. We have done optimizations
on the existing work and we have obtained speedup. The
algorithm uses integer vectors and one can do better by using
efficient data structures such as bit representation and perform
optimizations on that. Since the bit representation of graphs
reduces the size, larger graphs can be accommodated in GPU
to find the maximum clique. Also this could be extended to
distributed systems with each node consisting of a multi-core
CPU and a high-end GPU device.

REFERENCES

scrupadidTime [1] 'V, Batagelj and M. Zaversnik, “An o (m) algorithm for cores decompo-
W pme implementation

sition of networks,” arXiv preprint ¢s/0310049, 2003.

[2] R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, and M. M. A. Patwary,
“Fast maximum clique algorithms for large graphs,” in Proceedings of
the companion publication of the 23rd international conference on World
wide web companion. International World Wide Web Conferences
Steering Committee, 2014, pp. 365-366.

[3] M. C. Schmidt, N. F. Samatova, K. Thomas, and B.-H. Park, “A scalable,
parallel algorithm for maximal clique enumeration,” Journal of Parallel
and Distributed Computing, vol. 69, no. 4, pp. 417-428, 2009.

[4] R. Cruz, N. Lopez, and C. Trefftz, “Parallelizing a heuristic for the
maximum clique problem on gpus and clusters of workstations,” in IEEE
International Conference on Electro-Information Technology, EIT 2013,
2013.

[S] B. Pattabiraman, M. M. A. Patwary, A. H. Gebremedhin, W.-k. Liao,
and A. Choudhary, “Fast algorithms for the maximum clique problem on
massive sparse graphs,” in Algorithms and Models for the Web Graph.
Springer, 2013, pp. 156-169.

[6] N. S. Dasari, R. Desh, and M. Zubair, “Park: An efficient algorithm for
k-core decomposition on multicore processors,” in Big Data (Big Data),
2014 IEEE International Conference on. IEEE, 2014, pp. 9-16.

[7]1 S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph explo-
ration on multi-core cpu and gpu,” in Parallel Architectures and Com-
pilation Techniques (PACT), 2011 International Conference on. IEEE,
2011, pp. 78-88.

