
Optimizing exact computation of Betweenness
Centrality for CUDA

Aakriti Gupta
Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore, India
aakriti@cadl.iisc.ernet.in

Abstract—Betweenness centrality is an important metric in the
study of network analysis. This report discusses the problem of
exact computation of betweenness cenrality index in network
analysis. BC is an important metric in small world network
analysis which is expensive to compute. A new strategy is
presented to parallelize the best known serial algorithm for
computing BC on CUDA architecture exploring parallelism at
all the different levels of granularity offered in the algorithm.
Further optimizations are made into this strategy by exploiting
CUDA specific notions of coalesced memory accesses, warping,
shared memory etc.

I. I NTRODUCTION

Network analysis is currently an area of active research with
applications ranging from social network analysis (friendship
circles, organizational networks), phylogeny reconstruction
and bio-informatics (protein interaction networks) to theIn-
ternet (web link analysis) etc.

One of the problems in network analysis is to determine
how important a given node is relative to other nodes in the
network. For example, in a social network, one is interested
in finding how important a person is. Quantifying centralityof
nodes is a well studied problem and several metrics have been
proposed for the same. Betweenness centrality is an important
metric in the study of network analysis. The philosophy behind
this metric is: ”An important node will lie on a high proportion
of shortest paths between other nodes in the network.”

Several algorithms for computing this metric exist in the
literature. In this project I have tried to come up with an
efficient CUDA implementation of the same.

II. M OTIVATION

Betweenness centrality is applicable to many fields. Appli-
cations that use betweenness centrality as a building block
include finding communities within a graph representing in-
formation flow, detecting communities in social networks,
analyzing brain network and deploying detection devices in
communication networks. Evaluating betweenness centrality
for a graph G = (V, E) is computationally demanding step of
various applications.

III. PROBLEM DESCRIPTION

Betweenness centrality is a measure of a node’s centrality
in a network equal to the number of shortest paths from
all vertices to all others that pass through that node. The
betweenness centrality of a node v is given by the expression:

BC(v) =
∑

s 6=v 6=t

σst(v)

σst

(1)

whereσst is the total number of shortest paths from node
s to node t andσst(v) is the number of those paths that pass
through v.

Calculating the betweenness of all the vertices in a graph
involves calculating the shortest paths between all pairs of
vertices on the graph. This takesΘ(|V |3) time with the Floy-
dWarshall algorithm. It is assumed that graphs are undirected
and connected with the allowance of loops and multiple edges.

The algorithm by Brandes [1] is considered the state of
the art serial algorithm for computing betweenness centrality.
Brandes algorithm for computing betweenness centrality ina
graph is a key breakthrough beyond the naive cubic method
that computes explicitly the shortest paths in a graph. It
requires O(n+m) space and run in O(nm) and O(nm+n2logn)
time on unweighted and weighted networks,respectively.

A. Brandes Algorithm: Basis for parallel BC algorithms

Brandes algorithm calculates dependency of a source vertex
s on any vertex v∈ V as follows:

δs(v) =
∑

t

σst(v)

σst

(2)

The betweenness centrality of a vertex v is then expressed
using the following equation:

BC(v) =
∑

s 6=v

δs(v) (3)

The key insight is thatδs(v) satisfies the following recur-
rence, wherepred(s, w) is a list of immediate predecessors of
w in the shortest paths from s to w.

δs(v) =
∑

w:v∈pred(s,w)

σsv(v)

σsw

(1 + σs(w)) (4)

Using this, Brandes algorithm works as follows: Each s∈ V
is considered as source of shortest paths and the contribution
of s to BC(v) for all v is computed in two phases. In the
first phase, a shortest-path computation is performed from
s, that computespred(s, v) and σs(v) for all nodes. In the
second phase, the predecessor list is traversed backwards,in
non decreasing distance order with the help of Stacks and

Queues. And for each v∈ V, δs(v) is computed based on
equation 4. The contribution to BC vector is computed using
equation 3.

B. Parallelism in Brandes algorithm

The Brandes algorithm has parallelism at multiple levels.

1) Coarse grained parallelism: We can process multiple
source nodes in parallel. In this parallelization strategy,
each thread picks an arbitrary graph node and computes
its contribution to the betweenness values of other nodes.
Each of these computations is independent.

2) Medium grained parallelism: We can do parallel pro-
cessing of all vertices that are in same frontier while
expanding any given source vertex in the outer coarse
grained loop.

3) Fine grained parallelism: We can explore the neighbors of
each vertex in the same frontier in parallel while building
up queue for a given outer coarse grained iteration.

The coarse grained parallelization strategy is simple and
effective, but each outer loop iteration that is performed in
parallel requires its own storage, so the space overhead of
this scheme is substantial. The medium and fine grained
parallelism approach is more space-efficient since we only
need to maintain a single graph instance, but poses a more
challenging goal for parallelization due to non-trivial data
dependencies and requirement of atomic updates. The updates
on eachBC(v) has to be atomic and can be done using using
either atomicAdd or by simple reduction operation.

IV. RELATED WORK

In the paper [2] Bader et al. came up with the first parallel
implementations of some widely-used social network central-
ity analysis metrics including betweeness centrality. They have
shown scalable performance for up to 40 processors.

In the following paper [3] by Bader et al. lock free parallel
algorithm is developed for CRAY XMT system.

The common approach that has been explored in the
literature targets medium and fine grained parallelism and
focuses on a distributed memory environment like [4]. Fast
and scalable parallel algorithms have been proposed but they
have mostly targeted architectures like the CRAY MTA-2.

In a conference poster, [5] Pande et al. have discussed
one approach towards parallelizing this for GPUs. They have
explored the fine and medium grained parallelism on GPU. I
have developed a different strategy which exploits parallelism
at all the 3 levels of granularity.

Due to the expensive computation of BC for large graphs,
the trend in the literature is to approximate the computation
rather than computing exact betweenness centrality for nodes
as discussed in [6] or incrementally building from smaller
graphs as discussed in [7].

In a recent paper [8] authors have modified Brandes al-
gorithm to by applying some heuristics and have explored
parallelism on this new version. Exploring this for CUDA can
be one of the things in the future work.

V. M ETHODOLOGY

A. Early Experiments

Initial experiments were done by exploring the fine and
medium grained parallelism by running the main outer loop
on CPU and within each iteration making small kernel calls to
parallelize the small inner loops. This approach failed because:

1) Not very scalable
2) Too many tiny kernel calls instead of one huge call turns

out to be expensive
3) Over head of a kernel call is much more than is being

compensated
4) Starts to show in results

Then parallelizing of the bigger loop was explored. This is
not straightforward because of the huge memory requirements
it imposes. If we naively try to give one thread for one inde-
pendent iteration of the outer loop, there’s too much work to
be done by one thread. And also, there’s not enough memory.
Instead I thought of a hierarchical approach to address all three
levels of parallelism.

B. Building hierachical strategy

The basic Brandes algorithm [1] is shown in figure 1.
The strategy developed to parallelize this problem is breifly
described as follows:

1) For relatively small graphs, withn number of nodes,n
blocks are created each consisting ofn cuda threads.
Since there aren iterations of the outer loop and within
each such iteration we can explore at most n-way paral-
lelism. Threads within a block cooperate for computing
betweenness centrality contributions from a given source
vertex. The source vertex for a given block is the block
ID.

2) For larger graphs, CPU-GPU overlap is exploited wherein
few iterations of the outer loop run on CPU simultane-
ously with rest of the iterations running on GPU. Results
are accumulated on CPU. This is fairly simple approach,
the only tricky part is to decide how many nodes should
be computed on CPU and how many on GPU. I have not
come up with a uniform solution that fits all graphs alike,
instead I have experimented and converged on a solution
iteratively.

3) Coarse grained parallelism is addressed with the help of
thread blocks. Each thread block represents one iteration
of the outer loop.

4) Medium and fine grained parallelism are explored by the
threads within a block. They collaborate on initializing
the various arrays, exploring the neighbors and frontier
vertices simultaneously. Basically each thread is assigned
a node or a fixed number of nodes depending upon the
graph size in the problem.

5) Tapping into the medium and fine grained parallelism is
not straightforward like the outer coarse grained loop. Al-
though the tasks are fairly independent of each other they
are many race conditions that arise if we are not careful.
For example, while exploring neighbors of a frontier node

Fig. 1. Brandes Algorithm

in parallel, each thread independently decides whether the
particular neighbor it is dealing with fits the criteria and
hence should be enqueued or not. Since threads in a block
share queue which is implemented using shared memory,
updates into the queue have to be atomic. For this I tried
two approaches, first was to use syncthreads function
call to ensure the updates are done atomically. This is
analogous to AtomicAdd approach. But this resulted in
poor speedup. Next approach was to let each thread set a
flag to indicate this needs to be enqueued. At the end of
the iteration, one thread enqueues them all avoiding any
race conditions.

6) Within a block, threads cooperate using shared memory.
7) Implemention of stack and queue operations are done

through device functions. They have the property that
CUDA converts any device function call into inline
function call.

8) Finally, to ensure atomic updates into the BC vector,
kernel is split into two. First kernel computes the BC
vector on a per block basis and then stores the result
in the persistent global memory. Second kernel does a
reduction operation on all the BC vectors, adds them up
to generate one final BC vector. This is added to the
computations done by CPU and the final result is stored.

0

0.5

1

1.5

2

2.5

3

3.5

100 200 300 400 500 600

Ti
m

e
in

 S
ec

on
ds

Input Matrix Size

SpeedUps on small scale graphs

Serial version
Optimized CUDA

CUDA version

Fig. 2. Speed Up small graphs

9) Further optimizations were made by making maximum
use of shared memory and making coalesced memory
accesses. For example, accesses made into a 2D array
residing in global memory is accessed column wise by
every thread. So in one memory access, all the threads
in a warp end up getting their required elements. As
opposed to accessing the array row wise which will
cause each thread to make a separate memory access
into the expensive, high latency global memory. Similary,
optimum use of the limited shared memory is made
by storing intermediate, repeatedly used results into the
shared memory. Example, stack and queues and partial
dependency arrays are stored in shared memory.

VI. EXPERIMENTS AND RESULTS

A. Experiment Setup

The versions were tested for random synthetic graphs of
variable sparsity for different number of nodes on Tesla
architecture. The results are average of at least 5 independent
runs of the code.

B. Results

The optimized CUDA version fares almost 2 times better
than unoptimized CUDA code. Overall for small scale graphs
the speed up is promising (Fig. 2). This is shown for graph
sizes 128-600. For large scale graphs, CPU-GPU version is
executed (Fig. 3) this is shown for graph sizes 600-1000. In
this case speed up is not that good. This is because of limited
shared memory, which causes irregular data accesses into the
global memory which hampers the speedup. Shared memory
latency is a few 100 times lower than global memory hence
we see the difference.

C. Observations

Although showing massive scope of parallelization, be-
tweenness centrality computation by parallelizing Brandes
algorithm have certain characteristics that limit the scope of
the parallelization. Such as:

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Ti
m

e
in

 S
ec

on
ds

Input Matrix Size

SpeedUp CPU-GPU version

Serial version
CUDA version

Fig. 3. Speed Up

1) Memory intensive: Large memory footprint, and a sig-
nificant number of non contiguous memory accesses to
global data structures.

2) Low arithmetic intensity: Betweenness centrality doesn’t
have any computations. Memory latency is visible and
doesn’t get shadowed by computations.

3) Multiple parallel traversals need more memory as we
need to store more copies of the intermediate arrays and
lists. This limits the amount of parallelism that can be
exploited.

VII. C ONCLUSIONS

Parallel computation of betweenness centrality can be ex-
ploited at different levels of granularity:

1) Coarse grained: Iterations from each source vertexs can
be done in parallel

2) Medium grained: Parallel processing of all vertices that
are in same frontier

3) Fine grained: Exploring neighbors of each vertex in
parallel

Here all three have been exploited using CUDA for small scale
graphs. For largescale graphs, exact computation of BC is not
computationally viable.

There is load imbalance among CUDA threads, since the
algorithm is basically an extension of BFS wherein each thread
takes up a vertex and checks if it belongs to the frontier or
not. It is a little better since it may be the case thread will be
checking conditions for more than one vertex but in a random
graph, this still can cause load imbalance. Load is dependent
on the inherent graph structure.

VIII. F UTURE WORK

1) Addressing the load balancing problem. We can look into
preprocessing the graph and then dividing the graph nodes
to different threads optimally.

2) Optimizing the computation of betweenness centrality for
larger graphs on GPU.

3) Improving the CPU-GPU version of the implementation.

REFERENCES

[1] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, pp. 163–177, 2001.

[2] D. A. Bader and K. Madduri, “Parallel algorithms for evaluating
centrality indices in real-world networks,” inProceedings of the
2006 International Conference on Parallel Processing, ser. ICPP ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 539–550.
[Online]. Available: http://dx.doi.org/10.1109/ICPP.2006.57

[3] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. Chavarra-miranda,
“A faster parallel algorithm and efficient multithreaded implementations
for evaluating betweenness centrality on massive datasets,” Tech. Rep.,
2009.

[4] N. Edmonds, T. Hoefler, and A. Lumsdaine, “A space-efficientparallel
algorithm for computing betweenness centrality in distributed memory,”
in International Conference on High Performance Computing, Goa, India,
12/2010 2010, to appear.

[5] D. B. P. Pande, “Computing betweenness centrality for small world
networks on a gpu,” Lexington, Massachusetts, Tech. Rep., 2011.

[6] K. Jiang, D. Ediger, and D. Bader, “Generalizing k-betweenness centrality
using short paths and a parallel multithreaded implementation,” in Parallel
Processing, 2009. ICPP ’09. International Conference on, 2009, pp. 542–
549.

[7] O. Green, R. McColl, and D. Bader, “A fast algorithm for streaming
betweenness centrality,” inPrivacy, Security, Risk and Trust (PASSAT),
2012 International Conference on and 2012 International Confernece on
Social Computing (SocialCom), 2012, pp. 11–20.

[8] D. Prountzos and K. Pingali, “Betweenness centrality: algorithms and
implementations,” inProceedings of the 18th ACM SIGPLAN symposium
on Principles and practice of parallel programming, ser. PPoPP ’13.
New York, NY, USA: ACM, 2013, pp. 35–46. [Online]. Available:
http://doi.acm.org/10.1145/2442516.2442521

