
Incremental Delaunay Triangulation on GPUs
Aditya Acharya

Supercomputer Education and Research Centre
Indian Institute of Science, Bangalore, India

adiarya1a1@gmail.com

Abstract—Delaunay Triangulation of points on a plane is
an essential and indispensible technique in numerous fields of
computing from computational geometry and finite elements
method to wireless networks. In this project I implemented a
parallelized extrapolation based incremental algorithm for the
exact delaunay triangulation of large point sets (in 2D) on GPUs
using CUDA. What makes this algorithm unique is the fact that
it can be applied to an online setting in which the point are
discovered radially. The algorithm achieves a reasonable degree
of parallelism, by expanding the triangulations from certain seed
values in the domain on the GPU and by allowing rare incomplete
triangulations to be completed on CPU. Subtle tricks like data
replication and bucketing were used although the algorithm has
a lot of scope for future improvements.

I. INTRODUCTION

With the advent of massively parallel architectures like
GPUs and programing paradigms such as CUDA there has
been a tremendous development in parallelizing geometric and
computatonal algorithms. However most of them involve irreg-
ular structures which makes it a challenge to implement them
on GPUs. Delaunay triangulation is one such example which
has many applications in fields of computing, especiallly in
computer graphics , compuational geometry , finite element
methods and even in wireless networks. The incremental
algorithms for such a triangulations are popular due to their
capability of handling dynamical insertion of points.

The primary aim of the project was to implement an
incremental class algorithm for exact delaunay triangulation of
a 2D pointset on GPU using CUDA.The particular algorithm
followed in this project allows for outward growth of triangula-
tions without the need of modifying existing triangulations. It
is especially useful when sites or points are discovered radially
from source nodes for example by a radar. Implementation was
carried out on Nvidia Tesla cluster using CUDA programming
language for diffrent distribution of points over the domain,
resulting in reasonable speedups over the serial implemenation
and with comparison to popular softwares for serial Delaunay
Triangulation as well

A. Basics & Definitions

In mathematics and computational geometry, a Delaunay
triangulation for a set P of points in a plane is a triangulation
DT (P ) such that no point in P is inside the circumcircle
of any triangle in DT (P ). Delaunay triangulations maximize
the minimum angle of all the angles of the triangles in the
triangulation.

So formally P is a set of points in R2 , sometimes called
sites. DT (P ) is a partition of the convex hull of P into
triangles such that the circumcircle of every such triangle is
empty. Let N denote the number of sites and k the number
of triangles in DT (P ).

II. RELATED WORK

Even before the advent of GPUs there were few attempts
at triangulating a point set in parallel mostly using divide
and conquer paradigm. DeWall [1]was one such algorithm
proposed which was subsequently parallelized as well. there
were some other parallel schemes for Delaunay Triangulations
on distributed memory systems as well for e.g. [2].

Incremental class of algorithms are one of the most pop-
ular schemes for Delaunay triangulations considering their
widespread use in adaptive refinement of meshes. Morever
they serve as an excellent solution for triangulation in an
online setting where points and sites are added dynamically.
The straightforward incremental way of efficiently computing
the Delaunay triangulation is to repeatedly add one vertex at
a time, retriangulating the affected parts of the graph by edge
and triangle flips. Another approach known as the ’Bowyer-
Watson’ algorithm [3] [4], removes the triangle containing the
newly inserted point and retriangulates the star shaped polygon
left behind.

As far as GPUs are concerned there have been several
papers in the recent years. For example [5] finds a discrete
version of the voronoi diagram (dual of delaunay triangula-
tion) on GPU to approximate the triangulation followed by
correction on CPU. Another recent approach has been found
in [6] which restores an arbitrary triangulation to DT , but
requires an appropriate initial triangulation.

None of the prior attempts have followed the method of in-
cremental triangulation on a GPU. The incremental algorithm
chosen for this particular project was described first in [7]
(long before GPUs were popular), in which the triangulations
grow outwards from certain seed values .As the newer points
lie outside the current triangles none of the prior triangulations
are affected. While it is very unclear how to paralellize the
earlier mentioned incremental algorithms on GPU, this simple
yet effective incremental algorithm is worth exploring on
massively parallel GPU systems.



inside the circle

nearest point expand

correct triangulation

expand again

I II

III IV

V

Figure III.1. Triangulation by incremental extrapolation

III. METHODOLOGY

A. Sequential incremental extrapolation

The extrapolating algorithm starts out by taking certain
seed triangles ( starting triangles) and subsequently adding
an exterior point to one of the edges of the present triangles,
to append a new triangle to the list of present triangles. We
define AE as the list of active edges (that can be expanded
into another triangle) and T as the list of triangles in DT at
some iteration.

As shown in FigIII.1 the sequential algorithm starts from a
particular seed site. next it expands by joining itself with the
nearest site to form a line segment. this line segment is the first
member of the AE , which is expanded by looking at points
in increasing order of their distance from the edges. In step III
we have a point within the circumcircle (marked as x) , hence
the set of points is not a valid triangulation. Moving on to the
next point we observe the circumcircle is empty resulting in
a correct triangulation. Finally we observe that all the three
edges of the triangle at the IV step constitute the AE which
can be further expanded into triangles by looking at points
lying near them.

B. Parallel Algorithm

The basic parallel algorithm starts from a number of seed
sites and is presented in Algorithm1. Since all the active edge
expansions can be done independently, this step is done in
parallel. Furthermore, instead of starting the construction from
a single seed point and extrapolating outward, we can start the
construction from number of seed points.

To find if a particular point D lies within the circumcircle
of 4ABC with A,B,C in counterclockwise order we check

Algorithm 1 Parallel Incremental Delaunay Triangulation
Input: Point Set P , Output: T list of delaunay triangles

1) Locate various seed vertices to form the set S.
2) For ∀s ∈ S in parallel : Join the nearest vertex in P with

s and add all the edges to the active edge set AE
3) While AE 6= φ

a) For ∀e ∈ AE in parallel : expand e by finding a point
x which induces an empty (or smallest) circumcircle
on e ∪ x.

b) Add e ∪ x to T
c) Add the deges :e× x to AE . Remove e from AE

if the following condition is satisfied. If it is true D lies
within 4ABC’s circumcircle.∣∣∣∣∣∣∣∣

Ax −Dx, Ay −Dy, (A2
x −D2

x) + (A2
y −D2

y)

Bx −Dx, By −Dy, (B2
x −D2

x) + (B2
y −D2

y)

Cx −Dx, Cy −Dy, (C2
x −D2

x) + (C2
y −D2

y)

∣∣∣∣∣∣∣∣ > 0

The algorithm can be visualized as breadth-first-search of
triangles (rather than vertices) through circles (rather than
edges). Hence it terminates in fixed number of iterations. Since
the final graph is planar the number of edges and hence the
number of triangles is O(n) . Hence there are O(n) expansions
and each expansion requires point search .Although the naive
sequential version would take O(n2) time implementing the
point searches through efficient data structures like quad
trees reduces its running time O(n logn).The performance of
the parallel algorithm will heavily depend upon the starting
seed triangles. Further, as apparent from the algorithm the
maximum level of parallelism is maximum size of |AE|

C. Implementation details

The data-parallel approach seems particularly suited for the
GPU architecture. In general, we can assign one thread per
active edge . For large values of N , this allows us to fully
saturate the GPU with a large number of threads.

For a roughly uniform distribution of points across our
domain , we divide the domain into a 16×16 mesh, resulting in
256 blocks (which is similar to the number of SMs available
on the cluster, 240). each block starts out with a seed point
and expands its triangulation parallely.

Step 3 in Algorithm1 is implemented as a series of CUDA
kernels which are then typically run for a small number
of iterations until the AE is empty and the triangulation
is complete. The number of iterations can be approximated
as log2

N
256 , which can be easily seen from the fact that a

complete delaunay triangulation of a block ,being planar will
have O

(
N

256
)

edges and since every iteration the number
of edges contributing to the delaunay triangulation doubles
we have the afforementioned number. Similarly the optimal
number of threads can be approximated as Topt ∼

√
N

256
as it is the maximum possible size of AE. Again it can be
verified from the fact that since size of AE steps through 1



blockreplicated points

buckets

Figure III.2. Distribution of points

to its maximum size (say m) 1 + 2 + · · ·m ∼ N
256 . and hence

m ∼
√

N
256 .

To accelerate the search of points , each block was further
divided into 16 × 16 buckets and the points stored in corre-
sponding buckets. This enables faster search of points in the
buckets that are nearer to a particular active edge which are
most likely to be part of the triangle involving the edge.

After the blocks carry out their individual triangulations,
these can be combined on CPU although this would lead to
very poor performance. Another clever approach would be
to exploit the uniform distribution of points. A fraction of
the points from the neighbouring blocks can be copied into
a particular block , resulting in a small replication but also
enabling the triangulations extending aross block boundaries.
A small caveat is that this technique might lead to inconsis-
tencies which happens only when some 4 of the points are
co-circular. To avoid such a case a small noise is added to
every point so that eventually no four of them are co-circular
and the the delaunay triangulation is unique. Lastly some very
rare incomplete triangulations can be completed by the CPU
( which does not occur if N is large enough)

FigIII.2 illustrates the distribution of the points using the
above techniques.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

Initially the optimum number of threads was found out as a
proof of the concept experiment for varying sizes of uniformly
distributed points. Next the speedups with the sequential
version as well as with TriangleT M [8]( a popular delaunay
triangulation software) was found out for sizes ranging from
322 to 40962. A nonuniformly distributed pointset involving
two clusters of gaussian distribted points was also taken. To

deal with the load imabalance that goes hand in hand with such
distribution an ORB scheme was used to distribute the points
across blocks but the triangulations carried out by individual
blocks had to be combined on CPU to give the eventual
triangulation.

B. Results

1) Optimum no. of threads: The relative time for various
no. of threads over varying size of poinsets is shown in
FigIV.1. It can be seen that the optimal number of threads
depending on the data size Topt ∼

√
N

256

2) Speedups: FigIV.2 shows the speedup of the parallel
version on uniformly distributed points vs sequential and
TriangleT M . For 40962 points while the speedup is about
16× vs sequential it is about 6 against Triangle. Triangle
is one of the fastest triangulator but uses fundamentally
very different algorithms than the ones considered in the
project. The overall tad discouraging results against the
sequential version can be attributed to the fact that while the
serial version is optimized by structures such as quad tree,
but the parallel version uses a simple bucketing scheme as
implementation of complicated structures such as quad tree
or k-d tree on GPUs is very challenging.

3) Non-Uniform distributed points: The speedup values
for a certain non-uniformly distributed pointset is shown in
FigIV.3. Because of the large number of serial combination
of the incomplete triangles on CPU, the speed up values take
a hitting. It drops to around 7 for 40962 points

4) Sample triangulations: Sample triangulations result ver-
ifiable by the eye are shown in FigIV.4 & IV.5. In the latter
the long skinnny triangles are the result of the triangulation
carried out on CPU while the closely clustered triangles are
mostly constructed by GPU. In th euniform case it can be
seen none of the triangles are too thin thereby proving the
fact that replicating a small fraction of neighbourhood points
is effective.

V. CONCLUSIONS

The digital Delaunay triangulation on GPU [5] is about
2-3 times faster than our algorithm. Hence it seems to be
the natural choice for delaunay triangulations on GPU, given
that our implemenaton does not fare well against non-uniform
distributed point sets. But the implementaion presented here
is far from the algorithm’s most effective implemenation. In-
fact the reasonable speedups obtained show the parallelizable
potential of the incremental method. To be truly compared to
its real world alternatives, many possible improvements shuld
be considered for example looking at coalesced and minimal
access of memory , reducing the number of kernel calls among
others. Morever an efficient search space such as K-d tree on
GPU can provide a much needed boost to the performance of
our implementation. Nevertheless to truly realize the potential



8 16 32 64 128 256 512
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Threads per block

R
el

a
ti

v
e 

ti
m

e

 

 

256*256

512*512

1024*1024

2048*2048

Figure IV.1. Varying threads per block for various sizes of input sets

32^2 64^2 128^2 256^2 512^2 1024^2 2048^2 4096^2
0

2

4

6

8

10

12

14

16

no. of points

S
p

ee
d

u
p

 

 

vs sequential

vs Triangle

Figure IV.2. Speedup , vs Sequential and T riangleT M

32^2 64^2 128^2 256^2 512^2 1024^2 2048^2 4096^2
0

1

2

3

4

5

6

7

points

sp
ee

d
u

p

 

 

vs seq

vs Triangle

Figure IV.3. Speedup for non-uniform distribution



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure IV.4. Triangulation of uniform distribution of points N = 322

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure IV.5. Triangulation for gaussian distributed points N = 322

of this method an online setting of points should be considered
,simulating which was beyond the scope of the project.

Some of the lateral or future directions are presented below.

A. Future Directions

• Handling points having high resolution coordinates (lead-
ing to lots of inconsistency and degeneracy) through GMP
library

• Constrained Delaunay triangulations in which certain
edges or triangles are bound to be present in a valid
triangulation

• Extending the incremental 2D implementation to higher
dimensions etc.

ACKNOWLEDGEMENT

I would like to thank Prof. Sathish Vadhiyar for his encour-
agement and motivation and the department of SERC for its
computing facilities

REFERENCES

[1] P. Cignoni, C. Montani, and R. Scopigno, “Dewall: A fast divide and
conquer delaunay triangulation algorithm in ed,” Computer-Aided Design,
vol. 30, no. 5, pp. 333–341, 1998.

[2] S. Lee, C.-I. Park, and C.-M. Park, “An improved parallel algorithm
for delaunay triangulation on distributed memory parallel computers,”
Parallel Processing Letters, vol. 11, no. 02n03, pp. 341–352, 2001.

[3] A. Bowyer, “Computing dirichlet tessellations,” The Computer Journal,
vol. 24, no. 2, pp. 162–166, 1981.

[4] D. F. Watson, “Computing the n-dimensional delaunay tessellation with
application to voronoi polytopes,” The computer journal, vol. 24, no. 2,
pp. 167–172, 1981.

[5] G. Rong, T.-S. Tan, T.-T. Cao et al., “Computing two-dimensional
delaunay triangulation using graphics hardware,” in Proceedings of the
2008 symposium on Interactive 3D graphics and games. ACM, 2008,
pp. 89–97.

[6] C. A. Navarro, N. Hitschfeld-Kahler, and E. Scheihing, “A parallel gpu-
based algorithm for delaunay edge-flips,” in The 27th European Workshop
on Computational Geometry, EuroCG, vol. 11, 2011.

[7] Y. A. Teng, F. Sullivan, I. Beichl, and E. Puppo, “A data-parallel algorithm
for three-dimensional delaunay triangulation and its implementation,”
in Proceedings of the 1993 ACM/IEEE conference on Supercomputing.
ACM, 1993, pp. 112–121.

[8] J. R. Shewchuk, “Triangle: Engineering a 2d quality mesh generator
and delaunay triangulator,” in Applied computational geometry towards
geometric engineering. Springer, 1996, pp. 203–222.


	Introduction
	Basics & Definitions

	Related Work
	Methodology
	Sequential incremental extrapolation
	Parallel Algorithm
	Implementation details

	Experiments and Results
	Experiment Setup
	Results
	Optimum no. of threads
	Speedups
	Non-Uniform distributed points
	Sample triangulations


	Conclusions
	Future Directions

	References

