
Parallel SIFT
Aniruddha Acharya K

Supercomputer Education and Research Centre
Indian Institute of Science, Bangalore, India

aniruddha753@gmail.com

Abstract—A number of computer vision and image processing
algorithms rely on image features, and compute them in their pre-
processing phase. Among the well known image features available
in the literature, Scale Invariant Feature Transform (SIFT) is
known to be highly accurate, and is widely used in certain
applications. However, for real time applications and applications
like large scale image search, SIFT is seldom used because of the
huge time it takes to compute them. As an attempt to solve this,
I have implemented a parallel version of SIFT using GPU. The
results obtained show a speedup of 62.08318 for a 800 X 640
image. Moreover it is seen that the algorithm is highly scaleable
with respect to the image dimensions.

I. I NTRODUCTION

Computer vision is getting increasingly popular through the
last few years. Some of the applications of image processingis
tracking moving objects, recognizing human faces, identifying
anomalies in safety critical places like banks, and searching
for images similar to a given image from a large database, to
name a few. Most of the algorithms for these involve an image
feature extraction step. Image features are interesting points or
regions of an image, which are quite invariant to translation,
rotation, or scale changes in the image. Of the many feature
extraction algorithms, SIFT [1] is one of the highly accurate
algorithms that produce point features.

An overview of the computational steps in SIFT is given
below:

A. Scale space creation

The input image is repeatedly convolved with 2-dimensional
gaussians with increasing variances. The original image with
each of the convoloved images form levels of the 1st octave.
Next, the original image is subsampled and the convolutions
are done as in 1st octave. This is the 2nd octave. Similarly
there are k octaves in the scale space.

B. DIfference of Gaussian

In this step, each of the neighboring pairs of scale space
images are considered and their difference is taken. Difference
of gaussian approximates laplacian of guassian function, which
is known to give high output values whenever the image scale
matches with the scale of the function. This is a useful tool
for getting features that are scale invariant.

C. Extrema detection

For all pixels in all of the images of scale space, 27
neighbors in the top scale, 27 neighbors in the bottom scale,
and 26 neighboring pixels in the current scale is checked
for whether the point under consideration is a minimum or
maximum. If it is an extremum, it is further checked if the
point has a high contrast by checking whether the pixel value
is greater than some threshold (0.3 used, suggested by original
paper [1]) Further, it is verified whether or not the point is on
an edge. If it is on an edge, it is not a stable feature and is
ignored. If a point clears all these tests, that pixel is a SIFT
keypoint

D. Orientation and descriptor creation

SIFT features have 5 characteristics: x, y, scale, orientation,
descriptor vector. The details of this step is given in the
methodology section.

Unfortunately sequential codes for SIFT are too slow for real
time applications and large scale applications. I have used
GPU to speedup the execution of SIFT.

II. M ETHODOLOGY

All the steps of SIFT were implemented on GPU.
Scale space construction involves implementing two func-

tionalities:

A. Subsampling a given image

This is quite easily done on GPU by using
statements like out[threaIdx.x][threadIdx.y]
= in[threadIdx.x/K][threadIdx.y/K], where
K = 2, 4 or 8 and so on, and by using the right
number of blocks and threads per block.

B. 2D convolution with a guassian kernel

2D convolution is a time consuming operation. Fortunately
gaussian kernel is a separable kernel, which means the 2D
convolution can be replaced by two 1D gaussian convolutions,
once for the rows and once for the columns. I have used
Nvidia’s separable convolution kernel for this step.



1) Optimization:

Convolution has to be done for all octaves and all levels.
Since the number of blocks, number of threads, the kernel
arguements are different for different octaves and levels,
different kernel calls are used for each octave and level. This,
also has been the approach used by [2].

However, it is possible to combine convolution of all octaves
and all levels by using the following techniques:

• Decide the number of blocks of the combined kernel by
placing individual threadblocks of different octaves and
levels on the GPU grid.
For instance, if convolution on rows requiresW X H
blocks for Octave 1,W/2 X H/2 for Octave 2 and so on,
fig1 and fig2 shows two ways of placing the threadblocks
for all octaves and levels. Since fig 1 consumes lesser area
on GPU, it was chosen for row convolution.

• While calling the kernel, send parameters corresponding
to all octaves and levels.

• In the kernel, define some parameter pointer variables so
that this variable can be filled by the right parameters
depending on the octave and level the thread belongs.

• Have a series of if-else conditions at the beginning of
the kernel based on the placement of blocks to classify
the thread into the right octave and level. Note that none
of these if else conditions will lead to warp divergence
because the conditions are only based onblockIdx.

Ideally, since all thread blocks work parallely, by the time
the first octave finishes the job, all the other octaves would
have already completed their jobs, as the other octaves are
of smaller size.
This means we are completely hiding the time for octaves
2-6. But this does not completely happen as thread blocks

on GPUs are not always parallel and they are time shared.
Yet, there is a signigicant time advantage due to this, as
shown in the results section.

This optimization of combining kernels is not restricted
to convolution. It can be applied to any scenario where
there are many problems of the same nature but with
different input parameters, different sizes and different
inputs. I have used this optimization for subsampling and
for some later operations as well.

C. Difference of Gaussian(doG)

This can also be quite easily done by invoking a kernel
which takes two of the adjacent scale space images
and takes the difference. For performance, I applied the
combined kernel optimization to this step too.

D. Subsampling some doGs

The step of extrema detection requires an additional doG
image at each octave except Octave 1, that must got by
subsampling the last level image of the previous octave.
Combined kernel optimization was used here also.

E. Extrema detection

I used one kernel per image in the scale space. The
kernel checks the neighbors in scale space for all pixels
in the image. It also does the constrast and edge check
as mentioned in the Introduction section.
If a point clears all these tests, it is updated in a global
array. To avoid race among threads during array updation,
atomicAdds are used. atomicAdd is a costly operation,
but since practically all threadblocks do not execute in
synchronism, and the number of keypoints is usually 1
order less than the image size, the number of threads
simultaneously accessing atomicAdd will not be very
high.
I did NOT use combined kernel optimization for this step
because that creates much more contention for the global
array due to atomicAdd.

F. Orientation and descriptor creation

Each keypoint was assigned a threadblock, having 16X16
threads. The threads load the image patch surrounding the
keypoint.
Initially all threads find out the derivates at their corre-
sponding location and convert them to polar co-ordinate
(M, θ). ′θ′ is quantized into 36 bins from−π to π.
For getting orientation, we need to create a histogram
of orientations. If we employ the method of each thread
updating the appropriate bin independently, we will have
synchronization problem. Hence the method of multiple
histogram arrays are used.
Here, 32 (size of warp) histogram arrays are allocated.
One warp is activated at a time and each thread is
allowed to update into its own histogram. Then all the



32 histograms are added together and added to a final
histogram.
Next maximum of the histogram is found by modelling
it as REDUCE and by using the standard tree reduce.
Similarly the second maximum is also found out(by
setting the max to 0). In case the magnitude of the second
maximum is greater than 80% of the magnitude of the
first, an additional keypoint is created at the same location
and scale, but with different orientation.
For the descriptor creation, the 16 X 16 patch is divided
into 16 4X4 sub patches and a separate histogram is
created for each of the subpatches, with 8 bins. Then, all
the histograms are concatenated to form the histogram.

1) Optimization: I have used pinned memory for trans-
fering image from host to device. Pinned memory is
a kind of host memory allocated using cudaHostAlloc
(instead of malloc), which is guarenteed that it will not
be paged out or sent to second memory. cudaMemcpy
works fast with pinned memory than normal memory.
This is because for a normal memory, it is first transferred
to a temporary buffer and then to device, but for pinned
memory, it is directly send to device. But pinned memory
is a limited resource and I could allocate a maximum of
640X640 floats.

The input image is split into 8-pixel overlaping tiles of
640X640. Each of the tiles is processed separately, in
each iteration transfering the tile using pinned memory.

2) Optimization: This requires that before the start of
next iteration, the pinned memory should have the fresh
tile contents. Such a copy takes around 3360 microsec-
onds. While one iteration of GPU takes 4046 microsec-
onds. Since they both are almost the same, I chose to
make the two tasks parallel by using pthreads.

III. E XPERIMENTS AND RESULTS

Performance of optimizations

A. Combined kernel optimization (for image size of 4480 X
3200):

Total times for subsampling, row convolution, column con-
volution:

Separate kernels time = 59,863 microseconds
Combined kernel time = 33,482 microseconds
Gain of 26,381 microseconds
Around 14.49% of the total time

B. Pinned memory optimization (for image size of 4480 X
3200):

Without pinned memory: 81041.000000 microseconds
With pinned memory: 35101.000000 microseconds
Advantage: 45940 microseconds
Around 25.249 % of the total time

C. Pinned memory optimization (for image size of 2650 X
1920):

Without pinned memory: 30473.000000 microseconds
With pinned memory: 15064.000000 microseconds
Advantage: 15409 microseconds
Around 20.86 % of total time
I tested the implementation on 3 images of sizes 800 X 640,

2650 X 1920, 4480 X 3200. The run-time for serial code was
obtained by using the siftpp code [3]. The speedup is shown
in the graph.

Image Area Sequential SIFT run time Parallel SIFT run time
800 X 640 1,474,910 23,757

2650 X 1920 17,542,699 73,843
4480 X 3200 55,200,716 1,81,943

TABLE I
EXECUTION TIMES IN MICROSECONDS

IV. CONCLUSIONS

SIFT is an algorithm with high potential of parallelism.
Since it extracts local features, there are no far off depen-
dencies in the image space. But it is a very laborious task to
port all of the algorithm on GPU. Some of the authors have
ported only the convolution part and acheived a speed up of
only 1.9X. On the contrary, my implementation used GPU
for all of the algorithm. It produced a surprising speedup of
62.08. The novel optimization of combined kernel, the use of
CPU using pthreads and pinned memory optimization have
significantly contributed to the speedup.

Future work of this would be to extend this for videos.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
in International Journal of Computer Vision, vol. 60, pp. 91110, 2004.

[2] S. Warn, W. Emeneker, J. Cothren, and A. Apon, “Accelerating SIFT on
Parallel Architectures,” inIEEE International Conference CLUSTER ’09,
2009.

[3] A. Vedaldi, “Sift++ source code and documentation [online],” in
http://www.vlfeat.org/vedaldi/code/siftpp.html, 2009.


