
Parallel version of the Generalized
Multidimensional K-Maximum Subarray Problem

with CUDA-based Implementation
A.Geetha Venkatesh

Supercomputer Education and Research Centre
Indian Institute of Science, Bangalore, India

agv.bits@gmail.com

Abstract—The Maximum Subarray Problem (MSP) finds the
segment of an array that has the maximum summation over all
other combinations. The D-dimensional K-Maximum Subarray
Problem is a generalized version of MSP, which finds K maximum
subarrays in a D-dimensional array. The main aim of this course
project is to develop a parallel version for this generalized
version of the MSP. This work involves analyzing a sequential
lower bounded, O(N+K) algorithm for K-MSP in 1-D and then
developing a CUDA-based implementation which is competitive
with the sequential version. Even though the problem is highly
sequential, the CUDA version achieves more than 13X of speed-
up in performance compared to the sequential for an array size
of 10242, 1-D and K=50. This parallel version is also generalized
and extended to D-dimensional problem.

Index Terms—Maximum Subarray, Persistent Data Structure,
Prefix Sum.

I. INTRODUCTION

The Maximum Subarray Problem (MSP) problem is
concerned about retrieving a segment of consecutive array
elements that has the maximum summation over all the other
possible combinations in this array. If the array elements
are of only positive numbers, then the maximum summation
in such case will be the entire array; therefore the MSP
always deals with arrays of positive and negative numbers.
For example, consider the sequence of values −3, 1, −2, 4,
−1, 2, 1, −5, 3; the contiguous subarray with the largest sum
is 4, −1, 2, 1 with sum 6. i.e, The maximal sub-vector of
an array A with n numbers is the sub-vector A[i, . . . , j]
maximizing

∑j
s=iA[s]. Finding the K sub-vectors with the

largest sums is a natural extension of this and is known as the
K maximum subarray problem. The problem can be extended
to any number of dimensions.

This problem has significant projection in several applica-
tions in the medical field such as genomic sequence analysis at
which it predicts the membrane topology of proteins leading
to understanding their functions; which is an essential step
for the development of antibodies and drugs. In computer
vision, this problem is employed in finding the brightest region
of an image; which can be used later for image analysis.
As a practical application in the medical field, we use this
technique in the work for the detection of macrocalcifications
in mammographic images [1].

II. RELATED WORK

The Maximum Subarray Problem was first posed by Ulf
Grenander of Brown University in 1977, as a simplified model
for maximum likelihood estimation of patterns in digitized
images. A linear time algorithm was found soon afterwards
by Jay Kadane of Carnegie-Mellon University (Bentley 1984).
Then afterwards in literature, there are a couple of linear
order sequential algorithms developed for solving the MSP.
Similar problem posed for higher dimensional arrays has
solutions which are more complicated; e.g., Takaoka (2002).

The lower bound for the K maximal subarray problem is
Ω(N+K) in 1-D, since an adversary can force any algorithm
to look at each of the N input elements and the output size
is Ω(K). Brodal & Jørgensen (2007) showed how to find the
K largest subarray sums in a one-dimensional array, in the
optimal time bound O(N + K) [2].

The recent work on CUDA parallel version of the MSP
problem is for 2D problem, is done by Salah Saleh group
[3], which is a Dec-2012 publication. This indicates that the
generalized parallel version of MSP problem extended for
K-maximums and for D-dimensions is unsolved for GPU
architecture using CUDA-based implementation. This is an
initial attempt to solve this problem using the GPU architec-
ture, to develop CUDA based implementation for K-maximum
subarray problem and extending it to the generalized version
of D-dimensions.

III. METHODOLOGY

A. Brodal & Jørgensen Sequential Method

The algorithm followed is complex and the key main points
are tried to be summarized here. In this algorithm the term
heap denotes a max-heap ordered binary tree. The basic idea
of this algorithm is to build a heap storing the sums of all
nC2 + n sub-vectors and then use Frederickson’s binary heap
selection algorithm to find the K largest elements in the heap.

For the heap formation, grouping is done based on the triples
that end with same index from the nC2+n sums. The suffix set
of triples corresponding to all sub-vectors ending at position



j is denoted by Qj
suf , and this is the set {(i, j, sum)|1 6 i 6

j 3 sum =
∑j

s=iA[s]}. The Qj
suf sets can be incrementally

defined as follows:

Qj
suf = {(j, j, A[j])} ∪ {(i, j, s+A[j])|(i, j−1, s) ∈ Qj−1

suf }.
(1)

As stated in equation (1) the suffix set consists of all suffix
sums in Qj−1

suf with the element A[j] added, as well as the
single element suffix sum A[j].

Using this definition, the set of triples corresponding to all
nC2 +n sums in the input array is the union of the n disjoint
Qj

suf sets. These Qj
suf sets are represented as heaps and is

denoted by Hj
suf . Assuming that for each suffix set Qj

suf , a
heap Hj

suf representing it has been build, a complete binary
heap H on the top of all these heaps is constructed. The keys
for the N−1 top elements is set to∞ (see Figure 1). To find the
K largest elements, we extract the N−1 +K largest elements in
H using the binary heap selection algorithm of Frederickson
and discard the N−1 elements equal to ∞.

Fig. 1. Example of a complete heap H constructed on top of the Hj
suf

heaps. The input size is 7.

Since the suffix sets contain Θ(n2) elements the time and
space required is still Θ(n2) if they are represented explicitly.
The algorithm uses persistent data structures for constructing
heaps.

Data structures are usually ephemeral, meaning that an
update to the data structure destroys the old version, leaving
only the new version available for use. An update changes a
pointer or a field value in a node. Persistent data structures
allow access to any version old or new. Partially persistent
data structures allow updates to the newest version, whereas
fully persistent data structures allow updates to any version [4].

The main steps, algorithms and data structures used for
optimization to make the algorithm to run in linear order are
specified here.

B. Steps For Parallelization

1. Creating a persistent data structure which can be accessed
in parallel and updated in parallel. Because using other data

Algorithm 1 A Linear Time Sequential Algorithm for the K
Maximal Sums Problem
1. To obtain a linear time construction of the heaps Hj

suf , an
implicit representation of a heap, called Iheap that contains
all the sums is constructed in linear time.
a. The Iheaps are designed to have the partial persistence.
b. The Iheap data structure is for representing the Qj

suf

sets that supports insertions in amortized constant time.
2. Construction of these Iheaps for the N elements completes

in O(N) time.
a. According to equation(1), the set Qj+1

suf can be con-
structed from Qj

suf by adding A[i+1] to all elements in
Qj

suf and then inserting an element representing A[i+1].
b. To avoid adding A[i+1] to each element in Qj

suf , each
Qj+1

suf set is represented as a pair 〈δj , Hj
suf 〉, where Hj

suf

is a version of a partial persistent Iheap containing all
sums of Qj

suf and δj is an element that must be added
to all elements.

c. With this representation a constant can be added to all
elements in a heap implicitly by setting the correspond-
ing δ.

d. The following is the incremental construction of the pair
〈δj+1, H

j+1
suf 〉:

〈δ0, H0
suf 〉 = 〈0, ∅〉 (2)

〈δj+1, H
j+1
suf 〉 = 〈δj +A[i+ 1], Hj

suf ∪ {−δj}〉 (3)

e. Using the node copying technique [4] build Hj+1
suf from

Hj
suf in O(1) time amortized without destroying Hj

suf

f. Time for constructing the N pairs 〈δj , Hj
suf 〉 is O(N).

3. A complete binary tree is constructed over these Iheaps and
using Frederickson Heap Selection Algorithm [5] the N−1
+K largest elements in a heap are found in O(N−1 +K)
time.

a) The main part of the algorithm is for locating an element
’e’, with K 6 rank(e) 6 cK for some constant c.

b) After this element is found, the heap is traversed and all
elements larger than ’e’ are extracted.

c) Standard selection is then used to obtain the K largest
elements from these O(K) extracted elements.

4. Using reduction repeatedly d-dimensional arrays are re-
duced to one dimensional and the Iheaps formed (by 1,2,3
steps) from these arrays are all considered, for the complete
binary heap H construction.
a. For example: in 2-D, for all i, j with 1 6 i 6 j 6 N we

take the sub-matrix consisting of the rows from i to j
and sum each column into a single entrance of an array.
The array containing the rows from i to j can be
constructed in O(N) time from the array containing the
rows from i to j−1.

b. For d-dimension problem, the algorithm uses the re-
duction to the d−1 -dimensional case by constructing
NdC2 + Nd d−1 -dimensional problems.i.e, NC2 + N
1-D arrays for 2-D problem.



Fig. 2. An example of an insertion in the Iheap. The element 7 is compared
to 2, 4 and 5 in that order, and these elements are then removed from the
rightmost path.

structures increases the time to be more than O(N).
2. The construction of the N Iheaps (if constructed) need to

be parallelized, such that it does not exceed O(N).
3. After the 〈δj , Hj

suf 〉 pairs construction, the element ’e’ of
Frederickson Heap Selection Algorithm need to be found
in less than O(N−1 +K) time.

4. The final Standard selection should be from O(K) elements.
5. Creating the combination data for multidimensional.

C. Parallel Implementation

For handling the persistent data structure which can be
accessed in parallel and updated in parallel.Used simple array
data structure itself, and this array can give all the elements
of the Qj

suf set. Construct the prefix sum array, say P with N
elements for all the elements in the array A. And we have

Qj
suf = {(P [j]+P ′[i])|(i <= j)&(P ′[0] = 0, P ′[i] = −P [i−1])}.

(4)

Fig. 3. An example for the Prefix Sum array being used for get the Q3
suf

As shown in the example from Fig.3, the computed Prefix
sum array itself used as a persistent data structure to get the
Qj

suf set.

Skipped the step of constructing the heaps and instead, just
found the maximum value in P’ till that element sequentially.
As this step has high load imbalance, initial thread gets 1
element load whereas the final thread gets N elements load
and as CPU is faster than GPU for a single thread, used CPU
to get the maximum array in O(N).

Parallelized finding the element ’e’ of Frederickson Heap
Selection Algorithm. Initially found the maximum with in
the Blocks(each block has 512 threads and 1024 elements)
and collected them. And then out of these collected Block
maximums, selected the Kth maximum as element ’e1’. Also
collected the individual Kth ranked element at each Block,
say ’e2’. Now chosen the max{e1, e2} as the threshold
element ’e’ for each block. As this is done in parallel the
time taken for this step is less than O(N).

After the threshold value ’e’ is found for each individual
Block of threads, the threads which have their maximum
value greater than this threshold find their subset elements
which are greater than this threshold. All these elements
are collected into the global memory and the largest K
elements of these is found by the next kernel call. If the
problem is multidimensional the K largest found in the
previous combination array are also added to this set for the
updated largest. And as this step is also parallelized and O(K)
elements are dealed with, time is saved here. Each thread of
the CUDA code deals with one element of the array, and this
thread finds the greater than threshold value elements from
its Qj

suf set, which takes at most O(N)time. The gained O(N)
time of sequential heap forming step is used here.

In sequential, creating the combination data for multidimen-
sional did not took much time when compared to other steps,
and due to time constraints did not parallelize this step. Even
this step can be parallelized, but there needs a lot of data
movement between GPU and CPU, which may result in no
better time saving.

IV. EXPERIMENTS AND RESULTS

A. Optimization Experiments

For forming the persistent data structure which can be
parallelized, experimented with heaps data struture similar
to the sequential version. But as the complexity kept on
increasing, switched to the simple arrays and used the concept
of persistent data structure of the pair 〈δj , Hj

suf 〉 to take
the prefix sum array and was able to construct the Qj

suf

successfully when required.

Took the concept of finding the threshold element ’e’ as in
Frederickson Heap Selection Algorithm and formed a better
threshold value ’e’, considering both the Block level Kth

rank and global Kth rank elements. Doing this way reduced
the number of threads, that need to search through all its
sum values for finding the values which are grater than the



threshold value ’e’.

After the sum values from the individual threads are
collected, invoked one more kernel in which each thread
handles one element and finds if its value is ranked more
than K or not, largest sum is ranked 0. Here sorting of all
the elements is not being done and each thread counts the
values greater than it, if it is more than K the thread terminates.

Threads are maintained in warps and ensured that consec-
utive threads deal with consecutive elements, so that cuda
memory coalescing is achieved. And during the shared mem-
ory access, used in loops [(i+subthreadid)%NumOfElements]
so that memory bank conflicts does not occur. Also tried for
avoiding the warp divergence, but at the point when the threads
needs to find their respective threshold exceeding values the
warp divergence occur because of load imbalance.

B. Results

Even though the problem is highly sequential, successfully
parallelized few steps of the algorithm taken and achieved
a good speedup of upto 13X. The speedup are calculated
maintaining two parameters constant and varying the third
one, out of the N → Size of the Dimension, D → Number
of Dimensions and K → Number of maximal sums.

For D = 1,K = 50
N 128*128 256*256 512*512 1024*1024

Speedup 10.123 11.124 12.042 13.123

On increasing the dimension size the speed-up increased
this may be because in sequential there is an extra N−1
elements are added in the complete binary heap formation
and these are again removed at final stage, whereas in parallel
this extra load is not present.

For N = 1024 ∗ 1024, D = 1
K 10 30 50 75 100

Speedup 13.223 13.124 13.123 12.931 12.823

On increasing K, the sequential algorithm has an extra load
in the terms of clan sizes of the Frederickson Heap Selection
Algorithm, whereas in parallel the number of subsections, i.e
number of threads which explore there subsections increase.
This increase in the K, leads to more wrap divergence and
more subsections to explore, so a slight decrease in speedup
with increase in K is expected.

For N = 512 ∗ 512,K = 100
D 1 2 3

Speedup 11.823 12.524 13.242

On increasing the D value, the problem size increases
drastically and parallel version accumulates the speedup at
each 1-Dimensional array calculation so we have the speedup
increasing with increasing the dimension value. Also for se-
quential version the extra nodes which are added and removed

to form the complete binary heap increases in large scale.
The speedup plots are shown in Fig.4 and Fig.5

Fig. 4. Speedup Curve for Constant D and K

Fig. 5. Speedup Curve for Constant N and D

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

Implemented the CUDA-based parallel version of the gener-
alized D-dimensional K-Maximum Subarray Problem, paral-
lelized most of the steps of the linear sequential algorithm.
Instead of the high unbalanced load and highly sequential
version, achieved a convenient speedup of upto 13X for a
problem size of N=512*512, D=3 and K=100. And also we
can conclude that even a lower bounded highly optimized
sequential algorithm can have better results in parallel version.

B. Future Work

Due to time constraints as this is course project, the gener-
alization for D-dimensional problem has not been completely
optimized in all aspects and this can be handled in the future
work. i.e, parallelizing some of the 1-D arrays calculations
based on the N value. Writing different kernels based on
different problem sizes. A comparison between the GPU
implementation and a multi-threaded CPU implementation
(Open-MPI and MPI versions) can be also considered in the
future.



REFERENCES

[1] S. E. Bae, “Sequential and parallel algorithms for the generalized maxi-
mum subarray problem,” Ph.D. dissertation, National Taiwan University,
2007.

[2] G. S. Brodal and A. G. Jørgensen, “A linear time algorithm for the
k maximal sums problem,” in Mathematical Foundations of Computer
Science 2007. Springer, 2007, pp. 442–453.

[3] S. Saleh, M. Abdellah, A. A. A. Raouf, and Y. M. Kadah, “High
performance cuda-based implementation for the 2d version of the max-
imum subarray problem (msp),” in Biomedical Engineering Conference
(CIBEC), 2012 Cairo International. IEEE, 2012, pp. 60–63.

[4] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data
structures persistent,” Journal of computer and system sciences, vol. 38,
no. 1, pp. 86–124, 1989.

[5] G. N. Frederickson, “An optimal algorithm for selection in a min-heap,”
Information and Computation, vol. 104, pp. 197–197, 1993.


