
MPI Implementation of AKS Algorithm
Jayasimha T

Supercomputer Education and Research Centre
Indian Institute of Science, Bangalore, India

sercjayasimha@ssl.serc.iisc.in

Abstract—AKS algorithm is the first deterministic polynomial
time algorithm for primality proving. This project uses MPI
(Message Passing Interface) along with GNU MP (Multi Pre-
cision) library to implement a variant of AKS algorithm. Two
different parallelization strategies have been implemented and we
compare these strategies making relevant observations and pro-
viding speedups. The method of fast polynomial exponentiation
with precomputation has been used to achieve parallelization and
improve run time. Further we show experimentally that master
slave model of parallelization gives very good results.

I. INTRODUCTION

Prime numbers are of fundamental importance to mathemat-
ics in general and number theory in particular. Many crypto-
graphic protocols use large prime numbers for encryption and
decryption. Hence it is very important to quickly determine
whether a number is prime or not.

Efficient randomized algorithms exist to determine whether
a number is prime or not with a certain probability. In
cases where certainty of primality is required randomized
algorithms cannot be used. In spite of the seemingly simple
problem definition, algorithms before AKS relied on some
unproven results (extended Riemann hypothesis) or conjec-
tures in number theory to deterministically prove primality in
polynomial time. Three Indian researchers Manindra Agrawal,
Neeraj Kayal and Nitin Saxena constructed a “polynomial time
deterministic primality test”, a much sought-after but elusive
goal of researchers in the algorithmic number theory world.
Most shocking was the simplicity and originality of their test,
whereas the “experts” had made complicated modifications on
existing tests to gain improvements.

In this project we give a parallel implementation of a
variant of AKS algorithm using MPI and GMP (GNU MP) li-
brary.AKS algorithm is highly amenable to parallelization. We
give two parallelization approaches Viz. Master slave model
and parallelization based on precomputation.We compare these
two algorithms based on their run times and speedups. The
parallelization provides very good speedups and the speedups
scale with number of processors, hence there is a great
improvement in run time by using the parallel version of AKS.
We show experimentally that our implementation performs
better than the existing parallel implementation.

This implementation is unique in the sense that it

• Uses precomputed values to speedup exponentiation.
• Uses precomputed values to achieve parallelization.
• Uses faster variant of AKS algorithm.

The remainder of this report is structured as follows ,Section
II introduces the work related to this project, Section III deals
various algorithms specifically III-C deals with the paralleliza-
tion strategies and III-D deals with the various implementation
issues,Section IV deals with results that we have obtained in
this project.We conclude the report in Section V .

II. RELATED WORK

The AKS algorithm was proposed in the paper by Manindra
Agrawal et al. [1], this was first deterministic polynomial
time primality proving test. The paper by DJ Bernstein [2]
improved the original AKS algorithm by reducing the number
of iterations required to test the primality. The paper by R.
Crandall and J. Papadopoulos [3] discusses various issues
regarding the serial implementation of AKS algorithm and
optimizations that can be carried out, like using FFT for
quickly multiplying large integers etc, these optimizations have
been included in the GMP library, this library was used for the
serial implementation of AKS by Chris Rotella [4] .A simple
parallel implementation with master slave model was done as
a part of the master thesis by JS Bronder [5].The paper by
Gordon et al. [6] surveys various techniques available for fast
integer exponentiation, these techniques achieve speedup at the
cost increased memory.

III. METHODOLOGY

A. AKS Algorithm

The AKS algorithm[Algorithm 1]relies fundamentally on
the following theorem

Theorem 1. For given integer n ≥ 2, let r be a positive
integer < n, for which n has order > (logn)2modulo(r) .
Then n is prime if and only if

• n is not a perfect power,
• n does not have any prime factor ≤ r,
• (x + a)m ≡ xm + a mod (n, xr − 1) for each integer

a, 1 ≤ a ≤
√
φ(r)log(n).

where the symbols have usual meanings.

The complexity of AKS algorithm is o(log(n))
15

2 [1].
DJ Bernstein further improved the algorithm [Algorithm2]

by defining a integer s <
√
φ(r)log(n) as the looping

parameter thereby reducing the number of iterations of the
painful loop.

B. Fast Exponentiation

The exponentiation problem is, given fixed number g and a
variable exponent n, compute gn.The goal is to compute gn

with small number of multiplications. Speeding up of such
computations is possible by storing precomputed values of
powers of g. One such precomputation method is to store the
set

S = {g2
i

|i = 1, 2, ..., log(n)− 1}.

Let v(n) be the number of non zeros in the binary rep-
resentation of n. Then gn may be computed in v(n) − 1
multiplications by multiplying together powers corresponding
to nonzero digits in the binary representation of n. This reduces
to the work of log(n) − 1 multiplications in the worst case
and log(n)

2 − 1 on the average case at a cost of storing log(n)
powers [7].

This Idea can be extended for the AKS algorithm by storing
the coefficients of the polynomials for various values of a and
r.

C. Parallel AKS Algorithm

1) Master Slave Approach: AKS algorithm can be paral-
lelized easily using the master slave approach. The master
process is responsible for checking the loop termination condi-
tion. The slave processes are responsible for exponentiating the
polynomial to appropriate modulo and checking for congru-
ency. Instead of synchronizing with the master processor for
every iteration, slave processors can evaluate a fixed number of
terms of the polynomial and then synchronize with the master.

To speedup polynomial exponentiation each slave processor
owns a local copy of the precomputed values and fast expo-
nentiation algorithm is used for exponentiation.

2) Parallelization based on precomputation: In this ap-
proach parallelization is achieved at the cost increased memory
and precomputation.Let n = abab−1...a0 be the binary repre-
sentation of n. These bits are divided among the processors
as shown

abab−1..a (p−1)b
p︸ ︷︷ ︸

p

, a (p−1)
p −1ab−1..a (p−2)b

p︸ ︷︷ ︸
p−1

, ..., a b
p−1

a1...a0︸ ︷︷ ︸
1

Each processor computes its exponent using precomputed
values. These are combined repeatedly by multiplying them
together in pairs to from gn.This method is referred to as
binary fan-in multiplication [7].By storing polynomial coeffi-
cients this method can be extended to AKS algorithm.

At each iteration we use binary fan-in multiplication al-
gortihm. Polynomial are exponentiated across processors and
congruence is checked on a single processor. Communication
of the termination condition has to be done at each iteration.

D. Implementation

The AKS-Bernstein variant of the algorithm and paral-
lelization by binary fan-in multiplication was implemented in
MPI and GMP using parallelization techniques discussed in
III-C-1. The time spent in the steps before the polynomial
exponentiation, is negligible compared to the time spent in

Algorithm 1 AKS Algorithm
Input n> 1
If(n = ab for aεN and b > 1),output COMPOSITE
Find the smallest r such that or(n) > log2n.
If 1 < (a, n) < n for some a ≤ r,output COMPOSITE
If n ≤ r,output PRIME
For a = 1 to

√
φ(r)logn do

If((x+ a)n 6= xn + a(mod(xr − 1, n)))
output COMPOSITE;

Output PRIME

Algorithm 2 Bernstein’s improvement
Input : n >1
r = 3
while r < n

if (gcd(n, r) 6= 1)Output COMPOSITE
if(r is prime)

let q be the largest prime factor of r
if(
(
2q−1

q

)
≥ 22

√
rlog(n) and n

r−1
q ≤ 1) exit loop.

r = r + 1
set s = 2

√
rlog(n)

loop, hence these steps are done serially. GMP library provides
an API for doing Big integer arithmetic [8], hence this imple-
mentation can handle arbitrarily large numbers subjected to
the memory limitation of the machine. While communicating
GMP variables using MPI, the communicating processes have
to negotiate the size of the data that has to be transferred before
the actual transfer of the GMP variables can take place, hence
this introduces additional overhead for communication.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

The speedups and run-times are compared for different
number of polynomial terms evaluated at the slave processors.
See Figure 1 on page 3,Figure 2 on page 3.

The comparison of run-times is made between the reference
parallel implementation [5] and developed Master slave imple-
mentation for different number of processors. See Figure 3 on
page 3.

The run-times of reference implementation, developed Mas-
ter slave implementation and binary fan-in multiplication im-
plementation are compared for different primes. See Figure 4
on page 3.

B. Results

With the increase in number of polynomial terms evaluated
at the slave processor, the speedup obtained decreases and
the run time increases, this is due additional polynomial
evaluations that has to be carried out before communicating
the result to the master.

The Master slave approach (AKS-Bernstein) with precom-
putation implemented in this project is faster than both the
reference (AKS) parallel implementation and binary fan-in
multiplication with precomputation .

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Number of processors

s
p
e
e
d
u
p

Number of terms = 20
Number of terms = 30
Number of terms = 40
Number of terms = 80

Figure 1. Comparison of speedups obtained for different number of
polynomial terms evaluated at slave processor.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

Number of processors

R
u
n
ti
m

e
 i
n
 S

e
c
o
n
d
s

Number of terms = 20
Number of terms = 30
Number of terms = 40
Number of terms = 80

Figure 2. Comparison of run time obtained for different number of
polynomial terms evaluated at slave processor.

binary fan-in multiplication with precomputation performs
very bad because of the communication overhead involved
in communicating GMP variables.Further there will be load
imbalance in this version as the binary representation of the
exponent contains variable number of ones across each pro-
cessor and therefore number of exponents that have computed
in each processor will be different leading to load imbalance.

V. CONCLUSIONS AND FUTURE WORK

The speedups obtained by parallelizing the algorithm scales
with number of processors, hence this method can be used
in large distributed environments. Precomputed values bring
down the run time of the algorithm significantly. In spite of
these advantages the algorithm in its current form may not be
practical as other algorithms with slightly better asymptotic
run time have been developed .

The future work of this project could be to implement other
faster variants of AKS algorithm. Memory efficient precompu-
tation can be used so that more polynomial coefficients can be

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

Number of Processors

R
u

n
 t

im
e

 i
n

 S
e

c
o

n
d

s

Naive Parallel Algorithm
AKS−BERNSTEIN variant

Figure 3. Comparison of run times for the reference implementation and
developed implementation.

4 6 8 10 12 14 16 18
−3

−2

−1

0

1

2

3

4

5

6

7

Log (Prime Numbers)

L
o

g
 (

 R
u

n
 T

im
e

 i
n

 S
e

c
o

n
d

s
)

Parallel (AKS) Algorithm
Binary fan−in multiplication
Master Slave (AKS−Bernstein) implementation

Figure 4. Comparison of run time for various prime numbers for three
different implementations.

stored in the same amount of space. Develop an application
similar GIMPS for proving prime numbers over distributed
network of computers.

REFERENCES

[1] M. Agrawal, N. Kayal, and N. Saxena, “Primes is in p,” Ann. of Math,
vol. 2, pp. 781–793, 2002.

[2] D. J. Bernstein, “Proving primality after agrawal-kayal-saxena,” Depart-
ment of Mathematics, Statistics, and Computer Science, University of
Illinois. Available from the World Wide Web:< http://cr. yp. to/papers/aks.
pdf, 2003.

[3] R. E. Crandall and J. S. Papadopoulos, “On the implementation of aks-
class primality tests,” Advanced Computation Group. Apple Computer e
University of Maryland College Park, 2003.

[4] C. Rotella, “An efficient implementation of the aks polynomial-time pri-
mality proving algorithm,” School of Computer Science-Carnegie Mellon
University. Pittsburgh-Pennsylvania-USA, 2005.

[5] J. S. Bronder, “The aks class of primality tests: A proof of correctness and
parallel implementation,” Electronic Theses and Dissertations,University
of Maine, 2006.

[6] D. M. Gordon, “A survey of fast exponentiation methods,” Journal of
Algorithms, vol. 27, pp. 129–146, 1998.

[7] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson,
“Fast exponentiation with precomputation: algorithms and lower bounds
(1995),” URL: http://research. microsoft. com/˜ dbwilson/bgmw.

[8] T. Granlund, “Gnu mp,” The GNU Multiple Precision Arithmetic Library,
vol. 2, no. 2, 1996.

