
1

Parallelization of Error Weighted Hashing for
Approximate k-Nearest neighbour search

B M Pavan Kumar (SR: 06-02-01-10-51-12-1-09240)

SuperComputer Education and Research Centre, IISc-Bangalore

Abstract—Error Weighted Hashing (EWH) is an efficient
algorithm for Approximate k-Nearest neighbour search in Ham-
ming space. It is more efficient than Locality sensitive Hashing
algorithm (LSH) as it generates shorter list of strings for finding
exact distance from the querry. Parallelization strategies for
EWH algorithm using CUDA are discussed. The results are
compared with distributed LSH algorithm proposed in [2].

Index Terms—Hamming space, Nearest neighbour search

I. INTRODUCTION

Nearest neighbour search in Hamming space is the problem
of finding closest matches of a given querry string, given
a set of reference strings. Given a b-bit binary string (i.e,
contains 0 or 1 in all bits), the problem is to find stings in
the database which match with it closely in the database.
A string is said to be matched closely with other string if
it has the same values (0 or 1) in many bits. For example
[0010] matches more closely with [1010] (1-bit difference,
only fourth bit) than [0100] (2-bit difference, second and third
bits). Hamming distance between two strings is defined as the
number of bits that are different. Many signal processing appli-
cations like matching fingerprints, identifying existing copies
of multimedia and image search involve nearest neighbour
search. The aim is to find approximate matches very fast. As
the database becomes larger the searching could become a
bottleneck. Parallel implementations would make the search
fast.

Normal searching methods like linear search or binary
search do not work here due to huge size of data. Hence
hashing is generally used for this problem. LSH is a pop-
ular algorithm for nearest neighbour search. Recently, EWH
algorithm was proposed in [1] which modifies the process of
retrieval by giving scores to strings in the database and is
better in terms of generating the shortlist of strings which will
be checked for exact mathces. General-purpose computing on
graphics processing units (GPGPU) is the technique of using a
Graphics processing unit (GPU) to perform the computations
usually handled by the CPU. The key idea is to use the parallel
computing power of the GPU to achieve significant speed-
ups. Hashing is a problem where the hash value of a string
doesn’t depend on the other. So, the massely large amount of
threads available on a GPU could be exploited to obtain good
performance.

In the next section LSH, EWH and distributed LSH pro-
posed in [2] will be briefly described. In section III, the
strategies used for parallelising EWH are discussed. In section
IV, experiment details and results are shown. The report is
concluded in section V.

II. RELATED WORK

Hashing strings to hash table is done in the following
way. If we consider b-bit binary vectors, hash functions are
characterised by h random bits from 0 to (b-1). Given a
string, the hash function looks only into these h-bits of the
total b-bits. The h-bit binary vector is formed from the given
string. Its value in decimal representation will become the hash
value. For a h-bit hash function there will be 2h hash buckets.
Thus for n-hash functions, total hash table consists of 2h rows
and n colums. As the number of hash functions increase, we
are considering many bits and hence the result will be more
accurate. But as the number of hash functions increase the
time complexity increases. A string which goes into different
buckets with respect to different hash functions as shown in
Figure 1. Given a reference string f and considering hash
functions k1,k2,k3....kn with h=4 bits, the following figure
shows how the hashing is done for that string.

Figure 1. Hash table construction with reference string f and h=4 bits and n
hash functions

Mani et al. [1] proposed the Error weighted hashing algo-
rithm which basically assigns scores to the strings depending
on how close they are from the querry string. Given a querry
string, the algorithm considers exact matching (i.e, 0 bit
difference), 1-bit difference and 2-bit difference strings with

2

respect to a hash function. It adds scores to all the strings
which have the corresponding hash value (i.e, corresponding
bucket in hash table). It adds a high score to exact matching
strings and a low score to 2-bit difference strings. The next
step is to retrieve all the strings which have score greater
than a particular threshold. The EWH algorithm differs from
LSH in the way it retrieves the data. LSH doesn’t have this
score concept and ends up computing exact distances for all
the strings in all the buckets. The number of strings which
LSH checks for exact match is higher than the number which
EWH does. Since this is the bottleneck, LSH ends up in
high execution times. Though there is an additional overhead
in computing the scores for each string in the database, the
number of strings it checks for computing exact distance is
less and hence is expected to perform well.

Smita and Pawan [2] proposed an algorithm for parallelising
LSH using distributed systems. Basically the task of con-
structing the hash tables is distributed among the processors.
Each processor constructs a hash table independently. Given a
querry string, it is broadcasted to all the processors. Now, with
respect to this hash table is searched and a shortlist is retrieved.
Then, the k-best among them are selected. This method of
having part of hash tables in different processors would lead
to load imbalance because the size of shortlist on different
processors would be different.

EWH algorithm has the advantage of generating a smaller
shortlist and hence is better than LSH. Parallelising EWH
would improve the performance even better. CUDA has shared
memory architecture and hence a single hash table can be con-
structed. The objective of this project is to devise parallelising
strategies for EWH.

III. METHODOLOGY

EWH algorithm can be divided into two stages. One is
hashing and the other is retrieval. For hashing the data has
to be moved into the global memory. To construct the hash
table, the number of strings that would go into each bucket
are not known apriori. An array to store the starting indices
for each bucket in the hash table is maintained. The data is
scanned to find the number of strings which would go into
each bucket. Each thread acts on a string and finds out the
bucket to which it goes. Once we get these numbers, a prefix
scan would give the starting indices of each each bucket with
respect to a hash function. For different hash functions this
can be done parallelly. Once these pointers for each bucket
are known, the strings are actually hashed into the respective
buckets by using offset values for each bucket i.e, when a
string is to be placed into a bucket, its index is calculated
by adding the starting index of the bucket and the offset in
that bucket. Offset determines the number of strings already
inserted into the bucket. One more issue here is that two
threads acting on different strings that would go into same
bucket could access the offset variable at same time leading
to inconsistencies. Hence this offset increment is made atomic
using atomic increment function. Since each thread acts on
consecutive strings, the acceses can be coalesced.

Given a querry, the retrieval step can be further divided into
four stages, one to find out which buckets to search(which

buckets have 0,1 or 2-bit difference with querry), second
updating the scores for strings, third is computing exact
distance for strings which have score greater than a threshold
value and the last one to find the top k nearest strings among
them. These four steps are executed on four different kernels.

The firts step, i.e to find which buckets are at 0,1 or 2-
bit difference solely depends on querry and is a light weight
task. This could be done on cpu and hence can be considered
for cpu-gpu overlap which will be discussed later. h-bit hash
functions will have one h-bit vector which matches with it
exactly, h different vectors which match with 1-bit difference
and hC2 vectors which are 2-bit different. For doing this, n
blocks are launced for n- different hash functions. The first
thread computes the bucket number which matches exactly
for that particular block. The next h threads compute bucket
numbers which are 1-bit different from querry. The next hC2

threads compute the bucket numbers which are 2-bit different.
All these numbers are stored in the global memory and the
next kernel updates scores for all the fingerprints in these
corresponding buckets.

The next step is to update scores of all the strings in the
buckets computed in the previous kernel. Each string occurs
exactly once in a particular hash table corresponding to a
single hash function. If we try to update strings from all
hash functions simultaneously, it will lead to inconsistencies.
This is because the string could be present in selected hash
buckets of different hash functions. One simple strategy is to
update scores for each hash function one after the other. Other
strategy is to use atomic functions and update them parallelly.
If the number of hash functions used are high in number, the
first strategy will take more time. In this project, I have used
the second strategy which is working fine. The number of
blocks to be assigned to a bucket depends on the data size.
On an average the number of strings in each bucket is equal to

datasize
no.ofbuckets . From this, the number of blocks to be assigned
to each bucket is computed. Since we have stored the indices
of strings belonging to a bucket in consecutive locations in an
array, the thread accesses will be coalesced.

Once the scores have been updated, the strings which are
greater than threshold have to be shortlisted for further search.
One simple strategy to do this is to assign one string per
thread to check whether its score is above threshold and then
calculate the exact distance from the querry. But this will
lead to severe load imbalance because many threads would
just check for the condition but because the score is below
threshold will be idle. Hence a group of strings are assigned
to each thread. One way to do this is assign consecutive strings
to each thread. The other is to assign consecutive strings to
consecutive threads just like round-robin strategy. This second
method should work well because it will lead to memory
accesses which are coalesced. So, each thread checks whether
the score is above threshold and brings the corresponding
string index to shared memory of the block. The next step is to
compute the exact distance from querry which is to compare
bit by bit. One thread could do this for one string. But the
total no.of strings selected by a block could be less than the
number of threads. A better strategy is to use b threads (b
is the dimension of the vector) to compare and then do the

3

reduce operation to compute the distance. This computation
is a bottleneck and using a good strategy like this should
give better performance. For all the strings in shared memory
this computation is performed and exact distance is stored in
shared memory.

Next we need to find the global top k strings which are
close to the querry. Sorting of all these selected strings is not
necessary since the value of k is very small compared to the
data size. Hence we use a method which basically computes
the rank of the string in the array. To do this each thread
scans through the array and finds how many strings are having
distance less than it. Once the count reaches k it breaks from
the search. Since we have already stored the distance of each
string in the shared memory, we first compute k best among the
strings in shared memory. Then copy them to global memory
and compute the global rank in another kernel. Another kernel
has to be launched becaue we need synchronization among
blocks.

While finding the top k in an array stored in global memory,
each thread could start its scan from starting of the array. But
a better thing to do is each thread starts the scan from its
global id position so thread all the threads will be accessing
consecutive locations and hence the accesses will be coalesced.
In all the kernels discussed above the computation done in
kernel is used by next kernel i.e, the next will not compute it
again. Incase of multiple querries, while the gpu is computing
the nearest neighbours for a querry the cpu can be given the
light weight task as discussed earlier. The task of finding
which buckets to search i.e, buckets that are at 0,1 and 2-
bit difference from the querry can be done on cpu improving
the total execution time.

IV. EXPERIMENTS AND RESULTS

The experiments are done with 512 bit strings. The number
of hash tables considered are four. Each of the hash function
contains 4 bits and hence the hash table for each function con-
tains 16 buckets. The experiments are repeated with number of
strings varying from 50,000 to 2,50,000 in intervals of 50,000.

The results were compared with the distributed LSH al-
gorithm proposed in [2] which uses n processors for n hash
functions. Here, since I am using 4 hash functions the number
of processors used in 4. Speedup obtained are close 11 over
the sequential version while the speedup is close to 2 incase
of distributed LSH. The speedup obtained for hashing for gpu
version are close to 25 while it almost constant at 3 for the
mpi version. This might be because hashing is highly data
parallel. The mpi programs are on 4 processors (since no.of
hash functions taken are 4) where each processor builds its
own hash table and hence the speed ups are close to 3.

V. CONCLUSIONS AND FUTURE WORK

EWH algorithm is parallelised using CUDA. Different
startegies for parallelising the steps of the algorithm are
discussed. Distributed LSH algorithm proposed in [2] is im-
plementd in MPI. The results obtained are compared with
the distributed LSH algorithm. For multiple querries better
methods using cpu-gpu overlap to effectively use the resources

Figure 2. Speedup obtained for retrieval time per querry for EWH gpu version
compared against distributed LSH version

Figure 3. Hashing speedup obtained EWH gpu version compared against
distributed LSH version

are discussed. If the data size is too large that it can’t fit in
gpu memory, the possibility of using multiple gpus could be
explored in future. The performance of the algorithm using
real databases could be tested. Other LSH based algorithms
implements in gpu can be used to evaluate the efficiency of
parallelisation.

REFERENCES

1) “A Fast Approximate Nearest Neighbor Search Algo-
rithm in the Hamming Space” Mani Malek Esmaeili
and IEEE, Rabab Kreidieh Ward, Fellow, IEEE, and
Mehrdad Fatourechi, Member, IEEE.

2) “Distributed Locality Sensitivity Hashing.” Smita Wad-
hwa and Pawan Gupta. IEEE CCNC 2010 proceedings.

	I Introduction
	II Related Work
	III Methodology
	IV Experiments and Results
	V Conclusions and Future Work
	Biographies
	

