
GPU Implementation of Implicit Runge-Kutta
Methods

Navchetan Awasthi, Abhijith J
Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore, India
navchetanawasthi@gmail.com, abhijith31792@gmail.com

Abstract—Runge-Kutta methods are an important family of
implicit and explicit iterative methods used for the approximation
of solutions of ordinary differential equations. Explicit Runge-
Kutta methods are unsuitable for the solution of stiff equations
as their region of stability is small. Stiff equation is a differential
equation for which certain numerical methods for solving the
equation are numerically unstable, unless the step size is very
small. This project aims in parallelizing implicit Runge-Kutta
methods which are stable even for the stiff problems . The major
disadvantage is that Implicit Runge-Kutta methods are more
computationally expensive. We will show how to accelerate the
execution of implicit Runge-Kutta methods using GPUs.

I. INTRODUCTION

Ordinary differential equations play a major role in the
modeling of various physical, biological, ecological and other
phenomena. Among the algorithms available , the family
of Runge-Kutta methods are most widely used. Our aim is
to implement implicit Runge-Kutta(RK) methods for these
problems on GPUs. As with most numerical methods stability
is a prime concern in RK methods also. Explicit RK methods
are easier to implement but are known to be unstable for stiff
system of ODEs. Implicit RK methods are stable even for
stiff systems but are computationally much more expensive
as they involve matrix operations.

The main emphasis of this project is the acceleration
of implicit Runge-Kutta methods for heat equation. One
of the interesting property of the heat equation is that
the maximum principle which states that the maximum
value of the temperature comes either from source or from
earlier in time because heat permeates but is not created
from nothing.Another property is that even if there is a
discontinuity at an initial time t0 then the temperature
becomes smooth as soon as t > t0.This property makes for
an easy check of the correctness ofnumerical simulations. It
finds application in a lot of places like random walks and and
Financial mathematics.

In section 2 related work done is explained including the
explicit methods on GPU and their implementation. Our
methodology is being explained in section 3. Subsection 3A
explains the various mathematical equations, matrix used
for our problem, initial conditions and the Butcher tableau
with system of equations used for the calculation of slopes.
Subsection 3B explains the parallel implementation of the

problem in GPUs. The experimental setup and results are
explained in section 4. Finally section 5 will give the main
conculsions of the work.

II. RELATED WORK

The parallel implementation of implicit RK methods on
cluster of PC’s has been extensively studied([1],[2]). The
main caveats of implementing these methods lie in solving
a linear system of equations that arise during intermediate
steps. Good speed-up and scaling behavior was observed
in these cases. [2] specifically looks at a class of methods
known as Implicit-Explicit Range-Kutta(IMEXRK) methods
which solves the system by splitting it into stiff and non stiff
parts.

Murray[3] has studied the GPU acceleration of explicit
RK integrators. Speed up of 115-fold over serial CPU
implementations was reported using computationally low-
storage explicit RK integrators. This paper also discusses a
strategy to achieve load balancing between GPU threads in
case of variable step size methods where the the number of
steps that needs to be implemented by a thread is not known
before hand.

III. METHODOLOGY

Explicit RK methods have been implemented in GPU’s
[3] while implicit RK methods have been implemented in
clusters([1],[2]). A hybrid strategy involving both the host and
device has been developed to implement the time stepping
and linear algebra solver parts of the algorithm effectively.

Runge Kutta methods may be characterized by a set of
constants that is represented by the Butcher tableau which
represents the coefficients involved in the Runge Kutta method
used.

a11 . . . a1n τ1
...

. . .
...

...
an1 . . . ann τn
b1 . . . bn

A Runge-Kutta method is implicit if no permutation of
rows can reduce A to strict lower-triangular form[1]. We will

try to first decouple the computation associated with each
stage when the implicit methods are implemented in GPU’s.
The main focus will be on parallelizing the time consuming
matrix operations involved in the problem.

We have performed the iterations for multiple N (which
will determine the stiffness associated with the problem) for
a specified no of steps to take into account the effects of
synchronization and communication costs.

A. Mathematical Formalism

The system of ODE’s used for our experiment is obtained
by semi-discretization of the 1-D heat equation. This leads to
an equation of the form

dy

dt
= Ly (1)

where y is a vector of length N and L is an N × N
tridiagonal matrix that is given below.

L = −(N + 1)2

2 −1
−1 2 −1

.
−1 2 −1

−1 2

 (2)

The boundary conditions used for the problem is

y0(t) = yN+1(t) = 0.0, (3)

yi(0) = 100.0, i = 1, 2, . . . N

This is the simulation of a rod cooling down from while its
ends are maintained at a lower temperature. The solution
shows an exponential decay to zero. The solution is shown in
Fig 1

Fig. 1. Decay of the solution value at yN/2

We have used a second order Runge-Kutta method with the
following Butcher tableau,

1 0 1
−1 1 1

1
2

1
2

since the coefficient matrix is not strictly lower triangular the
slopes at all intermediate steps are not explicitly calculable.
The system of linear equations we need to solve to find the
intermediate slopes k1 and k2.(

I− a11L 0
−a21L I− a22L

)(
k1

k2

)
=

(
Ly
Ly

)
(4)

This system of equations have a hex-diagonal nature shown
in the bitmap image of the coefficient matrix of Eq(4) below.

Fig. 2. Figure showing the structure of the coefficient matrix

In out implementation we have solved this system using
Gauss-Seidel iterations.The solution is then updated using the
equation

yn+1 = yn + h(b1k1 + b2k2) (5)

Here h is the time step. The time step must be chosen in
accordance to the Courant-Friedrichs-Lewy(CFL) criteria ie. h
must be small when N is large to ensure convergence. Another
important metric that determines the accuracy of solution is
the error bound set on the Gauss-Seidel iterations. The solution
proceeds till all the points in the domain reach the value of
zero.

The algorithm is given in Fig 3

B. Parallelization of solution in GPU

We have achieved parallel implementation of the system
described above by using a two pronged approach. First,
do all intensive matrix-vector operations and linear equation
solving in parallel in the GPU. Second, use the CPU for
simple vector- vector operations (like the update step) to
avoid too many kernel launches that may slow down the
execution. Also it has been found helpful to overlap CPU and
GPU computations where ever possible. All matrix operations
are reduced to tridiagonal operations and specialized routines
were made that exploited the tridiagonal property. L is
already a tridiagonal matrix so the multiplication Ly can
be performed on the GPU by assigning each row of L to a
single Cuda thread. Each thread would then have to do only
three multiplications to come up with the result.

a) Solving the hex-diagonal system: The system of linear
equations given by Eq(4) is solved by noting that the block
matrix form already has a triangular structure(this is not true

Fig. 3. Flowchart of RK2 Method to solve semi-discretized heat equation

for the actual matrix, so a direct triangular solve cannot be
applied). So this 2N×2N system can be decomposed trivially
to two N×N systems given below. The first one can be solved
to find k1 which can be then substituted into the second system
to find k2.

(I− a11L)k1 = Ly (6)

(I− a22L)k2 = Ly + a21Lk1 (7)

These are tridiagonal systems that can be solves using
Gauss-Seidel method using Red-Black ordering scheme.

b) Synchronization strategies for red black ordering:
The red-black ordering is a fairly straight forward strategy
that ensures that the faster convergence property of Gauss
Seidel iterations are preserved even when implemented in
parallel. In Cuda since threads can be directly indexed, the
Red black ordering involves computing first with threads with
even index, updating the values(a barrier must be present at
this stage), and then computing the threads with odd index.
This is easily implementable in a single block as there exists
straight forward functions in Cuda that help in synchronization
of threads within a block. But this limits the problem size to

1024 spatial points as it is the maximum number of threads
that can be held by a block. So a more complicated scheme has
to be developed that can synchronize the threads in all blocks
and also calculate the global error value by reduction across
all blocks(this error value is needed to terminate the Gauss-
Seidel iterations). This is done by multiple kernel launches.
In the single block scheme the entire iteration is done on the
GPU. But in the multi-block scheme a single kernel launch
is done for a single iteration and the error is then written
into a global variable. The error vector is then reduced using
another kernel launch and the final error comparison with the
threshold(emax) is then done on the CPU, which then decides
whether to terminate the iteration or proceed.

IV. EXPERIMENTS AND RESULTS

The correctness of the simulations were verified by running
the simulations till convergence ie. when all points reach
a value of zero (coressponding to equilibrium temperature).
Three different codes were made and compared.

1 Serial
2 Parallel with all threads in a single block
3 Parallel with multiple blocks (32 unless otherwise speci-

fied) with synchronization achieved using multiple kernel
launches

A. Experiment Setup

All codes were ran on the Fermi cluster at SERC. The CPU
and GPU specifications are given below

• CPU : Intel(R) Xeon(R) CPU W3550 processor operating
at 3.07 Ghz with 16Gb RAM

• GPU : Nvidia C2070 GPGPU
The experiments were done to study the variation of execu-

tion time with the size of the problem(N), the maximum error
threshold(emax), and the number of blocks

B. Results

The execution time comparisons of the three schemes for
varying problem size(N) mentioned above show a familiar
trend. Parallelization of implicit RK method for small problem
sizes is over kill as synchronization costs and a large number
of kernel launches slow down the execution. The point to note
is that the number of kernel launches remain constant even
when the problem size increases. So while the timings for the
serial execution scale as O(N3) the timings of the parallel
executions scale much slower. The single block case can be
run only for up to 1024 threads and was found to be superior to
the multi-block case for smaller sizes. This is expected because
the multi block case was found to have at-least three orders of
magnitude more number of kernel launches when compared to
the single block case. But this effect is overshadowed while the
problem size grows up. The multi block execution comes out
as the clear winner when it comes to handling large problem
sizes.

The speed up variation with problem size is shown below.
We can see that speed-up more than doubles when N (the
number of threads) goes up. This indicates an increase in

Fig. 4. log-log plot showing the variation of execution time with problem
size for the three different schemes.

efficiency of the parallel implementation, again pointing to
the fact that parallelization is an effective strategy for large
problem sizes.

Fig. 5. Speed up of the two parallel schemes.

The variation in the execution time with emax and number
of blocks are shown in Fig 6 and Fig 7. It is seen that
decreasing the error threshold below a certain limit doesn’t
affect the timings much. The execution times don’t show much
variation when the number of blocks are changed. This is
because the number of kernel launches are independent of
the number of blocks alloted. Even though the error reduction
has to happen across the blocks (and hence depends on the
number of blocks) its effect on execution time is not very
high as the number of blocks is very less compared to the
number of threads. Both the graphs shown below show the
behavior of N = 512 case.

C. Comparison with related work

The maximum speed-up we obtained during our exper-
iments was 43.53 using the multiblock scheme for N =

Fig. 6. Variation in execution time with emax.

Fig. 7. Variation in execution time with number of blocks.

212(which is also the number of threads). Although the same
combination (implicit/GPU) is not found in literature it would
still be insightful to compare our results with some other
papers.

Mantas et al. [2] (implicit/cluster) has obtained a maximum
speed-up of 13.47 for N = 4000 by running on 15 processors
using IMEXRK methods for simulating Boltzmann equations
for rarefied gas.

Murray[3](explicit/GPU) reports a maximum speed up of
115.4 for 219 threads using DOPRI5 (which is an explicit
method) for single precision arithmatic for simulating the
Loretnz 96 system of equations on Nvidia Tesla C1060 GPU.

V. CONCLUSIONS

It is seen from the above results that the implicit Runge-
Kutta methods are ripe for parallelization using GPGPU’s and
there is much improvement in terms of execution time to be
gained in comparison to the serial execution of the same. It
was seen that the parallel strategies consistently do better when
dealing with large problem sizes and show excellent scaling
behavior in that respect(Fig 4, 5).

This topic may be further investigated in the following
lines. Direct methods can be used instead of the Gauss-Seidel
iterations and their behavior once parallelized can be studied.
Also Runge-Kutta methods with different Butcher tableaus and
orders can also be parallelized and their behaviors studied
so as to reach a consolidated idea of how implicit Runge-
Kutta methods behave in general when subjected to fine-grain
parallelism using GPGPUs.

VI. REFERENCES

• [1] Karakashian, O. A., & Rust, W. (1988). On the
parallel implementation of implicit Runge-Kutta methods.
SIAM journal on scientific and statistical computing,
9(6), 1085-1090.

• [2] Mantas, J. M., Gonzlez, P., & Carrillo, J. A. (2005).
Parallelization of implicit-explicit runge-kutta methods
for cluster of PCs. In Euro-Par 2005 Parallel Processing
(pp. 815-825). Springer Berlin Heidelberg.

• [3]Murray, L. (2012). GPU acceleration of Runge-Kutta
integrators. Parallel and Distributed Systems, IEEE Trans-
actions on, 23(1), 94-101.

• [4]Adams, Loyce, and J. Ortega. ”A multi-color SOR
method for parallel computation.” ICPP. 1982.

• [5]Nvidia, C. U. D. A. ”Programming guide.” (2008).
• [6]Butcher, John. ”Runge-Kutta methods.” Scholarpedia

2.9 (2007): 3147.

