
Parallel Implementation of Shared Nearest Neighbor
Clustering Algorithm

Nikhilesh Meghwal, Suguna M
Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore, India
nikhileshmeghwal42@gmail.com, sugu2803@gmail.com

Abstract—Shared Nearest Neighbor (SNN) is a density-based
algorithm which is efficient in clustering of very large data. But
the quadratic time-complexity of the algorithm and the large
memory space requirement to accommodate the data on a single
machine demands for a parallel implementation of the algorithm.
In this project we have implemented two different parallelized
approaches of SNN algorithm, one on distributed systems using
MPI and other is on GPU using CUDA. We will show that we
can achieve significant speedups for MPI and more than 30X
of speedup on GPU compared with serial version of SNN. also
discuss about the hybrid of CPU and GPU implementation of
SNN algorithm for large data set.

I. INTRODUCTION

With the advent of the big data era, it becomes very crucial
to identify and group together similar objects to represent
information in a compact form. This leads us to cluster the
data in some sense, with an aim to group together similar data
instances and discover new patterns and hidden relationships
among them. In fact, clustering has been found useful in many
different applications such as pattern recognition, decision
making, image segmentation and document retrieval. As a
result, several data clustering algorithms have been proposed
in many different contexts, eg; based on proximity to centers
(like k-means), connectivity-based(hierarchical clustering),
distribution based (Gaussian mixture models) and density
based (DBSCAN). Shared Nearest Neighbor(SNN) [1] is
a density-based clustering algorithm which identifies the
clusters based on the number of densely connected neighbors.
For example, the consider the data shown in fig 1 [2]. The
t4.8k Chameleon data has dense and complex shaped clusters.
The quadratic time-complexity of the algorithm and the large
memory space requirement to accommodate the data on a
single machine demands for a parallel implementation of the
algorithm.This problem motivated us to proceed with this
project. In this project we have implemented two different
parallelization approaches of SNN algorithm.

Section III-B deals with the parallel implementation on dis-
tributed systems using MPI. Section III-C deals with Parallel
Implementation on GPU using CUDA.

Fig. 1. Chameleon dataset: a challenging example for clustering

II. RELATED WORK

The SNN algorithm has been discussed in detail in [1] and
[3]. The notion of similarity in the SNN algorithm is based
on the number of neighbors that two points share. That is, the
similarity between two points is confirmed by their common
(shared) near neighbors. If point A is close to point B and if
they are both close to a set of points C then we can say that A
and B are close with greater confidence since their similarity
is confirmed by the points in set C. This idea of shared nearest
neighbor was first introduced by [4]. A similar idea was later
presented in [5].Another popular density based algorithm is
the G-DBSCAN [6] which is divided into two stages: graph
construction and identification of clusters through breadth first
search. The parallelization of both stages on GPU achieved
excellent speed-ups (82x for graph construction and 21x for
the clusters identification).

The first step of the SNN algorithm involves finding of
the k-Nearest neighbors. In [7] a brute-force method using
GPU programming (through NVIDIA CUDA) has been imple-
mented to find k-NN and compared its performance to several
CPU-based implementations. The brute-force method has two
steps: the distance computation and the sorting. It is showed
that the use of the NVIDIA CUDA API accelerates the kNN
search by up to a factor of 400 compared to a brute force
CPU-based implementation. In [8] the author proposes CUDA



implementations of pairwise distances. The number of bank
conflicts in the shared memory access are reduced by a factor
of 16 and dramatically speed up the calculation. This method
achieves a 20 to 44 times speedup than a CPU implementation.

III. METHODOLOGY

A. SNN algorithm

Let us assume the input data is an n×m matrix, where n is
the number of data points and m is the number of dimensions.
Parameters:
k= number of nearest neighbor to be identified for each point.
Eps = the density threshold that establish the minimum
number of neighbors two points should share to be considered
close to each other.
MinPts = the minimum density that a point should have to be
considered a core point. Clusters are defined using the found
core points.

1) Create a distance matrix whose (i, j)th element is the
distance between nodes i and j.

2) Find the first k minimum distances along each row of this
distance matrix to get the k-Nearest neighbor to each data
point.

3) Establish the SNN density of each point. The SNN
density is given by the number of nearest neighbors that
share Eps or more neighbors.

4) Identify the core points of the data set. Each point that has
a SNN density greater or equal to MinPts is considered
a core point.

5) Build clusters from core points. Two core points are
allocated to the same cluster if they share Eps or more
neighbors with each other.

6) Assign the remaining points to clusters. All non-core and
non-noise points are assigned to the nearest cluster.

We can see that the time complexity of the above algorithm
is O(n2) but the steps are highly parallelizable.

B. MPI implementation

The data (n × m, n points and m dimensions) is divided
among p processors i.e each processors will get n

p number
of data points. Each processors has to communicate its data
with other processors to compute its part of distance matrix (
n
p × n ). KNN matrix (np × k) is computed from the distance
matrix to get k-nearest neighbors. This requires sorting of the
distance matrix up to first k elements. We use both insertion
and selection sort but they give same performance, O(n× k)
for the first k-nearest neighbors. KNN has to be gathered
by all the processors to compute the SNN matrix n

p × n
i.e. similarity between for each two points. Core points are
recognized by calculating SNN densities of the points. Root
processor will cluster the core points and this information is
broadcasted. The final step of assigning the non-core and non-
noise points are done by each processor for its respective data
points. In this implementation even though large data has to
be communicated among the processors, the computation time

is greater than communication time and hence we get good
speedups.

C. CUDA implementation

More than 80% of the time in the serial code is taken in
Computing KNN and SNN matrices. These steps are highly
parallelized in CUDA if we have entire data on the GPU. This
is possible for smaller data set. The KNN algorithm in [8]
works for datasets having dimensions in multiples of 16. This
CUDA code uses one thread for each entry for KNN matrix.
Thus there are n2 threads. The threads are organized into
16×16 two-dimensional blocks, and the blocks are organized
into an n

16 ×
n
16 two-dimensional grid. The 256 threads in

each block first load the two 16 × 16 sub-matrices of Data
matrix into shared memory Xs and Y s. After the threads
are synchronized, each of them calculates and accumulates
its own partial Euclidean distance in the variable sum. Then
the threads need to be synchronized again before proceeding
to the next pair of 16 by 16 sub-matrices. Hence to compute
one element of the KNN matrix, each block has to load the
sub-matrices m

16 times. A subtle yet very important point in the
code is that the array Xs in the shared memory is transpose
of its image in the matrix KNN. Through the transpose of
Xs, they reduce the number of bank conflicts in the shared
memory access by a factor of 16 and dramatically speed up
the calculation.
We have modified this algorithm for any dimension. First,
multiple of 16 out of m dimensions are loaded as men-
tioned above and in the last iteration, m −

⌊m
16

⌋
values of

the KNN row are loaded. Hence in the last iterations only(
m−

⌊m
16

⌋)
×
(
m−

⌊m
16

⌋)
number of threads will execute

the remaining partial Euclidean distance.
Sorting in CUDA: Each thread sorts each row of distance
matrix and return K-nearest neighbors indices. Hence we
require n threads for n data points. Insertion and Selection
sort gives the same performance having complexity O(n×k).
SNN matrix computation in CUDA: Each thread computes one
row of SNN matrix i.e each thread is assigned to one point
which computes the number of shared nearest neighbors with
all other points.
Remaining steps of the SNN algorithm is executed in the CPU.

IV. EXPERIMENTS AND RESULTS

The experiment done on the Chameleon Data sets
[2] Experiments are done by setting different values for
hyperparameters k, Eps, MinPts. The results are shown in
Table IV. The codes for MPI and CUDA implementation are
run on the datasets. Below are the results of the experiment on
the chameleon data set t4.8k having the size (n = 8000, m = 2).

Fig 2 and 3 are the plots of execution time and speedup
vs number of processors for the MPI implementation. It is
observed that speedup is significantly good.
The execution time taken by the CUDA imlpementation on
the same dataset is 8.9 seconds, thus CUDA implementation
has speedup of more than 30x as compared to serial code.



K Epsilon MinPoint # Core Points #clusters
15 7 12 7679 450
20 10 15 7687 362
20 15 17 253 32
20 15 19 23 7

TABLE I
RESULTS OF SNN ALGORITHM ON CHAMELEON DATASET T4.8K

Processors Time Speedup
1 283.25 1
2 115.37 2.45
4 66.77 4.44
8 42.9 6.6
10 33.16 8.54
12 30.15 9.39
16 26.69 10.6
20 23.06 12.29
32 21.56 13.13

TABLE II
EXECUTION TIME AND SPEEDUPS OF MPI IMPLEMENTATION

Fig. 2. Computation time of MPI implementation with respect to different
number of processors used

Fig. 3. Speedup of MPI implementation with respect to different number of
processors used

Fig. 4. Comparison of execution times between MPI and CUDA implemen-
tation

V. CONCLUSIONS AND FUTURE WORK

A. Conclusion

The parallel version of SNN algorithm is implemented in
MPI. For small data set MPI gives very good Speedup. Various
steps of SNN algorithm implementation in CUDA is discussed.
CUDA code performs more than 30x speedup compared to the
serial code.Thus we have shown that SNN algorithm can be
highly parallelized with very good speedups. But if the data
size is too large then it is not possible to compute KNN or
SNN on single GPU since it has memory constraints.

B. Future Work

The Application of SNN is in Spatial data which is very
huge, we need to use multiple GPU’s. For large data set we
would suggest Hybrid of CPU and GPU implementation for
SNN algorithm.
Also note that both KNN and SNN matrices are symmetric
and thus we can exploit this property to reduce the number of
computations as well as the memory usage of GPU. However,
since now we have to deal with triangular matrices, there could
be load imbalance problem.
The future work of this project can be extended to find better
implementation for the above two problems.

ACKNOWLEDGMENT

We would like to thank Prof. Sathish Vadhiyar for giving
us this opportunity to explore and learn more about parallel
programming concepts and apply them to a practical problem.
We are also grateful to the SERC department for providing
the system facilities.

REFERENCES

[1] L. Ertoz, M. Steinbach, and V. Kumar, “A new shared nearest neighbor
clustering algorithm and its applications,” in Workshop on Clustering
High Dimensional Data and its Applications at 2nd SIAM International
Conference on Data Mining, 2002, pp. 105–115.

[2] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical clus-
tering using dynamic modeling,” Computer, vol. 32, no. 8, pp. 68–75,
1999.

[3] F. Mendes, M. Santos, and J. Moura-Pires, “Dynamic analytics for spatial
data with an incremental clustering approach,” in Data Mining Workshops
(ICDMW), 2013 IEEE 13th International Conference on, Dec 2013, pp.
552–559.

[4] R. A. Jarvis and E. A. Patrick, “Clustering using a similarity measure
based on shared near neighbors,” Computers, IEEE Transactions on, vol.
100, no. 11, pp. 1025–1034, 1973.



[5] S. Guha, R. Rastogi, and K. Shim, “Rock: A robust clustering algorithm
for categorical attributes,” in Data Engineering, 1999. Proceedings., 15th
International Conference on. IEEE, 1999, pp. 512–521.

[6] G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira, and
L. Rocha, “G-dbscan: A gpu accelerated algorithm for density-based
clustering,” Procedia Computer Science, vol. 18, pp. 369–378, 2013.

[7] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using gpu,” in Computer Vision and Pattern Recognition Workshops,
2008. CVPRW’08. IEEE Computer Society Conference on. IEEE, 2008,
pp. 1–6.

[8] D. L. M. O. Darjen Chang, Nathaniel A. Jones, “Compute pairwise
euclidean distances of data points with gpus,” in Proceedings of the
IASTED International Symposium Computational Biology and Bioinfor-
matics, 2008, pp. 278–283.


