
Hybrid Implementation of Alternative Least Square
Algorithm

Pragati Chopade, Manjunath Hegde
Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore, India
pragati.chopade06@gmail.com
serchegde@serc.ssl.iisc.ernet.in

Abstract—This article mainly discusses about the parallelizing
the Alternative Least Squares Approach. Parallelization is done
using CPU and GPU i,e the hybrid version. This improves the
speedups as the number of processors increase. This technique
is used in Collaborative Filtering approach in recommender
systems. Datasets used are Movielens datasets with 100K and
1M non-zero entries. The significant improvements in speedup
in Hybrid version over the MPI version is shown further.

I. INTRODUCTION:

Recommender systems is a family of methods that enable
filtering through large observation and information space in
order to provide suggestions. A common goal of recommender
systems is helping customers sort through offered products to
find the ones they will enjoy. They do so through personalized
recommendations. We will use two matrices one for users and
one for movie. A movie profile could include attributes regard-
ing its genre, the participating actors, its box office popularity,
etc. User profiles might include demographic information or
answers to a suitable questionnaire. The resulting profiles
allow programs to associate users with matching products.

Collaborative Filtering(CF) is a subset of algorithms that
exploit other users and items along with their ratings(selection,
purchase information could be also used) and target user
history to recommend an item that target user does not have
ratings for. Fundamental assumption behind this approach is
that other users preference over the items could be used
recommending an item to the user who did not see the item
or purchase before.

We have users u for items i matrix as in the following:
Qui=r if user u rate item i

0 if user u did not rate item i

We first estimate factor movie matrix(Y) using factor user
matrix(X) and estimate user matrix using movie matrix.
After enough number of iterations, we are aiming to reach a
convergence point where either the matrices X and Y are no
longer changing or the change is quite small. We have neither
user full data nor full items data, this is also why we are
trying to build the recommendation engine in the first place.
Therefore, we may want to penalize the movies that do not
have ratings in the update rule. By doing so, we will depend
on only the movies that have ratings from the users and do not

make any assumption around the movies that are not rated in
the recommendation. Let’s call this weight matrix wui as such:

W ui=0 if Qui = 0
1 otherwise

Then, cost functions that we are trying to minimize is in
the following:

J(Xu) = (QuXuY )Wu(QuXuY )T +Xu(Xu)T

J(Y i) = (QiXYi)Wi(QiXYi)T +Yi(Yi)T

Solutions for factor vectors are given as follows:
Xu= (Y Wu(Y)T +I)−1Y WuQu
Y i= ((XT )WiX+I)−1XT WiQi

With these final factor matrices, user will be recommending
the movies which he might be interested in. If we want to
have the both content and collaborative filtering’s good worlds,
then we could adopt a hybrid approach i.e Cascade (Content
+ Collaborative Filtering) :After content based filtering, we
also apply collaborative filtering to refine the recommendations
even more.

II. DATASETS USED:

1. MovieLens Dataset 1: 100k ratings from 1000 users for
1700 movies
2. Movielens dataset 2: 100 million ratings from 6000 users
for 4000 movies

The above datasets are sparse matrices, so we are using an
iterative method here.

III. RELATED PAPERS AND LIMITATIONS:

A. 1.Large scale Parallel Collaborative Filtering for the Net-
flix Prize(Yunhong Zhou,Dennis Wilkinson,Robert Schreiber
and Rong Pan:2008)

In this paper, they have described Alternating-Least-Squares
with Weighted--Regularization(ALS-WR), a parallel algorithm
that we designed for the Netflix Prize, a large-scale collabora-
tive filtering challenge. They use parallel Matlab on a Linux
cluster as the experimental platform. They show empirically
that the performance of ALS-WR monotonically increases



with both the number of features and the number of ALS
iterations.

B. 2.Alternating Least Squares for Low-Rank Matrix Recon-
struction(Dave Zachariah,Martin Sundin,Magnus Jansson and
Saikat Chatterjee:2012)

For construction of low rank matrices from undersampled
measurements, they develop an iterative algorithm based on
least squares estimation. While the algorithm can be used for
any low-rank matrix, it is also capable of exploiting a-priori
knowledge of matrix structure. In particular, they consider
linearly structured matrices, such as Hankel and Toeplitz, as
well as positive semidefinite matrices. The performance of the
algorithm, referred to as alternating least-squares (ALS), is
evaluated by simulations and compared to the Cramer-Rao
bounds.

IV. PARALLEL ALGORITHM FOR ALTERNATING LEAST
SQUARE ALS USING MPI:

1) The users items matrix Q is stored in binary format
matrix W. It is obtained by placing 1 where the rating is present
and 0 where the rating is absent.

2)The users-items matrix is stored in CSR format being a
very sparse matrix. This matrix is stored at every processor.

3)The Q matrix is factored to get X and Y. These two de-
compositions are randomly initiated at every processor where
X is users matrix and Y is items matrix.

4) Each processor is assigned some fixed no of users ie.
rows of X matrix and some fixed no of items i.e columns of
Y matrix. Then each processor will compute user rating for its
assigned users using the initial Y(items matrix) matrix using
the following equation,

Xu= (Y Wu(Y)T +I)−1Y WuQu
and it will also simultaneously compute item rating for

its assigned items using initial X(users matrix)matrix using
following equation,

Y i= ((XT )WiX+I)−1XT WiQi

These values are obtained by giving the above equations to
the gaussian solver function implemented in our code. Also
in each iteration, the cost functions for xu and yi which we
are trying to minimize are obtained using following equations,

J(Xu) = (QuXuY )Wu(QuXuY )T +Xu(Xu)T

J(Y i) = (QiXYi)Wi(QiXYi)T +Yi(Yi)T

These values are updated at all processors using MPI ALL
GATHER.

5) In the next iteration, the X and Y matrices used will
be the updated once. And the iterations will stop when the
minimum values of both cost functions will be obtained.

6) Thus at the end we will get updated X and Y matrices
at every processor and these will be sent to the root processor
which will then compute X*Y and this will constitute updated
matrix Q. Similarly this Q will be converted into binary matrix
W . And the error will be computed using entries of W and
W.

V. HYBRID(GPU+CPU) ALGORITHM FOR
ALTERNATING LEAST SQUARES:

The algorithm involves many matrix and vector operations.
This motivates to use GPUs to achieve fine grain parallelism.
The construction of the CSR format is same as mpi. All the
three vectors namely row, column and value are stored in each
process. This is required as the construction of a vector for a
item or user needs CSR vectors.

Gauss Jordan Iteration method: The time consuming
step in the updating user and item matrix is the calculation
of inverse XT X=A and YY T = B.

The usual matrix inverse calculation using cofactors and
determinant may not work if the matrix is singular. Also,the
time taken for calculating matrix inverse is very high O(n4).
On the other hand Gauss Jordan iterative method takes less
O(n3) time and it can be parallelizable.

Method of simultaneous updates of user and item matrix
was not considered as it requires more memory. The simultane-
ous update requires multiple temporary matrices to be kept in
memory. It also results in idle waiting time as the computation
of A and B inverse takes more time. To reduce this idle waiting
time, calculation of inverse for XTX and YY T are done one
after the other. While inverse of Y YT is being calculated,the
rows of user matrix are updated with calculated XTX inverse.
Once the inverse of the matrix Y YT is computed,the columns
of item matrix are updated.

The updating the item and user matrix requires matrix
vector multiplication. The rows and columns of user and item
matrix respectively are divided across processes. Each process
launches kernel and loads data that is allocated to it. The
number of threads and block size are decided based on the
size of the matrix and vector. In our implementation, the block
size is multiple of 32 or close to that in order to increase the
speedup.

GPU is also used to compute Y YT and XTX . The concepts
of warp is considered here also to achieve better result. Each
process will handle few rows of user matrix and columns of
item matrix.

Computation involves regularization of values Xu(Xu)T

where X is a user matrix and is a learning factor)in order
to avoid the overfitting the data. This task is done in CPU
while GPU is updating the user or item matrix. Load balancing
between CPU and GPU is achieved to certain extent by doing
this.

Allgather is used to communicate the user and item matri-
ces. Since each process calculates only part of the matrix,after
every iteration allgather is used to get the latest values of user
and item matrices. This adds the MPIBarrier and hence some
synchronisation time at the end of each iteration. The stopping
criteria for the algorithm is the cost function value. When the
change in the user and item matrix between two iterations is
less than the threshold then we stop.



VI. EXPERIMENTS AND OBSERVATIONS:
Project has MPI and hybrid modules. Experiments are

conducted on different datasets with different number of
processors. The serial, MPI and Cuda implementations are
compared for each dataset.

MovieLens data set has the movie ratings from different
users. Experiments are conducted with datasets containing
different number of users and movies. First dataset chosen has
ratings from 1000 users for 1700 movies. It has total of 100k
ratings. Second data set has ratings for 4000 movies given by
6000 people. Each line in the file has a user id, movie id and a
value between 1-5 which is the rating from the user. Columns
of the dataset is sorted according to userid and movie id.

The execution time for each dataset with serial, mpi and
hybrid implementation are given in the below section.

The high parallelism using GPUs has reduce the total
execution time of the algorithm. The hybrid approach works
better than mpi as expected. The speedups obtained by parallel
algorithms scales with number of processes. The one more
observation regarding matrix factorisation is that the rank of
the matrix to be considered affects accuracy and the run time
of the algorithm. Since the rank of the ratings matrix unknown,
dimensionality of user and item matrix will be unknown. So
try and error method is adapted to find the approximate rank
of the matrix. This algorithm takes more iterations to converge
when the initialisation of matrix is not close to actual solution.

VII. RESULTS:
Execution time for Sequential (number of process = 1), MPI

and hybrid method are given in the below tables. Execution
time is the average of the time taken by all the processes.
Number of iterations are kept same in all the implementations.
Speedup is calculated as the time taken by one process to time
taken by n processes. In case of hybrid speedup is with respect
to time taken by 1 CPU + 1 GPU to n processes and m GPUs
used.

Jumpshot is used to analyse the MPI implementation of
the project. The collective communication (mpi allgather) and
mpi barrier were the communication overhead. The speedup
of the program was affected by mpi barrier as it is required
after each iteration, In case of hybrid implementation, the
nvvc profiler is used to analyse execution of the program.
The computation to memcpy ration was more than 90 percent.
The percentage of time when memcpy is being performed in
parallel with compute was low. This is because of the nature
of the computation requires all the data in the beginning.

A. Results for MPI:
VIII. EXECUTION TIMES:

For a Movielens dataset(100K)
Number of Processors Execution Time
1 16.1981
2 9.8605
4 5.5415
8 3.0611

For a Movielens dataset(1M)
Number of Processors Execution Time
1 73.2076
2 42.5024
4 24.2326
8 13.1413

IX. SPEED-UPS:

For a Movielens dataset(100K)
Number of Processors Speedup
1 1
2 1.64
4 2.92
8 5.29

For a Movielens dataset(1M)
Number of Processors Speedup
1 1
2 1.7225
4 3.0235
8 6.01

Fig. 1. Execution Times for MPI on dataset(1M)

Fig. 2. Execution Times for HYBRID on dataset(1M)



A. Results for Hybrid(CPU + GPU):
X. EXECUTION TIMES:

For a Movielens dataset(100K)
Number of Processors Execution Times
1 9.6894
2 6.4391
4 3.2124
8 1.9653

For a Movielens dataset(1M)
Number of Processors Execution Times
1 28.4356
2 16.6721
4 9.4853
8 5.0263

XI. SPEED-UPS:
For a Movielens dataset(100K)

Number of Processors Speedup
1 1
2 1.50
4 3.01
8 4.93

For a Movielens dataset(1M)
Number of Processors Speedup
1 1
2 1.7273
4 3.1245
8 5.7223

Fig. 3. Comaparison of Execution Times for both MPI and Hybrid on
dataset(1M)

XII. CONCLUSIONS:

One of the primary observation is the scalability of the
algorithm. The execution time reduces as and when the number
of processes or gpu cores are increased. So this algorithm can
be implemented in large distributed systems like hadoop. The
speedup of the algorithm is also constrained by the fact that
Gauss Jordan iterative method computes row reduction in a
column wise manner i.e each element of the row is computed
in parallel, but not across columns.

XIII. FUTURE WORK:
As discussed earlier, the finding rank of the matrix is done

in try and error method. Methods like SVD decomposition can
be used on the dataset to find the rank of the rating matrix.
Better matrix initialisation techniques can be implemented so
that the number of iterations required for convergence is less.

XIV. REFERENCES:
1. Large-scale Parallel Collaborative Filtering for the

Netflix Prize (Yunhong Zhou,Dennis Wilkinson,Robert
Schreiber and Rong Pan:2008)

2. Alternating Least-Squares for Low-Rank Matrix
Reconstruction (Dave Zachariah,Martin Sundin,Magnus
Jansson and Saikat Chatterjee:2012)

3. Data sets from Movie lens
(http://grouplens.org/datasets/movielens/)


