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Abstract—Large-scale HPC applications are highly data-
intensive with significant times spent in I/O operations. Many
large-scale scientific applications do not adequately optimize the
I/O operations, leading to overall poor performance. In this
work, we have developed two main strategies for providing fast
I/O throughput for an important climate modeling application,
namely, Regional Ocean Modeling System (ROMS) that uses
NetCDF for I/O operations. The strategies include load balancing
the I/O operations and selective writing of data. We have also
implemented file striping to improve I/O performance. Our
experiments with up to 1440 processor cores and 5 days of
simulations showed that our load balancing strategy resulted
in about 27% decrease in execution times over the default
executions, our selective writing strategy resulted in a further
decrease of about 30% and the optimized file striping resulted
in a further decrease of about 12% in execution times. All the
strategies combined together improved the overall performance
of the application by about 70%.

Index Terms—Parallel I/O, ROMS climate model, Collective
I/O, Lustre striping, netCDF.

I. INTRODUCTION

ROMS [1] is an ocean model widely used by the scientific
community for a wide range of climate applications. It can
work standalone as well as it can be coupled to atmospheric
and/or wave models. It is built based on the Earth System
Modeling Framework (ESMF) [2] which provides high per-
formance and flexibility for coupling climate and related other
scientific applications. The format of the input and output data
of the model are Network Common Data Form (NetCDF) [3]
which helps to interchange the data in a user-friendly way.

The ROMS model equations are discretized both in hori-
zontal and vertical directions. It can run serially as well as in
parallel using OpenMP and MPI. It has the ability to mask
the land points which is done while preparing the input file.
We have used MPI for all our experiments. It also supports
nested grids to define fine and coarse grids at the same time. In
distributed-memory, the I/O can be done serially on the master
process or in parallel by all the processes. The parallel I/O
requires the NETCDF-4 parallel version which uses parallel
HDF-5 library. The HDF-5 library internally calls MPI library
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Fig. 1: Parallel I/O Framework in ROMS

functions to interact with the parallel Lustre file system. The
I/O stack in ROMS is shown in Figure 1.

The ROMS model reads the input data from NetCDF data
files, performs computations and then writes different types of
output data files including quick, average, history, diagnostic,
and restart files depending on user requirements. The quick
output files store a snapshot of the present step into the file.
The history files are also snapshots but the writes of the history
files occur at a higher precision compared to quick files. The
average files store the temporal average records over a period
of steps as specified by the user. The restart files store the
data that is required to restart the model from some specific
point of time. The diagnostic files are saved for analyzing
various aspects of the ROMS model. The parameters to write
and the frequency of writing each such file can be set during
execution. The reading of input data takes about 2-3% of the
total execution time whereas the writing of output data varies
from 50 to 90% of the total execution time depending on the
number of variables written, number of output types, their
frequencies and number of processes used. Hence, our work
is primarily focused on writing the output files.

In this paper, we have performed detailed analyses of the
I/O times in the ROMS model and have developed different
techniques to improve the performance of the application with
the I/O. Different types of analysis like scalability studies, load
imbalance studies, bottleneck function studies are performed



on the ROMS model to determine the I/O bottlenecks. Dif-
ferent performance techniques are proposed for the different
sources of bottlenecks.

The primary objective of this work is to minimize the large
I/O times in the ROMs and in general climate models, where
the I/O consumes 70% of the total execution times. Towards
this, we have developed and explored two main strategies.
We have proposed a method for reduction in load imbalance
in the write times. Our strategy has resulted in at least 27%
reduction in the overall execution time for 1440 cores. We also
observed that some of the high-dimensional data in ROMS
are slowly varying across time steps. We have proposed a
second strategy that selective writes only some data in a time
step within the constraints of acceptable accuracy loss. This
strategy gave around a 52% reduction in I/O write time and a
31.6% reduction in the overall execution time for 1440 cores.
We also explored different configurations for striping Lustre
data. The optimized Lustre striping improved the I/O write
performance by another 41% in the ROMS model. All the
strategies combined together improved the parallel NetCDF
performance by about 70%. Thus, significant improvements
are achieved in the Parallel I/O performance as well as in
the overall performance of the ROMS model using our I/O
improvement strategies.

The paper is organized as follows. Section II present re-
lated work in the area of I/O optimizations for large-scale
applications. Section III gives background on the I/O in the
ROMS model, and the model setup used for this work. Section
IV gives detailed analysis on the scalability of the ROMS
model with I/O and profiles the I/O bottlenecks in the model.
Sections V, VI and VII explain our optimization strategies
related to load balancing, selective writing and Lustre striping,
respectively. These sections also present experiments and
results related to performance improvement obtained due to
the strategies. Section VIII gives conclusions and future work.

II. RELATED WORK

Liu et al. [4] have implemented implemented I/O backends
in GEOS, based on PnetCDF and Adaptable IO System
(ADIOS) for alternative I/O solutions to the performance
issues in large scale applications. Adaptable IO System is quite
flexible in terms of I/O routine selection. The existing im-
plementation of the Goddard Earth Observing System Model
(GEOS) [5] collects data from multiple variables with one or
more planes and then writes them to a bundle file. The data of
each plane is collected by a plane root process. Then, the data
is sent to the bundle root from the different plane roots. For
different planes and bundles, different processes are selected
so that they can work in parallel. However, this approach does
not scale well due to resource contention, memory overhead
and network bandwidth saturation.

ADIOS by Lofstead et al. [6] performs asynchronous I/O
and offers multiple customizable I/O mechanisms. ADIOS can
write data from multiple bundles in the same file in parallel.
The data is stored in buffer memory and written to disk if
the buffer is full. This helps to reduce the total number of

disk access. Also, there is no inter-process communication
overhead. For improving the read performance, Tang et al.
[7] proposed methods to develop an online analyzer with low
computational and low memory overhead maintaining high
accuracy. The main objective is to detect patterns in reading
and use these patterns to reduce file read times. The work
supports both structured and unstructured reading patterns. The
rule-based model performs access pattern analysis during run-
time and utilizes the pattern detected to perform prefetching
using prefetch cache memory.

Rew et al. [8] proposed NetCDF-4 [9] that combines the
benefits of NetCDF, which provides an easy user interface for
analysis and visualization of array-oriented scientific data with
the HDF5 library, which supports irregular data, big datasets
and parallel I/O. In the rest of this paper, parallel NetCDF
refers to the NetCDF-4 parallel library. Optimization tech-
niques like data buffering [10], auto-tuning [11], combining
multiple I/O operations to reduce disk access [12], sub-filing
[13], topology-aware I/O [14], data staging [14], data sieving
and collective I/O [15] have been explored in previous works.
Performance characterization of HPC systems is performed
on various aspects including inter-process communication,
interconnect technologies, parallel file systems, reading pat-
terns, etc. Different I/O characterization tools including Dar-
shan [16], output bottleneck characterization [17], continuous
characterization tools [18] have been developed. Our work
proposes to employ some of these techniques along with
domain-specific I/O optimization strategy for improvement of
I/O performance in the ROMS model.

III. BACKGROUND

A. I/O Libraries in the ROMS Model

NetCDF [3] is a machine-independent I/O library that is
useful to store and access high dimensional scientific data.
It stores the metadata making it easy to share. It can scale
for large datasets and we can read a subset of the whole data
efficiently. Moreover, it provides diskless support by writing it
to disk optionally and in-memory support. Multiple parameters
like units, coordinates, dimensions can be stored as required
by climate scientists. Ncview [19], a NetCDF visual browser
provides a quick visualization of the NetCDF format data
along different dimensions making the post processing process
much easier. All these advantages make the NetCDF format
well-suited for climate science applications.

NetCDF-4 is built on top of the HDF5 library [20]. The
HDF5 library supports parallel I/O on NetCDF-4 files while
PnetCDF supports parallel I/O on classic NetCDF files. In
ROMS model, 2D and 3d variables are primarily written to
output files in NetCDF format. Data can be added in the
unlimited dimension settings as the simulation progresses. The
variables have ocean-time as an unlimited dimension. It gets
incremented when a new record is appended in the variables.

The Hierarchical Data Format v5 (HDF5) [20] I/O library
supports high-dimensional complex scientific datasets, pro-
vides easy shareable data, supports multiple languages, pro-
vides quick access of subset of data and optimizes the storage



space with different levels of compression. Any number of
data objects can be written making it useful for the climate
community when the number of records to be written is not
known a-priori.

B. Serial and Parallel I/O in ROMS

In the ROMS model, both input and output data are in
NetCDF format. The input data is read only once before the
model starts to do computation whereas the output file is
generated multiple times as per write frequencies set by the
user. There are different types of output files in ROMS model.
The output variables are mainly 2D and 3d variables that are
written to these files. The 2D variable varies along latitude
and longitude whereas the 3D variables vary along latitude,
longitude, and depth. Both these types of variable have an
extra dimension for record number while storing them into
the NetCDF file. The primary variables that are written to the
output files are velocity, temperature, and salinity. The output
variables, the type, frequency and the number of records to be
written in each file can be specified as per user requirements.

The function calls involved in the serial and parallel reading
of NetCDF data is shown in Figure 2a. The similarities and
differences are highlighted in blue and green, respectively. In
serial NetCDF read, the requested data by all the processes are
read only by the input thread and then distributed to the various
processes as per their respective tiles using MPI scatter call. In
parallel NetCDF read, all parallel threads read their own tile
data, and then a global reduction is called using MPI all gather
for the part of the data that is needed by all the processes.

The function calls involved in serial and parallel writing
of NetCDF data is shown in Figure 2b. In serial NetCDF
write, the complete data is packed into a global 1D array
using MPI gather call from all the processes into the output
thread, and then the data is written to the NetCDF file only
by the output thread. The IO error flag is sent to all threads
in case of serial NetCDF using MPI Broadcast call as all the
processes will proceed for computation only after receiving
the information that the output thread has written the complete
data successfully in the output file.

In Parallel NetCDF write, all parallel threads write their
own packed tile data. The output process involves defining
output files (define phase) and then writing actual GRID data
into those files (write phase). In the file define phase, all
metadata operations like defining dimensions, attributes, and
variables are performed. The variable units and the coordinates
are also saved for each of them making the data self describing.
It also involves writing the definition of time-independent
variables. The define phase is done only for those steps in
which new files need to be created. Otherwise, the previous
files are opened, the variables are checked and the new record
is appended at the end of the previous records. Thereafter, the
write phase involves the writing of time-dependent variables
at user-specified time-steps in different types of output files.

(a) Reading of Input files using serial and parallel NetCDF

(b) Writing of Output files using serial and parallel NetCDF

Fig. 2: Workflow Related to Reading and Writing in NetCDF

TABLE I: ROMS MODEL Setup

Grid Size 899*629*40
Time Step size 240 secs
Number of Time Steps 500 steps – 33.33 hours of simulation

(500*240(step-size)/3600)

C. Model and Experimental Setup

We executed the ROMS model for the region of Ganga-
Brahmaputra Plume in Bay of Bengal (BoB) [21]. The other
parameters of the model are shown in Table I.

Most of our experiments are with 5-day simulations. The
predictability of ocean state decreases with time. The accuracy
of the predicted variables tend to be low after a period of
about 5 days. The ocean model is forced by surface boundary
conditions obtained from atmospheric forecast models. The
accuracy of the ocean simulation depends on the accuracy
of atmospheric forecasts. In general the accuracy of the
atmospheric forecasts are good up to 3-days and reasonably
good up to about 5 days. Therefore ocean model forecasts are
in general useful for application for about 5 days.

All our experiments were conducted on our Institute’s
supercomputer cluster called SahasraT, a Cray-XC40 machine



TABLE II: Output file types, writing frequency and storage
space (30 days simulation. Writing frequency refers to the
interval between the timesteps when the corresponding file is
written. e.g., Quick file is written every time step.)

File Types Writing
Frequency

Total Files Per File
Size in GB

Total File
Size in GB

Quick 1 30 0.93 27.9
Average 30 1 1.1 1.1
History 30 1 1.1 1.1
Diagnostic 30 1 1.1 1.1

which has 1376 compute nodes. Each node has two CPU
sockets with 12 cores each, 128GB RAM and connected
using Cray Aries interconnect with Dragonfly topology. We
used CrayPat [22] performance analysis tool to analyze the
performance bottlenecks in ROMS. The results were obtained
by averaging across 5 executions for each experiment.

As mentioned earlier, the quick output files store a snapshot
of the present step into the file. In the ROMS model, it is
found that out of all the output files, the quick files are written
most frequently accounting for most of the I/O time as shown
in Table II. Hence, the quick files are written in output for
the experiments. Our results are also valid for other types of
output files as the data format is the same for all files. Also,
the same defining phase and writing phase functions are used
in all types of output files. The intial dataset that is required to
run the ROMS model is generated using Matlab scripts. Input
data consists of 18 NetCDF files of a total of 18 GB.

IV. I/O ANALYSIS OF THE ROMS MODEL

A. Scalability and Performance of I/O

We first performed an experiment in which serial and
parallel NetCDF are used for only reading the NetCDF data
files and performing the computations. No output NetCDF file
is generated in this experiment. It is found that both serial and
parallel NetCDF scale up to around 1440 processes as shown
in Figure 3a. Also, it is seen that parallel NetCDF read is
taking more time compared to serial NetCDF. In both cases,
the computation is performed in parallel and is scaling well.

Next, both serial and parallel NetCDF are used for both
reading and writing the output files. 50 snapshots of data
records are written over 500 time-steps to check the I/O
performance. The variables in each record are written into a
separate file. Hence, a total of 5 output files are generated in
this experiment. It is found that the parallel model is scaling
only up to 240 processes as shown in Figure 3b. Moreover,
the parallel NetCDF times are found to be more than the serial
NetCDF times.

From these two results, the times taken only for the writes
are obtained and plotted in Figure 4a. As shown, the I/O
time for writing the output files increases with the increase of
the number of processes for both serial and parallel NetCDF
as shown in Figure 4a. The serial NetCDF write is not
scaling with the increasing number of processes as the data
is transferred from a large number of processes to the master
process that writes the data. However, contrary to expectations,

(a) Scalability of Application Involving Only Input Data
Reading and Computations

(b) Scalability of Application Involving Input Data Read-
ing, Computations and Output Data Writing

Fig. 3: Scalability of ROMS Model Without and With Output
Writes

the results show that the NetCDF parallel is not scaling and
taking more time than the NetCDF serial.

We also obtained results for percentage of data reading and
data writing times with respect to the total execution time. We
found that the data reading using serial NetCDF and parallel
NetCDF takes only 0.5% and 2.4% of the total execution time.
This is because the data is read only once at the beginning.
The percentage of data writing times is shown in Figure 4b.
As can be seen, data writes take around 25% of the total
execution time for 48 processes and around 95% of the total
execution time for 1440 processes in case of parallel NetCDF.
The higher percentage of data write with respect to data read
is because data is written many times as specified by the user.
The increase in the percentage of data write with increasing
number of processes is because of the good scalability of
computations and the poor scalability of the data writes as
shown in the previous figures. Hence, our first objective is to
focus on the writing of output files as they consume a large
fraction of the total execution time.



(a) Scalability of Times for Output Data writing for
Different Number of Cores

(b) Percentage of Data Writing Times wrt Total Execu-
tion Times for Different Number of Cores

Fig. 4: Scalability and Percentage Time Consumption for
Output Data Writing

B. Load Imbalance in Data Writes

The minimum and maximum CPU times among all pro-
cesses and the average of the execution times are measured to
check the load imbalance. We found that for serial NetCDF
data reading as well as data writing, and parallel NetCDF data
reading the execution time of all CPUs are almost similar. So
the average execution time per CPU is close to the wall-clock
time for such cases. However, when parallel NetCDF writing
is enabled, there is a large execution time imbalance among
different processes as shown in Figure 5. The figure also shows
that the imbalance increased with the increase in the number
of processes i.e. the difference between the minimum and
maximum CPU timings increased with increasing processes.
Hence, our next objective is to find the reason for this huge
imbalance in the case of Parallel NetCDF.

V. BALANCING I/O LOADS

Load imbalance in I/O in many parallel applications arise
due to non-uniform data distributions among processors.
Hence, we first investigate the data distribution among the

Fig. 5: Execution Times for Different Number of Processors
when Parallel NetCDF is Enabled. The large difference be-
tween the minimum and maximum times among the processors
for a particular Execution demonstrates the load imbalance
among processors.

Fig. 6: Execution Times of Different Processors for a 1440-
core Execution. The graph shows the Computation, CPU,
Output Times. We find that the CPU and Output Times are
Imbalanced.

processors. Initially, the complete grid is partitioned into tiles
among all the participating processes for parallel computa-
tions. It is observed that the data distribution is balanced
among the processes initially as well as while writing data
of both land and water data points. Also, in case only water
data points are written, the land data points are removed
(Blue shade represents the water points after removal of land
points) and the water data points are re-distributed among the
processes again before writing to re-balance the data (Green
shade represents the re-distributed water points). Hence, it is
confirmed that the imbalance is not due to data distribution.

A detailed analysis of the function calls and the per-process
timings for such functions is performed to investigate the
reason for load imbalance. Figure 6 shows the execution for
a 1440-process execution. The total CPU time (in blue) is
the sum of computation including I/O read time (in red) and
Output time (in yellow) as shown in the figure. It is observed
that the computation including I/O read time is balanced while
the output times are imbalanced. The processors responsible
for the imbalance can be seen as the spikes in the plots.

The output phase further consists of two phases: define file
and data write phase. In the define phase, the NetCDF file is
created and all the variables are defined. In the write phase,
the data for the time varying variables that are defined during
define phase is written into the file. It is found that the write
phase is load-balanced whereas the define file times are load
imbalanced.

The define phases involves either Define Info, that



involves creating a NetCDF file, defining dimensions, at-
tributes, and variables, and Write Info, that involves writing
time-recordless, information variables. It is found that the
Write Info phase is load imbalanced.

The non-tiled variable function calls 1 to 66 in the define
phase are defined as independent (default setup for parallel
NetCDF calls) and the tiled-variable function calls 67 to 83 in
define phase and all function calls in write phase are defined
as collective. The independent I/O calls lead to file locking
for the portion where a process sends a write request in a
file. In case of non-tiled variables, as all processes involved in
parallel NetCDF call are sending an independent write request
to the same portion of the file, there is I/O contention due
to file locking during multiple such write requests leading to
imbalance. As a result, the imbalance was found to increase
with an increasing number of processes. But for tiled-variables,
all processes involved in parallel NetCDF call are sending I/O
write requests collectively to different portions of the variable
in the file. This leads to a single collective call request to
the file, merging separate requests as the entire grid data is
written by all the processes making the I/O write efficient for
all tiled-variable collective calls.

Further analysis of the amount of imbalance coming from
each of the 66 function calls (which were defined inde-
pendently by default) are studied to check the contribution
by different functions. It is found that 7 different types of
functions are involved. Barrier is added at the start and end
of those functions to measure their imbalance contributions. It
is observed that each of the functions contributes imbalance
proportional to the number of times they are called.

Hence, the primary source of imbalance is in the writes of
the non-tiled variables (Write Info) during the define phase.
We removed the imbalance by converting the independent
writes to collective writes. The reduction of imbalance is
shown in Figure 7.

A. Performance and Scalability Results

Significant improvement is achieved for 1440 processes
after changing the independent calls to collective calls of
parallel NetCDF. The improvement in timings of parallel
NetCDF (collective calls) wrt parallel NetCDF (independent
calls) and serial NetCDF are shown in Figure 8. Each of the
times shown in the figure are obtained as averages across 5
runs.

It is observed that parallel NetCDF with collective calls (our
method) gave 85% performance improvement when compared
to parallel NetCDF with independent calls (default Setup)
and 27.3% improvement when compared to serial NetCDF
in the ROMS model. The maximum output times wrt the
maximum CPU times has come down from 91% in default
parallel NetCDF and 70.5% in serial NetCDF to 62.4% in our
method in the ROMS model. The bottleneck was because the
define phase itself was taking 9.75 minutes which is even more
than write phase of 1.84 minutes in the case of default setup
of parallel NetCDF. With the new setup, the define phase for
parallel NetCDF has come down to 0.34 minutes.

(a) Execution Times of Different Phases with Independent
I/O Calls in Parallel NetCDF for a 1440-core Execution. The
figure shows the average, minimum and maximum times across
processors. The large difference between the maximum and
minimum times shows the load imbalance when using inde-
pendent I/Os.

(b) Execution Times of Different Phases with Collective I/O
Calls in Parallel NetCDF for a 1440-core Execution. The small
difference between the maximum and minimum times shows
the load imbalance when using independent I/Os.

Fig. 7: Reduction in Load Balance by Making the Independent
I/O Calls as Collective

Fig. 8: Execution Times of the ROMS Model when using
Serial NetCDF, and Parallel NetCDF with Independent and
Collective I/O Calls for a 1440-core Execution. We find
that the execution times significantly decrease when using
collective I/O calls.

The scalability results achieved with parallel NetCDF col-
lective calls (mentioned as Par COL) are compared with
that of parallel NetCDF independent calls i.e. default setup
(mentioned as Par IND) and serial NetCDF (mentioned as
Serial). The comparisons are shown in Figure 9. It is seen that
the execution, output and write times for Par COL scale well
unlike Par IND. Also, Par COL gives smaller execution
times than Serial for 960 and 1440 processes. The define
phase imbalance increases for Par IND with more number



Fig. 9: Scalability in Execution Times for Different Number of
Processors when using Independent and Collective I/O Calls

of processes as there is an increase in I/O contention with
increasing independent I/O requests. The serial output does
not scale as data needs to be gathered from more processes.
It is seen that the benefits of parallel NetCDF are achieved in
case of a large number of processes.

VI. SELECTIVE WRITING STRATEGY

The output data in climate modeling have spatial and tempo-
ral variability. An example of spatial variability is eddies where
the variation in data is most important. Temporal variability
can be hourly, daily, monthly, intraseasonal (15 to 60 days),
seasonal(180 days), annual(1 year), or interannual(multiple
years). For a given writing frequency for some parameters,
there are some time steps where the variation in data from the
last written step and the present time-step is small compared to
other time-steps. In that case, we can avoid writing the present
step data again and use the previously written data for analysis
to be performed on the present time-step. This strategy can be
implemented for those simulations where some compromise
on the accuracy loss is acceptable. Thus, the objective of
selective writing strategy is to keep the accuracy loss within
the tolerable limits to improve the overall I/O performance of
climate models.

In the ROMS model, the time-consuming variables are the
3D variables. In our model setup, each variable size is 40 times
of the 2D variables. The main parameters written to output files
are velocity, temperature and, salinity. Hence, these parameters
are used for the selective writing strategy. The RMS (Root
Mean Square) difference for different parameters between
consecutive records is used for determining the parameters
for selective writing in a time step.

A. Implementation

Before writing the data, RMS difference between the present
time-step and the last written time-step is compared for each
variable separately. If the RMS error is above a certain
threshold set for a variable, then the data corresponding to
that variable is written or else skipped for that time step. The
skipped time-step values for each variable are approximated

Fig. 10: Illustration of Selective Writing Strategy. Output
files are written for only the time steps or record numbers
corresponding to the marked circles in the figure.

TABLE III: Selective Writing Thresholds used for different
parameters

Variable Thresholds
Velocity 1, 1.5, 2, 2.5, 5 cm/sec
Temperature 0.02 , 0.025 and 0.05 Celsius
Salinity 0.0005 , 0.00075 and 0.001 ppt

with the last time-step values written. A separate array is
maintained to store the final processed data of the last time-
step that was written to disk, using the SAVE option in
FORTRAN. The array is updated in a time-step if the data is
written to the disk in the time-step. The strategy of selective
writing of parameters in the time steps based on RMS error
is illustrated in Figure 10.

B. Evaluation of Accuracy

The selective writing strategy will generate different output
from the original executions since the data of the previous
time steps are used for variables that are skipped for writing.
We evaluate the acceptable accuracy of data generated by the
selective writing strategy using temporal mean and standard
deviation (S.D.) of the 3D variables. The RMS difference
between temporal mean (similarly standard deviation) with
selective writing and original executions is calculated to check
the accuracy loss due to the selective writing strategy. The
quality of data is also evaluated from the surface contour plots
of the difference between the temporal means (similarly Stan-
dard Deviation). Smaller differences indicate better accuracy.

C. Experimental Setup

We executed the ROMS model on 1440 cores for 15 simu-
lated days. In the original executions, write outputs (records)
are generated at the end of every simulated hour. The accuracy
loss and write reduction analyses are performed both on a daily
basis (Day 1, Day 11 and Day 15) and on multiple days (Day
1 to 5, Day 1 to 10, and Day 1 to 15). Sensistivity studies
were performed for different threshold values for the Velocity,
Temperature and Salinity variables as shown in Table III.

Based on the domain knowledge related to ocean simula-
tions with the ROMS model, the range of variation of each
parameter and the corresponding range of acceptable loss in
accuracy were fixed as mentioned in Table IV.



TABLE IV: Range of variation and acceptable accuracy loss
for different parameters for Selective Writing

Variable Range Acceptable Deviation
Velocity +/- 100 cm/sec +/- 7.5 cm/sec
Temperature 20 to 35 Celsius 0.05 Celsius
Salinity 25 to 35 ppt 0.005 ppt

(a) Accuracy Loss in Mean

(b) Accuracy Loss in S.D.

Fig. 11: Accuracy Loss for Velocity Values due to Selective
Writing

D. Results and Observations

1) Sensitivity Studies with Different Thresholds: Figure 11
shows the sensitivity studies conducted with different thresh-
olds for the Velocity variable to determine thresholds with
acceptable accuracy loss.

We find that the threshold of 1.5 cm/sec for velocity limits
the difference in temporal mean and S.D. to less than 5 cm/sec
for single day analysis (Day 1, 11 and 15) and 7.5cm/sec for 5
days analysis. However, a steep jump is observed in accuracy
loss for Day 11 analysis for changing the threshold from 1.5
to 2 cm/sec. Hence, 1.5 cm/sec is selected as the threshold for
velocity.

We performed similar sensitivity studies to determine the
threshold parameters for Temperature and Salinity. For Tem-
perature, we observed that all thresholds meet the difference
in temporal means constraint of 0.05 Celsius. However, only
threshold of 0.02 Celsius meets the constraint of difference
in temporal S.D. of 0.05 Celsius for up to 15 days. Hence,
0.02 Celsius is selected as the threshold for temperature. For
Salinity, For Salinity, we observed that all thresholds meet the
difference in temporal means constraint of 0.005 ppt. However,
up to a threshold of 0.00075 ppt meets the constraint of
difference in temporal S.D. of 0.005 ppt for up to 10 days.
Hence, 0.00075 ppt is selected as the threshold for salinity.

Fig. 12: Difference in Temporal Mean in Velocity

2) Contour Plots: The surface contour plots of differences
in temporal mean of data without and with selective writing
for velocity is shown in Figure 12. Similar plots were also
obtained for temperature and salinity.

From the velocity plot, it was observed that some specific
regions of the temporal means have maximum velocities. The
difference in temporal means is also found maximum in those
regions. These regions are primarily constrained within the
acceptable deviation of 7.5 cm/sec using a threshold of 1.5
cm/sec. The difference in temporal S.D. is within 2.5 cm/sec
for velocity. For temperature and salinity, the variation is
not as high as velocity. Both temporal mean and S.D. for
temperature are within the acceptable deviation of 0.05 Celsius
for a threshold of 0.02 Celsius. Similarly, both temporal mean
and S.D. for salinity are within the acceptable deviation of
0.005 ppt for a threshold of 0.00075 ppt. Hence, temperature
and salinity can be written selectively for 15 days and 10 days
respectively due to lesser variation in data whereas velocity
can be written for only up to 5 days.

It is concluded that velocity can be written selectively for
hourly data for up to 5 days whereas salinity and temperature
can be written selectively for hourly data for up to 10 days
and 15 days respectively. This is because both spatial and
temporal variation of temperature and salinity is found to be
less compared to velocity. Also, maximum variation is present
at the surface (2-D). Hence, all the 2D variables are chosen
for writing.

3) I/O Performance Improvement: Experiments are per-
formed for 5 days of simulation as it is the common acceptable
length of executions with selective writing in all variables. The
experiments are done with the load balance ROMS Model
obtained by replacing independent calls by collective calls.
The improvements obtained with these thresholds for a run of
5 days are mentioned in Table V.

Around 60% improvement is achieved in the write time of
3d variables using this method. It contributed to almost 52%
improvement in the output time and 31.6% improvement in
the execution time.

E. Summary and Observations on Selective Writing

Typically, ocean prediction systems yield reasonable fore-
casts for up to 5 days. Hence, based on the acceptable range of



TABLE V: Selective Writing Time Reduction Results for 5
days of run

Type Execution
Time

Output Time nf fwrite 3dfunction

Non-Selective
i.e. Default

24.36 mins 14.2 mins 12.98 mins

Selective (Re-
duction in %)

16.66 mins
(31.6%)

6.83 mins
(51.87%)

5.26 mins (59.43%)

accuracy loss and the results, it is concluded that our selective
writing strategy is suitable for ocean forecast systems. Also, it
is concluded that the daily means and S.D. are acceptable for
Day 1, 11, and 15 daily basis results. So, this method can be
used for experiments where analysis is done based on daily
data.

The advantage of our selective writing strategy is that it can
help accelerate ocean simulations, as shown in our results.
However, the accuracy loss can increase for an increase in
the number of days as the variability in the data increases.
Also, it is found that the method is applicable for experiments
which store hourly data. But for daily data (data saved once
in 24 hours), the performance degrades as the variability in
the data is more. In general, the appropriate threshold for
each variable needs to be selected based on the experimental
accuracy required and the length of the run.

VII. LUSTRE STRIPE SIZE AND STRIPE COUNT

The Lustre file system consists of I/O servers called Object
Storage Servers(OSSs) for managing the I/O requests and
disks called Object Storage Targets(OSTs) for storing the data.
File striping [23] is a technique to distribute the data of a single
file across multiple OSTs. The striping helps in increasing the
bandwidth to read or write to a file and increases the upper
limit of file size also. But it also leads to extra overhead due to
increased operations in network and contention in I/O servers.
So there is a trade-off involved. Hence, optimizing the Lustre
parameters helps in the improvement of the I/O performance.
The I/O performance is improved when processes access
multiple OSTs in parallel. Also, the number of OSTs, which
each process needs to access should be minimized by stripe
alignment.

We performed experiments on different sets of processes to
find the best lustre striping for different number of processes.
The Lustre system in our experiments has capacity 2 PB and
its version is 2.12.0.2. It consists of 16 OSTs with the default
stripe size of 4MB and stripe count of -1, with all OSTs used.
The stripe count is varied from 1 to the maximum available
OSTs and the stripe size is varied from 1 to 32 Mb. 3D
variables are used as they consume most of the write times.
A total of 64 experiments were performed, as shown in the
experimental setup in Table VI.

The write timings obtained for default setup (stripe count of
4 and stripe size of 1Mb) and for the best combinations (Table
VII) are shown in Figure 13. About 40-60% performance
improvement is seen with the best combinations compared to

TABLE VI: Lustre Striping Setup

Processes 48, 240, 960, 1440
Stripe Count 1 OST, 4 OSTs , 16 OSTs, 96 OSTs(set as -1 for max)
Stripe Size 1Mb, 4Mb, 16Mb, 32Mb
Number of records 20 records each with 5 3D variables (100 3D write requests)

Fig. 13: Write Timing improvement results using Lustre Strip-
ing [Default Combination is Stripe Size 1 Mb , Stripe Count
4 OSTs and for Best Combination refer Table VII]

the default for all different combinations of processes used.
It is observed that for most of the processes, the max stripe
count with a stripe size of 1Mb performed th best.

TABLE VII: Lustre Striping – Best Combinations of Stripe
Size and Stripe Count

Processes Stripe Size Stripe Count
48 32Mb 1

240 1 Mb 96
960 1 Mb 96

1440 1 Mb 96

A. Observations

Serial I/O does not scale with an increase in the number of
OSTs as a single process writes in all of them in sequence.
For Parallel I/O with a small number of processes, the stripe
count should be 1 with a large stripe size. For large number
of processes, the creation of large files with low stripe count
can lead to I/O bottleneck. For a single file shared by all
processes, the stripe count should be the same as the number
of processes. If the number of processes is greater then the
maximum OSTs available (96 in our Lustre file system), then
it should be set to -1 (maximum 96) and the stripe size should
be set to achieve maximum stripe alignment distributing the
data uniformly across all OSTs.

B. Putting It All Together

The different I/O improvement strategies are combined.
The experimental setup is the same as the selective writing
strategy result for 5 days of simulation present in Table
V. As mentioned earlier, the non-selective data writing and
the selective data writing experiments shown previously are



Fig. 14: Combined improvement results – Actual Times

already implemented on top of the balanced ROMS model
obtained by the load balancing strategy using collective calls
for the imbalanced functions. Here, the third strategy of
lustre striping is combined with the load balanced model with
selective writing strategy. Figure 14 shows the results. It is
observed that the lustre striping improved the writing phase
by 10% and output phase by 15%.

VIII. CONCLUSIONS AND FUTURE WORK

An efficient parallel I/O strategy can help us improve the
overall performance of climate models as I/O consumes a
significant part of the total execution time for these models. In
this work, we had developed two main I/O optimization strate-
gies, namely, load balanced I/O writes and selective writing
of slow-varying parameters. We also explored I/O striping. All
the strategies together improved parallel NetCDF performance
by about 70%. A similar approach can be adopted in case
load imbalance is detected from the initial analysis for other
climate models that deal with large number of large multi-
dimensional arrays. The selective writing can be implemented
in other models where a large volume of I/O output is involved
and performance-accuracy tradeoffs can be made. The striping
technique can also be implemented for other file systems
for achieving similar performance improvements. In future,
we plan to develop methods to perform selective writing
strategy on a region basis, where selective writing can be
applied to regions where change is minimal. Implementation
of collective I/O in both space and time can also be explored.
We also plan to study topology-aware I/O strategies. Other
I/O optimizations including data layout and asynchronous
I/O are possible and are part of our future efforts. While
asynchronous I/O is generally considered a good strategy, its
benefits will have to be evaluated in the ROMS code wrt the
dependencies between the computations and communications
of large number of large multi-dimensional arrays.
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