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Abstract. Preconditioned Conjugate Gradient (PCG) method has been
one of the widely used methods for solving linear systems of equations
for sparse problems. Pipelined PCG (PIPECG) attempts to eliminate
the dependencies in the computations in the PCG algorithm and overlap
non-dependent computations by reorganizing the traditional PCG code
and using non-blocking allreduces. We have developed a novel pipelined
PCG algorithm called PIPECG-OATI (One Allreduce per Two Itera-
tions) which reduces the number of non-blocking allreduces to one per
two iterations and provides large overlap of global communication and
computations at higher number of cores in distributed memory CPU
systems. PIPECG-OATTI gives up to 3x speedup over PCG and 1.73x
speedup over PIPECG at large number of cores.

For GPU accelerated heterogeneous architectures, we have developed
three methods for efficient execution of the PIPECG algorithm. These
methods achieve task and data parallelism. Our methods give consider-
able performance improvements over PCG CPU and GPU implementa-
tions of Paralution and PETSc libraries.
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1 PIPECG-0OATI for Distributed Memory Systems

1.1 Problem Statement

The main computational kernels in Preconditioned Conjugate Gradient (PCQG)
[3] are Sparse Matrix Vector Product (SPMV), Preconditioner Application (PC),
Vector-Multiply-Adds (VMAs) and Dot Products. For distributed memory sys-
tems, the bottleneck in PCG are the three dot products per iteration. They
result in synchronization and waiting of the processors which cannot be over-
lapped with any independent computations. As the number of cores increase,
the time taken for allreduce increases and the cores wait for a longer time. The
pipelined PCG method (PIPECG)[2] was introduced for distributed memory
systems. It reduces the number of allreduces in PCG to one per iteration and
overlaps it with one PC and one SPMV. While this is a reasonable strategy for
smaller number of cores, executions of the PIPECG code at larger number of
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cores show that the time taken by the allreduce can not be fully overlapped by
the PC and SPMV.

As we are moving to the exascale era, in order to obtain good performance
at larger number of cores, we must reduce the number of allreduces in the PCG
method even more and remove dependencies between computations so that non
blocking allreduce can be used to overlap global communication with more com-
putations.

1.2 Methodology

In order to solve the aforementioned problem, we propose a novel algorithm,
PIPECG-OATTI (PIPECG-One Allreduce per Two Iterations)[5], which combines
two iterations of PIPECG, reduces the number of non-blocking allreduces to one
per two iterations and then overlaps them with two PCs and two SPMVs. This
is done at the cost of introducing extra VMA operations.

The primary challenge in combining two iterations of PIPECG and pipelining
it is that it has dependencies that require an extra PC and an extra SPMV for
each combined-iteration. So, a total of three PCs and three SPMVs would be
required in a combined-iteration as opposed to two PCs and two SPMVs in two
uncombined iterations. Since the PC and SPMV are the most computationally
intensive kernels in each iteration, an extra PC and SPMV would degrade the
performance of PIPECG-OATI. To deal with this challenge, we introduced new
non-recurrence computations in each iteration of PIPECG-OATI which brings
down the number of PCs and SPMVs to two per combined-iteration.

For achieving PIPECG-OATI from PIPECG, we follow the below steps:

1. Collect the PCs and SPMVs of two iterations at one point in the combined-
iteration by introducing recurrence relations.

2. Collect the dot products of two iterations at one point in the combined-
iteration by expressing the vectors as recurrence relations.

3. As the new dot products will need results of PC and SPMV beforehand,
introduce recurrence relations for these PC and SPMV.

4. To deal with extra PC and SPMV, introduce new non-recurrence computa-
tions.

An elaborate derivation can be found in [5].

1.3 Experiments and Results

We have implemented our PIPECG-OATI method along with optimizations like
merged vector operations in the PETSc library[1]!. We ran tests on our In-
stitute’s supercomputer cluster called SahasraT, a Cray-XC40 machine which
has 1376 compute nodes. Each node has two CPU sockets with 12 cores each,
128GB RAM and connected using Cray Aries interconnect. We use Jacobi pre-
conditioner in all tests.

Figure 1 shows the strong scaling of different methods on a 125-pt 3D
Poisson problem with 2M unknowns on up to 110 nodes (2640 processes). Our

! Available as KSPPIPECG2. URL: https://www.mcs.anl.gov/petsc/petsc-
master/docs/manualpages/KSP/KSPPIPECG2.html
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method, PIPECG-OATI, is compared with PCG, PIPECG and other pipelined
variants like PIPECG3 method available in PETSc. We observe from Figure 1
that PCG reaches 21x speedup and PIPECG reaches 26x speedup after which
speedup degrades due to increased allreduce costs which are not overlapped
with either any or enough computations. We see that PIPECG3 reaches 34x
speedup. PIPECG-OATI reaches 36x speedup. It performs better than PCG and
PIPECG because at higher number of cores, the overlap provided by PIPECG-
OATTI becomes more than the overlap provided by PIPECG. It performs better
than PIPECG3 because of lesser number of FLOPS.

125-pt Poisson problem with 2M unknowns
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Fig. 1. Strong scaling of different methods on a 125-pt Poisson problem with 2M un-
knowns.

2 PIPECG executions for GPU accelerated architectures

We have developed three methods for efficient execution of PIPECG method
for GPU accelerated systems so that we can make use of all the resources avail-
able in the GPU node. The first two methods, Hybrid-PIPECG-1 and Hybrid-
PIPECG-2, achieve task parallelism by executing dot products on the CPU
while executing the PC and SPMV kernels on the GPU. The third method,
Hybrid-PIPECG-3 achieves data parallelism by decomposing the workload be-
tween CPU and GPU based on a performance model. The performance model
takes into account the relative performance of CPU and GPU using some initial
executions and performs 2D data decomposition. Our methods give up to 8x
speedup over PCG CPU implementation of Paralution[4] and PETSc libraries
for different matrices as shown in Figure 2. Our methods give up to 5x speedup
speedup over PCG GPU implementation of Paralution and PETSc libraries.
Hybrid-PIPECG-3 method also provides an efficient solution for solving prob-
lems that cannot be fit into the GPU memory and gives up to 2.5x speedup for
such problems. Further details can be found in [6].
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Comparison of Hybrid Methods with CPU versions
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Fig. 2. Comparison of Hybrid methods with various CPU versions.

Conclusion and Future Work
this work, we have presented PIPECG-OATI, which reduces the number of

allreduces to one per two iterations and overlaps the allreduce with two PCs
and two SPMVs. We have also presented Hybrid PIPECG methods for GPU
accelerated systems. We are working on developing further pipelined methods
which will provide greater overlap than PIPECG-OATI. We are also developing
multi-node multi-GPU version for efficient executions of pipelined CG methods

on

GPU accelerated architectures to explore very large problem sizes.
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