
High performance Horizontal Diffusion Calculations
in Ocean Models on Intel R© Xeon PhiTM

Coprocessor Systems

1Aketh TM, 1Sathish Vadhiyar, 2PN Vinayachandran, 2Ravi Nanjundiah
1Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
2Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

aketh.tm@gmail.com, vss@cds.iisc.ac.in, vinay@caos.iisc.ernet.in, ravi@caos.iisc.ernet.in

Abstract—Accelerators and co-processors are widely prevalent
and have been used to provide high performance for many
scientific applications. Intel R© Xeon PhiTM coprocessors have been
gaining ground to provide speedups for advanced scientific appli-
cations. However, the use and demonstration of these coprocessors
for climate modeling are limited. In this work, we have developed
a comprehensive set of novel techniques for efficient use of Intel
Xeon Phi coprocessors for ocean modeling. In particular, we focus
on one of the most time consuming routines, namely, horizontal
diffusion in tracers (hdifft). Our techniques include explicit
and implicit fusion for data locality and vectorization, choice of
coarse-grained over fine-grained parallelism, offloading hdifft
function for asynchronous and simultaneous executions on CPU
and accelerator cores, and effective data management to minimize
CPU-accelerator data transfer overheads. Our comprehensive
set of techniques has resulted in about 17-23% improvement
in simulation throughput of the entire ocean model code. Our
optimization strategies exhibit good scaling with the use of more
Intel Xeon Phi processors. Among our optimization techniques,
the use of our novel look-ahead asynchronous execution strategy
on Intel Xeon Phis resulted in maximum benefit yielding about
36% improvement in performance.

Keywords—Intel Xeon Phi co-processors; offloading; ocean
modeling; horizontal diffusion

I. INTRODUCTION

The importance of climate to energy usage and agriculture
has made it a prominent field of study. Climate study is
carried out based on the mathematical models of the physical
processes. Climate models predict temperature changes, winds,
radiation, relative humidity and other such factors. These
models generally have a lot of computational intensive routines
that require a lot of computing power.

Climate models simulate the interaction of the various
components of the climate such as atmosphere, land, ocean and
ice. These different components interact with each other by the
exchange of energy, momentum and matter. There are a variety
of models that vary in their degree of complexity. Physical
processes like radiation, circulation and precipitation interact
with chemical and biological processes to form a complex
dynamic system. The climate models use the equations of
conservation of mass, momentum, energy and species to model
the various components of the climate. Numerical methods are
used extensively to solve these equations.

One such climate model is the Community Earth System
Model [1], developed and maintained by the National Center

Fig. 1. Execution Profile of CESM

Fig. 2. Execution Profile of the POP model

for Atmospheric Research (NCAR). CESM consists of five
geophysical component models, i.e., atmosphere, land, ocean,
sea-ice and land-ice. There is also a coupler component that
coordinates the interaction and the time evolution of the
component models.

Along with the atmosphere component, the ocean is the
most-time consuming model in CESM, as shown in Figure
1. The execution profile is obtained by running CESM on a
single 16-core Intel Xeon node with 16 threads. The model
used for ocean is the Parallel Ocean Program version 2 (POP2)
[2], [3]. Figure 2 shows the breakdown of the execution time
of the ocean model in CESM when executed on a cluster
of 8 nodes of 16-core Xeon processors with 128 threads.

We find that one of the time consuming routines in the
ocean model is the horizontal diffusion in tracers (hdifft),
which occupies about 26% of the total execution time. This
routine performs the Gent-McWilliams parameterization of
horizontal diffusion of tracers to generate temperatures and
salinity fields in the ocean [4]. Ocean codes are typically major
bottlenecks in climate models since ocean processes are slower

2016 IEEE 23rd International Conference on High Performance Computing

978-1-5090-5411-4/16 $31.00 © 2016 IEEE

DOI 10.1109/HiPC.2016.29

203

relative to other components. Further, ocean codes typically
require longer spinup (100+ simulated years) than the other
components leading to higher computational requirements.
Hence, optimizing ocean code is of major importance.

Accelerators and co-processors are widely prevalent and
have been used to provide high performance for many scien-
tific applications. Intel R© Xeon PhiTM coprocessors have been
gaining ground to provide speedups for advanced scientific
applications [5]–[7]. However, the use and demonstration of
these coprocessors for climate modeling are limited.

In this work, we have developed a comprehensive set of
novel techniques for efficient use of Intel Xeon Phi copro-
cessors for horizontal diffusion in tracers in the ocean model
of CESM. Our techniques include explicit and implicit fusion
for data locality and vectorization. In this optimization, we
convert the WHERE blocks with implicit indices into explicit
loops and combine multiple such blocks. We also perform a
novel look-ahead asynchronous offloading strategy in which
the hdifft computations for the next step are offloaded for
asynchronous executions on Xeon Phi while the CPU proceeds
with the current time step calculations. We also performed
effective data management using nocopy and allocatables
options for data to minimize CPU-coprocessor data transfer
overheads.

We show that the use of Intel Xeon Phi with our opti-
mizations described in this work yield about 25-42% reduction
in execution time over the CPU-only run for the baroclinic
phase containing the hdifft routine that we optimize in this
work and about 17.4-23% reduction in execution time for
the entire POP model. We also show that our optimization
strategies exhibit good scaling with the use of more Intel Xeon
Phi processors. Among our optimization techniques, the use
of our novel look-ahead asynchronous execution strategy on
Intel Xeon Phis resulted in maximum benefit yielding about
36% performance improvement over the synchronous strategy.
With our simultaneous execution model in which the results
of the horizontal diffusion routines for a time step are used
in the subsequent time steps, we also show error growths and
demonstrate reasonable accuracy.

Our work, to the best of our knowledge is the first method
for this type of ocean model. It should be noted that an ocean
model is a complex code running into about 1,20,000 lines
of code and needs representation of many complex processes
such as advection, turbulence, diffusion etc. The optimizations
described in this work can be easily generalized to other ocean
models with horizontal diffusion modules and can also be
used in any physical model which includes multiple processes.
While the results are specific to diffusion calculations in
particular in climate models, similar techniques can be applied
in other fields including CFD that contain opportunities for
vectorization, and asynchronous executions.

In Section II, we give the overall structure of the ocean
model and hdifft, and a brief background on Intel Xeon Phi
accelerators. Section III covers related work in the areas of
using accelerators and co-processors for climate and weather
models. In Section IV, we describe our different optimization
techniques for Intel Xeon Phis. Section V presents experiments
and results. Section VII gives conclusions and presents scope
for future work.

II. BACKGROUND

A. Ocean Model

Figure 3 gives the overall structure of the ocean model.
The overall ocean grid is divided into blocks of multiple
vertical levels. As the figure shows, the ocean model contains
two primary phases, namely baroclinic and barotropic. POP
uses mode splitting method for solving momentum equations.
The calculations of the vertically averaged velocity in the
ocean is commonly referred to as the barotropic mode and
the part that depends on the vertical co-ordinates is called
the baroclinic mode. The baroclinic mode describes the three-
dimensional dynamic and thermodynamics processes, and the
barotropic mode solves the vertically-integrated momentum
and continuity equations in two dimensions. The barotropic
mode travels faster and therefore requires a smaller time-step
compared to the baroclinic. Separating the mode thus helps in
using larger time-steps for the baroclinic modes.

The baroclinic mode consists of two main phases related
to updates of tracers and solving momentum equations. The
baroclinic phases are performed for all vertical levels. The
horizontal diffusion in tracers is calculated in the function
hdifft as part of the tracer update phase of the baroclinic
driver. The closure of equations of tracer balance in ocean
models requires diffusion of tracers in both the horizontal
and vertical directions. In addition, the diffusion terms help
to regulate the numerical noise generated. In the deep ocean,
mixing along surfaces of constant density is found to be
stronger than that in the vertical co-ordinate. In addition,
significant amount of mixing and diffusion is achieved by
eddies. The Gent-McWilliams parameterization of horizontal
diffusion has been found to generate realistic temperature and
salinity fields in the ocean as well as contribute to reducing the
long-term drift in non-eddy resolving version of CESM [4].
In the Matsuno time-stepping scheme used in POP (a Euler
forward-backward procedure), a forward prediction (pass 1) is
first carried out and the variables are saved as mixtime tracer.
In the next step, the mixing terms are calculated (pass 2) using
the mixtime tracers and the new variables are labeled current
time tracers. Parallelism of the ocean model is challenging
since many functions have low arithmetic intensity.

B. Intel Xeon Phi Architecture

Intel’s first generation Many Integrated Core (MIC) archi-
tecture codenamed Knights Corner, is an x86 based system
that contains up to 61 in-order processing cores, and offers
peak single precision performance of nearly 2.1 TFLOPS. Each
of these cores supports upto 4-way hardware multithreading
and features a vector unit which uses wide 512 bit registers.
Each core features fully coherent L1 and L2 caches, with a
bidirectional ring that provides fast access to L2 caches of
other cores.

The Xeon Phi also offers high memory bandwidth of
nearly 160 GBps, but the L1 and L2 caches offer much
higher memory bandwidth than the memory, and using them
effectively is the key to approaching peak performance. Apart
from thread parallelism, it is crucial to properly utilize the wide
vector unit; more so than on the Xeon which has only 256 bit
wide registers. Although the Xeon Phi offers gather and scatter

204

1 foreach time step do
/* BAROCLINIC DRIVER */

/* Tracer update loop */
2 do iblock=1,nblocks clinic
3 do k=1,nverticals
4 vmix_coeffs (...) ;
5 hdifft (...) ;
6 advt (...) ;
7 vdifft (...) ;
8 end
9 end

/* Momentum equations solver loop */
10 do iblock=1,nblocks clinic
11 do k=1,nverticals

/* Solve momentum equations */
12 end
13 end

/* BAROTROPIC DRIVER */
14 do iblock=1,nblocks clinic
15 ...
16 end

/* Other functions */
17 end

Fig. 3. Pseudocode for Ocean Model

operations for vectors, vectorization is significantly more effec-
tive if data is contiguous in memory with unit stride accesses.
Data alignment will provide even better vector performance.
The Xeon Phi also features low precision hardware support
for certain math functions like power, logarithm etc apart from
FMA that provide additional speedup for workloads that have
these computations.

Programming the Xeon Phi is similar to programming any
other x86 machine - the same programming model is appli-
cable with a host of popular libraries like MPI and OpenMP
that are supported. The same optimizations that apply on the
Xeon also apply without change on the Xeon Phi. In general,
development time of a parallel application on the Xeon Phi is
small. The Xeon Phi offers three modes of operation - native,
offload and symmetric. We use the offload model of execution
in our study, where the host offloads a portion of computation
to the Xeon Phi either synchronously or asynchronously with
simultaneous CPU executions.

III. RELATED WORK

In this section, we present previous efforts that explored the
use of accelerators and co-processors for climate and weather
models. There have been a number of efforts in using GPUs
for climate and weather models. Michalakes and Vachharajani
[8] used GPUs to improve the performance of the Weather
Research and Forecast (WRF) model. Their work resulted in
in 5-20x speed-up for the computationally intensive routine
WSM5. In the work by Govett et al. [9], the non-hydrostatic
icosahedral (NIM) model was ported to the GPU [9]. The
dynamics portion which is the most expensive part of the NIM
model was accelerated using GPU and the speed-up achieved
was about 34 times on Tesla - GTX-280 when compared to a
CPU. The Oak Ridge National Laboratory (ORNL) ported the
spectral element dynamical core of CESM, HOMME, to the

GPU [10]. A very high resolution of (1/8) th degree was used
as a target problem. Using asynchronous data transfer, the most
expensive routine performed three times faster on the GPU
than the CPU. This execution model was shown to be highly
scalable. The climate model ASUCA [11] is a production
weather code developed by the Japan Meteorological Agency.
By porting their model fully onto the GPU they were able
to achieve 15 TFlops in single precision using 528 GPUs.
The TSUBAME 1.2 supercomputer in Tokyo Institute of
Technology was used to run the model. The CPU is used
only for initializing the models and all the computations are
done on the GPU. There are different kernels for the different
computational components.

Related to high performance for ocean modeling, there
have been efforts on both distributed memory architectures
and GPUs. In a recent work, Hu et al. [12] implemented a
pre-conditioned Chebyshev-type iterative method in POP with
reduced global reductions. They demonstrate 5.2x speedup on
high resolution POP when implemented on distributed memory
systems. Bleichrodt et al. [13] implemented a numerical solver
for the barotropic vorticity equation on a GPU. Werkhoven
et al. [14] proposes a new distributed computing approach
with block partitioning scheme and hierarchical load balancing
for the POP model on multiple GPU clusters. They primarily
focus on two components of POP, namely, equation of state
and vertical mixing coefficients. Their load balancing schemes
take into account communication hierarchy in the clusters,
and their GPU approach considers asynchronous data transfers
and memory mapping. In our work, we consider a stronger
model with horizontal mixing. While these efforts focused on
barotropic phase of POP, our work focuses on the baroclinic
phase, in which horizontal diffusion in tracers, the primary
focus of our work, is one of the major performance bottlenecks.

In the work by Xu et al. [15], the authors redesign mpiPOM
with GPU’s. They covert the code from Fortran to CUDA C
and optimize on GPUs using methods like loop and function
fusion, improved utilization of read only data cache and L1
cache, optimizing communication among multiple GPUs, I/O
optimizations between GPUs through overlapping I/O and
computation. Garcia et al. [16] accelerate a Cloud Resolving
Model (CRM) by implementing the MPDATA algorithm on
GPU using CUDA. They perform optimizations like data
reuse on GPU for saving transfer time, coalesced memory
accesses, and utilizing the GPU’s texture and shared memory.
Fuhrher et al. [17] optimize the atmospheric model, COSMO,
by rewriting the dynamical core using STELLA DSEL and
porting the remaining parts of the Fortran code to the GPUs
using OpenACC compiler directives.

Intel Xeon Phi processors have been used to provide high
performance for different scientific domains [5]–[7]. There
have been recent efforts in porting weather and climate models
on Intel Xeon Phi accelerators. Mielikainen et al. have a
number of efforts on optimizing Weather Research Forecast
Model (WRF) on Intel Xeon Phi architecture. In [18], the
authors have optimized the Thomspson cloud microphysics
scheme, a sophisticated cloud microphysics scheme. They have
used optimization techniques such as modifying the tile size
processed by each core, using SIMD, data alignment, memory
footprint reduction, etc. to achieve a speedup of 1.8x over the
original code on Intel Xeon Phi 7120P and on dual socket

205

configuration of eight core Intel Xeon E5-2670. In another
work [19], the authors optimize the longwave radiative transfer
scheme of the Goddard microphysics scheme of the WRF
model for Intel MIC architecture. Their optimization yields
a speedup of 2.2x over the original code on Xeon Phi 7120P.
They also optimize the updated Goddard shortwave radiation
of the WRF model for Intel Xeon Phi [20]. They observe a
speedup of 1.3x over the original code on Xeon Phi 7120P.

Betro et al. [21] highlight experiences and knowledge
gained from porting such codes as ENZO, H3D, GYRO, a
BGK Boltzmann solver, HOMME-CAM, PSC, AWP-ODC,
TRANSIMS, and ASCAPE to the Intel Xeon Phi architecture
running on a Cray CS300- AC Cluster Supercomputer named
Beacon. Most of these were ported by compiling with the flag
-mmic. They conclude that accelerator based systems are the
wave of the future based both on their power consumption
and a variety of programming paradigms to fit the needs of all
applications developer.

Michalakes et. al [22] optimize a standalone kernel im-
plementation of Rapid Radiative Transfer Model of the
NOAA Nonhydrostatic Multiscale Model (NMM-B). They
apply methods such as dynamic load balancing, lowering inner
loops, avoiding vector remainders, trading computation for
data movement, prefetching etc. and obtain a speedup of 1.3x
over the original code on Xeon Sandybridge and 3x over the
original code on Intel Xeon Phi.

To our knowledge, ours is the first effort on accelerating
POP model on Intel Xeon Phi clusters. While existing efforts
on accelerators and co-processors focused on data management
and vectorization, in addition to these optimizations, our work
proposes novel asynchronous execution model for simultane-
ous executions on both CPU and coprocessor cores.

IV. METHODOLOGY

In our work, we perform various optimizations for speed-
ing up the tracer calculations using Intel Xeon Phi. These
include loop fusion for cache locality, asynchronous offloads
of computations for simultaneous executions on Xeon Phi, and
efficient data management strategies.

A. Explicit and Implicit Loop Fusion

Most of the loops in the Fortran codes of horizontal
diffusion in tracers (hdifft) have WHERE conditional blocks
and implicit indexing as shown in Figure 4. The effect of
the WHERE block is that each statement within the block
is converted to a loop by the compiler. Figure 5 shows the
equivalent translation of the WHERE block shown in Figure
4. As shown in the figure, this transformation results in a
very inefficient code with each statement in the WHERE block
expanded as a loop with separate conditionals. This also leads
to poor cache efficiency since the data elements corresponding
to a large array are swapped out of and in to the cache
across subsequent loops. We found that even the use of −O3
optimization does not improve this compiler transformation.
The implicit indices in the array also prevent parallelization of
the WHERE blocks by the OpenMP threads.

To improve cache efficiency and promote parallelism, we
converted each WHERE block in the horizontal diffusion

1 WHERE LMASK
2 WORK1(:, :, kk) = KAPPA THIC(:, :

, kbt, k, bid) ∗ SLX(:, :, kk, kbt, k, bid) ∗ dz(k) ;
3 WORK2(:, :, kk) = c2 ∗ dzwr(k) ∗ (WORK1(:, :

, kk)−KAPPA THIC(:, :, ktp, k + 1, bid) ∗ SLX(:, :
, kk, ktp, k + 1, bid) ∗ dz(k + 1)) ;

4 end

Fig. 4. Code with WHERE block and implicit indexing

1 do j=1,n
2 do i=1,n
3 if LMASK(i,j) then
4 WORK1(i, j, kk) =

KAPPA THIC(i, j, kbt, k, bid) ∗
SLX(i, j, kk, kbt, k, bid) ∗ dz(k) ;

5 end
6 end
7 end
8 do j=1,n
9 do i=1,n

10 if LMASK(i,j) then
11 WORK2(i, j, kk) =

c2 ∗ dzwr(k) ∗ (WORK1(i, j, kk)−
KAPPA THIC(i, j, ktp, k + 1, bid) ∗
SLX(i, j, kk, ktp, k + 1, bid) ∗ dz(k + 1)) ;

12 end
13 end
14 end

Fig. 5. Equivalent Code of Code shown in Figure 4

in tracers to DO loops with explicit indices and converted
the arrays to use these indices. The transformation is shown
in Figure 6 for the code shown in Figure 4. We refer to
this transformation as implicit loop fusion since it implicitly
combines the multiple loops corresponding to the separate
statements of a WHERE block into a single loop block with a
single conditional. The implicit loop fusion results in improved
cache locality since the elements corresponding to the same
indices of large array are referred in subsequent statements,
as illustrated by the use of WORK1 array in the figure. We
also perform explicit loop fusion in which multiple subsequent
WHERE blocks are combined into a single loop block.

1 do j=1,n
2 do i=1,n
3 if LMASK(i,j) then
4 WORK1(i, j, kk) =

KAPPA THIC(i, j, kbt, k, bid) ∗
SLX(i, j, kk, kbt, k, bid) ∗ dz(k) ;

5 WORK2(i, j, kk) =
c2 ∗ dzwr(k) ∗ (WORK1(i, j, kk)−
KAPPA THIC(i, j, ktp, k + 1, bid) ∗
SLX(i, j, kk, ktp, k + 1, bid) ∗ dz(k + 1)) ;

6 end
7 end
8 end

Fig. 6. Implicit Loop Fusion for the code in Figure 4

The combined use of implicit and explicit fusion results

206

Version Exec. time (msecs)

Original code 40.8
Implicit fusion (1 thread) 13.5
Explict fusion (1 thread) 10.2
Implicit fusion (16 threads) 6.06
Explicit fusion (16 threads) 2.76

TABLE I. BENEFITS OF EXPLICIT AND IMPLICIT LOOP FUSION FOR

merged streamfunction ON INTEL XEON

in large improvement in performance due to reduced looping
overheads and conditionals, and increased cache efficiency and
parallelism. For example, Table I shows the single and multi-
thread performance on Xeon CPU with explicit and implicit
loop fusions for a function named merge streamfunction, one
of the functions in hdifft. As can be seen, implicit fusion
gives 3x performance improvement, while explicit fusion gives
a further 24% improvement. We performed such loop fusions
for 8 major functions within the hidfft function.

Table II shows the improvements obtained in the various
functions in hdifft by adopting the implicit and explicit loop
fusions (shown as I+E). The results correspond to a single
node 16-core Intel Xeon runs.

B. Aggregation and Asynchronous Executions on Xeon Phi

One option to accelerate hdifft computations in Xeon
Phis is to offload each invocation of hdifft in the tracer loop
and parallelize the computations of the loops inside the hdifft
function across the Xeon Phi threads. However, the loops
inside hdifft are fine-grained loops with low arithmetic inten-
sity. This approach also increases the number of offloads, and
hence the corresponding offload and data movement overheads.
These result in poor performance for Xeon Phi executions. For
example, for a single-node execution, the execution time for a
5-day simulation run increased from 235 seconds on a 16-core
Intel Xeon with 16 threads to 253 seconds on Intel Xeon Phi
with 240 threads. Thus, we attempt coarse-level parallelism on
the Xeon Phi to offset the offloading overheads.

In the tracer loop shown in Figure 3, the vmix coeffs
function sets the global variables needed for all subsequent
calls to hdifft in the first iteration corresponding to the first
vertical level. By dependency analysis, we also found that
the results of the post hdifft routines for a vertical level in
the tracer loop shown in Figure 3 is not used by hdifft in
the subsequent iterations. Thus, all the vertical levels can be
aggregated such that hdifft invocations in all the iterations
corresponding to the vertical levels can be potentially offloaded
to Xeon Phis, and the different vertical level hdiffts can be
performed by the different threads on the Xeon Phi cores. The
data needed for all the invocations of hdifft can be aggregated
and a single-time transfer of the aggregated data to Xeon Phi
can be performed for offloading the hdifft computations.
This model can exploit sufficient amount of offloading and
parallelism on Xeon Phi and can also minimize CPU-Xeon
Phi data transfer latencies.

However, we found that the functions invoked by hdifft
have pseudo-dependencies between the vertical level itera-
tions. This is illustrated in Figure 7 which shows a seg-
ment of the code inside the hdifft function. Here, variable

FZTOP SUBM set in the previous iteration for the previous
vertical level, vl − 1 is used in the current iteration, vl.
This hinders the planned coarse-grained parallelism across the
different vertical levels. By careful analysis, we found that this
variable for an iteration corresponding to vl can be calculated
using other variables set in the same iteration. Specifically, the
variable is purely based on a set of global variables which do
not change across vertical levels. We remove these pseudo-
dependencies thereby making the iterations independent.

1 do j = this block%jb, this block%je
2 do i = this block%ib, this block%ie
3 WORK1(i, j) = ... ;
4 fz = ... * (WORK1(i, j) +WORK2(i, j)) ;
5 GTK(i, j, n) = ...+

FZTOP SUBM(i, j, n, bid)− fz) *... ;
6 FZTOP SUBM(i, j, n, bid) = fz ;
7 end
8 end

Fig. 7. Illustration of Pseudo-dependency

While the hdifft invocations for different independent
vertical levels can be offloaded and parallelized on Xeon
Phi, we found that the performance improvement obtained
on about 200 light-weight Xeon Phi cores is negligible when
compared to the performance obtained on 16 cores of Xeon.
The arithmetic intensity of the code is too low to obtain
performance benefits in a synchronous offload model, in which
the CPU waits for the offloaded CPU computations. Hence,
we explore asynchronous offloading of hdifft in which the
CPU proceeds with its computations after offloading hdifft
to Xeon Phis, and both the resources execute different com-
putations simultaneously.

We propose a novel look-ahead asynchronous offloading
strategy in which we offload the computations for the next
timestep in the current timestep to Xeon Phi, and make the
CPUs proceed with its computations in the current timestep,
and pick up the results from Xeon Phi when it reaches the
next time step. There exists two types of tracers in the ocean
code, mixtime tracer (tmix) and current time tracer (tcur), as
mentioned in Section II. One of the primary parameters passed
to hdifft is the mixtime tracer, tmix. We noticed that at the
end of every time step, the mixtime tracer and the current time
tracer values are being swapped. Therefore, the value of tmix
for a timestep is the same as the value of the current time tracer,
tcur, in the previous time step. Thus, replacing tmix with tcur
in the call to hdifft at a timestep t will result in the output
produced by hdifft corresponding to timestep t+1. Thus, the
CPU can offload hdifft invocations with tcur at timestep t
for asynchronous executions on Xeon Phi and proceed with the
rest of its calculations. When the CPU reaches the next time
step, t+ 1, the Xeon Phis would have completed the hdifft
output needed for t + 1, which the CPU can pick up for its
calculations. Thus, in this asynchronous mode of execution, the
hdifft calculations are completely masked in the Xeon Phi
cores, and the time taken for these calculations is completely
subtracted from the total time, thereby resulting in significant
benefits.

For the first time step, the hdifft calculations are per-
formed on the CPU with tmix variable, and the result is

207

Function 1-thread Exec.
time of Original
code (msecs)

1-thread Exec.
time of Code
with I+E
(msecs)

16-thread exec. time of
code with I+E (msecs)

merged stream function part 1 40.7 10.3 2.5
merged stream function part 2 33.0 11.6 4.53
transition layer 30.1 12.8 6.3
apply vertical profile to isop hor diff 13.2 5.8 0.77
buoyancy frequency dependent profile 30.0 28.2 Limited where statements
vertical averages of horizontal buoyancy differences within the mixed layer 6.7 1.7 0.81
compute horizontal length scale 5.3 1.7 0.50
computing streamfunction due to submesoscale parameterization 14.0 3.9 1.1

TABLE II. BENEFITS OF IMPLICIT AND EXPLICIT LOOP FUSIONS (I+E) FOR DIFFERENT FUNCTIONS

used in the same timestep. The entire pseudocode related to
asynchronous executions of hdifft in Xeon Phi is shown in
Figure 8.

1 foreach time step do
/* Tracer update loop */

2 do iblock=1,nblocks clinic
3 do k=1,nverticals
4 vmix_coeffs (...) ;
5 if first timestep then
6 hdifft (...,tmix,...,WORK,...) ;
7 else
8 Wait for Xeon Phi to return from hdifft

offloaded in the prev time step ;
9 WORK = WORK PHI; /* Copy

output of the offloaded
hdifft from Xeon Phi */

10 end
11 begin offload
12 do kk=1,nverticals
13 hdifft (...,tcur,...,WORK PHI ,...) ;
14 end
15 end

/* Use WORK data */
16 advt (...) ;
17 vdifft (...) ;
18 end
19 end
20 end

Fig. 8. Pseudocode for Asynchronous Executions of Ocean Model

C. Minimizing Data Transfers and Converting to Allocatables

We also observed that many arrays that are used within
hdifft are initialized to zero at the beginning of hdifft
and are not used outside the scope of hdifft. This implies
that these arrays are local to the hdifft computations and
hence need not be copied from CPU to the coprocessor on
every offload. Many of these arrays (at least six) are large 5-
6 dimensional arrays. Thus, use of the nocopy option to the
offload for these arrays can result in significant performance
benefits. In our experiments, this resulted in at least 18%
reduction in data copying time.

We also found that copy of the allocatables are about 10%
faster than copy of the static variables from CPU host to the
coprocessor. Hence, we promoted many of the static arrays
to heap global arrays, and used allocatables option for these

arrays. In our experiments, we found that these optimizations
results in reduction of data transferred from 470 MBytes to
only 55 MBytes for a single timestep. In addition, we perform
one-time allocation and one-time copy of global data that needs
to reside on the Xeon Phi during only the first time step.

V. EXPERIMENTS AND RESULTS

In our experiments, we used the POP ocean model with
nominal resolution of approximately 1◦ with a horizontal grid
of 320 x 384 grid points with approximately 100 km spacing
between consecutive points, and the number of vertical levels
as 60. The experiments were conducted on a cluster containing
8 nodes of 16-core (dual octo-core) Intel Xeon E5-2670 CPU
with a speed of 2.6 GHz. Each node is equipped with two
Intel Xeon Phi 7120 PX cards, each with 61 cores. We show
results using 8 or 16 MPI tasks on the 8 nodes. We use
the Xeon Phi cards depending on the experiment. In each
Xeon Phi, 60 threads were executed. The experiments were
conducted for 100 simulation timesteps corresponding to 5-
day simulation runs. The timings of the model were obtained
from the logs generated by default CESM executions, using
GPTL library. Timings over specific regions of the code were
using OpenMP’s omp get wtime.

A. Results on Correctness

We first demonstrate the correctness of our code modifica-
tions due to various optimizations, including the asynchronous
executions on Xeon Phi in which some of the parameters for
hdifft calculations for the next time step are passed in the
current time step.

We verified the accuracy of the results by finding the root
mean square of the differences (RMSD) of the temperature
values of the ocean grid points produced in the original code
and our optimized code. The result was obtained for a 5-day
simulation run using 8 MPI tasks on 8 nodes with 4 OpenMP
threads on each node for a total of 32 threads, and one Intel Phi
card in each node for a total of 8 Intel Xeon Phi coprocessors.
The original code uses only the CPU cores while our optimized
version offloads hdifft computations to Xeon Phi.

Figure 9(a) shows the RMSD values for the different
timesteps. Figure 9(b) shows the variation of the actual tem-
perature values in ◦C, for a particular grid point corresponding
to approximately 45◦N and 135◦W, for various time steps in
the original and optimized codes. The graphs show that the
errors due to our optimizations are reasonably small.

208

(a) RMSD of Temperature Values of the Ocean Grid

(b) Actual Temperature Values for a Grid Point

Fig. 9. Error Growth due to our Optimizations and Offloading to Xeon Phi

B. Overall Performance Improvements

In all our performance-related experiments, the compar-
isons of our optimized code using Intel Xeon Phi cards are
made with the parallel execution of the original code using
only the CPU cores. In each experiment, our optimized code
using (X CPU cores + Y Intel Xeon Phi cards) across N nodes
is compared with the original parallel code running on the same
X CPU cores across the N nodes.

1) One Coprocessor Per Node Runs: We first show the
overall performance improvement using all our optimizations
over a baseline run utilizing only the CPU cores. In our
first experiment, we execute 8 MPI tasks on 8 nodes with
2 OpenMP threads on each node for a total of 16 threads, and
one Intel Phi card in each node for a total of 8 Intel Xeon
Phi coprocessors. Figure 10 shows the improvements in both
the baroclinic phase containing the hdifft routine that we
optimize in our work and the entire POP ocean model.

We find that the use of Intel Xeon Phi with our opti-
mizations described in this work yield about 25% reduction
in execution time over the CPU-only run for the baroclinic
phase and about 17.4% reduction in execution time for the
entire POP model.

2) Two Coprocessors Per Node Runs: Figure 11 shows
the executions corresponding to executing 16 MPI tasks on
8 nodes with 2 MPI tasks each. For offloading to Xeon Phis,
each of the MPI tasks on a node offloads its computations to
a separate Intel Xeon Phi card, thus utilizing both the Xeon
Phi cards on the node. The comparisons are with the CPU-

Fig. 10. Overall Performance Improvement Using One Coprocessor per Node

Fig. 11. Overall Performance Improvement Using Two Coprocessors per
Node

only executions. We find that the optimized code results in
about 42% performance improvement in the baroclinic phase
and about 23% performance improvement in the overall POP
model. The use of two Xeon Phis per node thus results in
more improvements showing that our strategies scale with
more coprocessors.

C. Individual Optimizations

Figure 12 shows the benefits due to our individual opti-
mizations, namely, implicit and explicit fusion, asynchronous
executions, and data management techniques. All the results
correspond to the execution of the entire POP model with 8
MPI tasks on 8 nodes with 4 OpenMP threads on each node
for a total of 32 threads. The first two bars correspond to
the benefits with our implicit and explicit fusion only on the
Intel Xeon CPUs. We find that our fusion techniques result in
7.7% reduction in time for the CPU execution. The remaining
correspond to offloading results using one Intel Phi card in
each node for a total of 8 Intel Xeon Phi coprocessors. The
middle two bars compare our asynchronous offloading and
simultaneous execution strategy on Intel Xeon Phi with a
synchronous execution strategy in which the CPU waits for the
Xeon Phi computations and use the results in the same time
step. We find that we obtain about 36% reduction in execution
time due to our asynchronous execution strategy. The last two
bars show the benefits due to our data management techniques,
including the use of nocopy variables and allocatables, that
minimize the CPU-coprocessor data transfers for offloading.
The data management techniques result in 18.16% reduction
in execution time.

209

Fig. 12. Benefits due to Implicit and Explict Fusions

Figure 13 compares two modes of offloading the hdifft
computations - our coarse-grained model in which we aggre-
gate all the data for all hdifft invocations for the vertical
levels, and offload and parallelize all the hdifft iterations
and a fine-grained model in which we offload every hdifft
invocation and parallelize all the loops contained in hdifft
on Xeon Phi. The result was obtained on 8 nodes with 8 MPI
tasks. Our results show that we obtain about 26% improvement
in performance with coarse-grained offloading model over fine-
grained mode. The large improvements with the coarse-grained
model is due to the reduced number of offloads and offloading
overheads, reduced data transfer latencies and large arithmetic
intensity in each Xeon Phi thread.

Fine−Grained Coarse−Grained

Illustrating Benefits of Coarse Grained over Fine Grained Parallelism

Model Type

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Fig. 13. Comparison of Coarse-Grained and Fine-Grained Offloading Model

VI. DISCUSSION

We can derive a number of valuable lessons from our
optimization steps with horizontal diffusion in tracers.

1) Options will have to be carefully weighed when
deciding on the portions to offload computations to
Xeon Phi. Particularly, large-scale scientific codes
will have large loops calling computationally inten-
sive functions, which in turn will have embedded
loops. The choice of offloading each function call and

parallelizing the inner loops (fine-grained offloading)
versus offloading the entire outer-level loop depends
on the arithmetic intensity of the inner loops, and
the amount of data needed by the function. If the in-
ner loops have large arithmetic-intensity, fine-grained
offloading can be adopted, while coarse-grained of-
floading is beneficial if there is more parallelism at
the outer-loop level. This was illustrated in Figure
13 where the coarse-grained parallelism yielded 24%
improvement in performance over the fine-grained
parallelism.

2) For performing coarse-grained offloading of the
outer-loop that invokes the function, the data needed
by the function will have to be aggregated efficiently
to minimize data-latency overheads. Data dependen-
cies into and out of the function will have to be
analyzed. In our work, analyses of the data depen-
dencies and minimizing data transfers resulted in 9%
reduction in execution time.

3) If the resulting coarse-grained offloading does not
improve performance significantly over the CPU
executions, asynchronous execution strategy can be
beneficial in which independent computations can be
performed simultaneously on both the CPU and Intel
Xeon Phi cores. This depends on the program char-
acteristics of the particular application. Look-ahead
asynchronous model, similar to our work, can be
performed if the code permits. As illustrated in Fig-
ure 12, the asynchronous execution strategy resulted
in 33% performance improvement over synchronous
executions in our work.

4) Large legacy scientific codes can have pseudo de-
pendencies that hinder parallelism. These will have
to be carefully removed. Our work also performed
this optimization and illustrated in Figure 13.

5) The use of WHERE statements in FORTRAN can
hinder parallelism, cache locality and vectorization.
Performance benefits will have to be analyzed for
potentially converting these blocks to loops with
explicit indexing. In our work, conversion to such
explicit indexing resulted in significant benefits as
shown in Tables I and II, and Figure 12.

6) Large scientific applications also contain many high-

210

dimensional data arrays needed for the offloaded
portions. Not all of them may have to be transferred
on every offload. Our strategies of copying only the
needed data by analyzing the local data, and use
of allocatables for static variables can significantly
reduce data transfer times. As shown in Figure 12, our
strategies resulted in 21% reduction in data copying
time.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have successfully offloaded the time-
consuming horizontal diffusion in tracers in the ocean model
on Intel Xeon Phi architecture. We adopted various strategies
including replacing WHERE blocks for implicit and explicit
fusions for increasing parallelism and cache efficiency, re-
moving pseudo-dependencies, data and function aggregation,
use of coarse-grained over fine-grained parallelism, a novel
look-ahead asynchronous execution model, and efficient data
management techniques including the use of nocopy variables
and allocatables for offloading. With our simultaneous execu-
tion model in which the results of the horizontal diffusion
routines for a time step are used in the subsequent time
steps, we showed error growths and demonstrated reasonable
accuracy. The use of Intel Xeon Phi with our optimizations
described in this work yielded about 25-42% reduction in
execution time over the CPU-only runs for the baroclinic
phase and about 17.4-23% reduction in execution time for
the entire POP model. Our optimization strategies exhibited
good scaling with the use of more Intel Xeon Phi processors.
Among our optimization techniques, the use of our novel look-
ahead asynchronous execution strategy on Intel Xeon Phis
resulted in about 36% performance improvement over the
synchronous strategy and the use of our data management for
offloading resulted in about 18% performance improvement
due to reduction in CPU-coprocessor data transfer times. In
future, we plan to adopt similar strategies for other components
of CESM and provide large-scale improvements for the entire
CESM on Intel Xeon Phi architectures. We also plan to explore
our optimizations in the future Intel Xeon Phi architecture of
Knight Landing.

ACKNOWLEDGMENTS

This project is supported by the Intel R© Parallel Computing
Centre for Modelling Monsoons and Tropical Climate (IPCC-
MMTC), India sponsored by the Intel R© Corporation. We
would also like to thank Om Sachan and Vinutha V from Intel
Software Services Group for their immense help with training
and support.

REFERENCES

[1] P. Worley, A. Mirin, A. Craig, M. Taylor, J. Dennis, and M. Vertenstein,
“Performance of the Community Earth System Model,” in Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11, 2011.

[2] J. Dukowicz and R. Smith, “Implicit Free-surface Method for the Bryan-
Cox-Semtner Ocean Model,” Journal of Geophysical Research, vol. 99,
pp. 7991–8014, 1994.

[3] R. Smith and e. a. P. Jones, “The Parallel Ocean Program (POP)
reference manual: Ocean component of the Community Climate System
Model (CCSM),” Los Alamos National Laboratory, Los Alamos, USA,
Tech. Rep. LAUR-10-01853, 2010.

[4] “The Gent-McWilliams Parametrization: 20/20 Hindsight,” Ocean Mod-
eling, vol. 39, pp. 2–9, 2011.

[5] Y. Liu, T. Tran, F. Lauenroth, and B. Schmidt, “SWAPHI-LS: Smith-
Waterman Algorithm on Xeon Phi coprocessors for Long DNA Se-
quences,” in IEEE International Conference on Cluster Computing
(CLUSTER), 2014.

[6] S. Heybrock, B. Joo, D. Kalamkar, M. Smelyanskiy, K. Vaidyanathan,
T. Wettig, and P. Dubey, “Lattice QCD with Domain Decomposition on
Intel Xeon Phi Co-Processors,” in International Conference for High
Performance Computing, Networking, Storage and Analysis, SC14,
2014.

[7] R. Luo, J. Cheung, E. Wu, H. Wang, and S.-H. C. et al., “MICA: A Fast
Short-read Aligner that takes full advantage of Many Integrated Core
Architecture (MIC),” BMC Bioinformatics, vol. 16, no. 7, pp. 1–8, 2015.

[8] J. Michalakes and M. Vachharajani, “GPU Acceleration of Numerical
Weather Prediction,” in IEEE International Symposium on Parallel and
Distributed Processing, IPDPS, 2008.

[9] M. Govett, J. Middlecoff, and T. Henderson, “Running the NIM
Next-generation Weather Model on gpus,” in IEEE/ACM Internation
Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010.

[10] I. Carpenter, R. Archibald, K. Evans, J. Larkin, P. Micikevicius,
M. Norman, J. Rosinski, J. Schwarzmeier, and M. Taylor, “Progress
Towards Accelerating HOMME on Hybrid Multi-core Systems,” Inter-
national Journal of High Performance Computing Applications (IJH-
PCA), vol. 27, no. 3, pp. 335–347, 2013.

[11] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, T. Endo,
A. Nukada, N. Maruyama, and S. Matsuoka, “An 80-fold Speedup,
15.0 Tflops Full GPU Acceleration of Non-Hydrostatic Weather Model
ASUCA Production Code,” in Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10, 2010, pp. 1–11.

[12] Y. Hu, X. Huang, A. Baker, Y. Tseng, F. Bryan, J. Dennis, and G. Yang,
“Improving the Scalability of the Ocean Barotropic Solver in the
Community Earth System Model,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC, 2015.

[13] F. Bleichrodt, R. Bisseling, and H. Dijkstra, “Accelerating a Barotropic
Ocean Model using GPU,” Ocean Modeling, vol. 14, pp. 16–21, 2012.

[14] B. van Werkhoven, J. Maassen, M. Kliphuis, H. Dijkstra,
S. Brunnabend, M. van Meersbergen, F. Seinstra, and H. Bal,
“A Distributed Computing Approach to Improve the Performance of
the Parallel Ocean Program (v2.1),” Geoscientific Model Development,
vol. 7, no. 1, pp. 267–281, 2014.

[15] S. Xu, X. Huang, L.-Y. Oey, F. Xu, H. Fu, Y. Zhang, and G. Yang,
“POM.gpu-v1.0: a GPU-based Princeton Ocean Model,” Geoscientific
Model Development, vol. 8, no. 9, pp. 2815–2827, 2015.

[16] H. Zhang and J. Garcia, “GPU Acceleration of a Cloud Resolving
Model using CUDA,” in Proceedings of the International Conference
on Computational Science, ICCS, 2012, pp. 1030–1038.

[17] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming, M. Bianco,
A. Arteaga, and T. Schulthess, “Towards a Performance Portable, Ar-
chitecture Agnostic Implementation Strategy for Weather and Climate
Models,” Supercomputing Frontiers and Innovations, vol. 1, no. 1, 2014.

[18] J. Mielikainen, B. Huang, and A. Huang, “Revisiting Intel Xeon Phi
optimization of Thompson cloud microphysics scheme in Weather
Research and Forecasting (WRF) model,” Proc. SPIE 9646, High-
Performance Computing in Remote Sensing V”, 2015.

[19] ——, “Performance tuning Weather Research and Forecasting (WRF)
Goddard longwave radiative transfer scheme on Intel Xeon Phi,” 2015.

[20] ——, “Optimizing the updated Goddard shortwave radiation Weather
Research and Forecasting (WRF) scheme for Intel Many Integrated
Core (MIC) architecture,” 2015.

[21] V. Betro, R. Harkness, B. Hadri, H. You, R. Hulguin, R. Brook, and
L. Crosby, “Performance Metrics and Application Experiences on a
Cray CS300-AC Cluster Supercomputer Equipped with Intel Xeon
Phi Coprocessors,” in In proceedings of the Cray User Group (CUG)
Conference, 2013.

[22] J. Michalakes, M. Iacono, and D. Berthiaume, “Optimizing Weather
Model Radiative Transfer Physics for the Many Integrated Core and
GPGPU Architectures,” in Heterogeneous Multi-Core Workshop, 2014.

211

