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a b s t r a c t

Long Wave Radiation Calculations are one of the most time-consuming calculations in atmosphere
modeling. In this work, we explore two models for executions of these calculations on Intel R⃝ Xeon PhiTM
Coprocessor Systems. In the asynchronousmodel, we offload the radiation calculations to the coprocessors
and simultaneously execute calculations on the coprocessors along with the other atmosphere model
calculations in the CPU cores. In the synchronous model, the CPU cores after offloading, wait for the
results, and use the results in the same time step. We developed various techniques to complete these
synchronous executions in minimal time, including loop rearrangement and low-cost interpolations.
Using our experiments on an Intel Xeon Phi cluster, we show that our asynchronous execution model
results in savings ofmanymonths inwall-clock execution time formulti-century climate simulations. Our
synchronous execution model results in performance improvements of up to 70% in long-wave radiation
calculations.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Climate change has become a prominent field of study in the
present time due to its immense impact on all walks of life as
diverse as energy usage, health, agriculture, etc. Modeling the
climate facilitates the prediction of temperature changes, winds,
radiation, relative humidity and other factors. These are non-linear
models containing computationally intensive routines that require
a lot of computing power [7]. Climate models are mathematical
representations of the climate based on the physical, chemical
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and biological principles. The complexity of the equations, which
include the equations of conservation of mass, momentum, energy
and species, necessitates the use of numerical methods in solving
them. Climate models simulate the interaction of the various
components of the climate such as atmosphere, land, ocean and
ice.

One such climate model is the Community Earth System
Model [4], developed and maintained by the National Center for
Atmospheric Research (NCAR). CESM consists of several compo-
nent models, e.g. physical climate, chemistry, land ice, whole at-
mosphere, etc., that can be coupled in different configurations. In
all cases, geophysical fluxes across the components are exchanged
via a central coupler module. A large number of simulations with
CESM have been conducted, some of which are available for com-
munity analysis [4].
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Fig. 1. Execution profile of CESM.

The atmosphere is the most time-consuming model in CESM,
as shown in Fig. 1. We obtained such execution profiles using
Intel VTune Amplifier and HPCToolkit profiler [11]. The execution
profile is obtained by running CESM v 1.2.2 with f 02_g16, the
highest resolution1 and B compset (fully-coupled run) on eight-
node 128-core Intel Xeon processors with 8 MPI processes and
16 OpenMP threads per process for a total of 128 threads. The
model used for atmosphere is the Community Atmosphere Model
(CAM4) [3,5]. The computational phases in CAM are dynamics and
physics. The evolutionary equations for the flow of atmosphere
are advanced by the dynamical core (henceforth dynamics) and
the subgrid phenomena including clouds, long and short wave
radiations and others are approximated through physics. Finite
Volume was adopted as the default core for the physics [5] which
uses a longitude× latitude× vertical level computational grid over
the sphere. The physics in CAM is based upon vertical columns
whose computations are independent from each other. In a typical
parallel implementation of physics, columns are assigned to MPI
processes and within a process, OpenMP threads are used to
compute the columns assigned to that process.

Most of the work to accelerate climate science routines have
concentrated on the dynamics. In this work, we chose to accelerate
the physics routines as they were observed to consume significant
times. In our experiments with different resolutions, we found
that the physics routines that compute the long and short wave
radiations consume about 15%–35% of the total time spent in the
atmosphere routines. In fact, the time taken by a full radiation
time step is about 3× the time for the regular time step. The
routine radabs, corresponding to long-wave radiations, takes the
largest percentage of the overall run time (14%–21% for high
resolutions and 50% for the lowest resolution) when compared to
any other single routine. The cost of such long-wave computations
is significant for other climate modeling applications and on other
architectures as well. Radabs computes the absorptivities for gases
like H2O, CO2, O3, CH4, N2O, CFC11 and CFC12. By default, this is
run only every twelve simulated hours because of the expensive
computations within this routine. Ideally we would like to run this
routine at least once every hour (as water vapor concentration can
change significantly on the diurnal scale and significantly change
the emissivity and absorptivity of the atmosphere) without unduly
increasing the overall time spent in radabs.

Accelerators and co-processors are widely prevalent and have
been used to provide high performance for many scientific ap-
plications. Intel R⃝ Xeon PhiTM coprocessors have been gaining

1 See Table 3 for resolutions.
ground to provide speedups for advanced scientific applications
[9,12,13]. However, the use and demonstration of these coproces-
sors for climate modeling are limited. In this work, we explore two
models for executions of these calculations on Intel R⃝ Xeon PhiTM
coprocessor systems. In the asynchronous model, we offload the
radiation calculations to the coprocessors and simultaneously
execute calculations on the coprocessors along with the other at-
mosphere model calculations in the CPU cores. While this model
completely masks these calculations in the coprocessors thereby
providing significant speedups, it could appear that since the data
is used in the subsequent time step, the simulation results could
be less accurate. However, due to complete masking and increased
performance, the frequency of computing these radiation related
calculations can be significantly increased and the diurnal cycle
computed in an improved fashion which would lead to improved
climate simulations.We also explore a synchronousmodel, inwhich
the CPU cores after offloading, wait for the results, and use the re-
sults in the same time step. We developed a suite of techniques
to complete these synchronous executions in minimal time. These
techniques include loop rearrangement and fission for vectoriza-
tion, and substituting the costly math functions with low-cost in-
terpolation functions by employing efficient look-up table data
structures and vectorization-promoting search techniques.

Using our experiments on an Intel Xeon Phi cluster, we show
that our asynchronous executionmodel results in performance im-
provement of up to 89% in long-wave radiation calculations and
45% in the atmosphere model for the lowest resolution (13% for
high resolutions), and savings ofmanymonths inwall-clock execu-
tion time for multi-century climate simulations. Our synchronous
execution model results in performance improvements of up to
70% in long-wave radiation calculations and 10% in the atmosphere
model.We also show that individually our vectorization strategies,
low-cost approximations of transcendental functions using inter-
polation functions and lookup table methods, and use of advanced
compiler flags provided significant improvements in performance.

Following are the primary contributions and novelty of our
work:

1. This is the first work, to our knowledge, that uses domain
knowledge to promote asynchronous hybrid CPU-Intel Xeon
Phi executions, in which a slow-varying function is offloaded
to Intel Xeon phi in a time step and its results are used in the
subsequent time step.

2. The performance-accuracy tradeoffs of the approach of asyn-
chronous computations of slow-varying functions are com-
prehensively evaluated by comparing with a synchronous
executionmodel in which the results of the function are used in
the same time step. This is the first kind of such tradeoff analysis
conducted in the context of coupled climate models.

3. This is also the first work, to our knowledge, that uses depen-
dency analysis and code reorganization for efficient hybrid ex-
ecutions in a large-scale legacy climate modeling application,
namely CESM. Such reorganizations lead to efficient overlap-
ping of CPU and Xeon Phi executions resulting in high perfor-
mance for the synchronous execution model.

In Section 2, we give the overall structure of the radiation
calculations. Section 3 covers related work in the area of high
performance of climate and weather models on accelerators and
coprocessors. In Section 5, we describe our asynchronous model
of execution of radiation calculations on Intel Xeon Phi core
simultaneously with executions of other computations on the CPU
cores. Section 6 describes our synchronous execution model, in
which we speedup the radiation calculations on the Xeon Phis.
This section describes various optimizations to achieve speedup
including intelligent placement of the radiation calculations in
the overall CAM execution, use of low-cost interpolations, and
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vectorization strategies including loop fission. Section 7 presents
experiments and results. In Section 8, we derive general principles
from our optimizations on the climate modeling application.
Section 9 gives conclusions and presents scope for future work.

2. Background

2.1. Radiation calculations

The computational grid for the atmosphere is divided into lat-
itudes, longitudes in the east–west (x) and north–south (y) di-
rections and vertical columns along the z direction. The vertical
columns extend from the surface up through the atmosphere. The
columns are further divided into layers. The characteristic fea-
ture of the physics routines is that every vertical column can be
computed independent of the other columns giving rise to data
parallelism that can be exploited on multi and many core archi-
tectures. For the purpose of load balancing among the different
CPU processes, the columns are grouped into chunks. A chunk is a
unit of execution containing a configurable number of columns. A
chunk may or may not contain contiguous set of vertical columns
i.e. columns from neighboring grid points may not be in a single
chunk. These chunks are distributed among the MPI processes and
theOpenMP threads. Every physics routine is called for each chunk.
The pseudo-code for physics calculations is shown in Fig. 2.

One of themost important components of the radiation routine
is the radclwmx subroutine that computes longwave heating rates.
The radclwmx subroutine uses broad band absorptivity/emissivity
method to compute clear skies and assumes randomly overlapped
clouds with variable cloud emissivity to include effects of clouds.
It computes the clear sky absorptivity/emissivity at a frequency
lower than the model radiation frequency as these computations
are expensive. The functions that calculate the absorptivities and
emissivities for different gases are radabs and radems respectively.
Out of the two, it was observed that radabs was the most
time consuming routine in-spite of having a lower frequency
of calculation. As shown in Fig. 2, all radiation calculations
including radabs are invoked for each chunk. In this work, we
focus on providing high performance for the radabs routine. radabs
consumes at least 14% of the total time spent in the atmosphere
run, and the full radiation time steps that include the radabs
computations takes about 3× more time than the regular time
steps. In the default execution mode it is run at a 12 h frequency.
It would however be preferable to conduct these executions more
frequently for better representation of fluctuations of emissivities
and absorptivities due to diurnal fluctuation of water vapor.

2.2. Intel Xeon Phi architecture

Intel’s first generation Many Integrated Core (MIC) architec-
ture [10,19,20] codenamed Knights Corner, is an x86 based system
that contains up to 61 in-order processing cores, and offers peak
single precision performance of nearly 2.1 TFLOPS. Each of these
cores supports up to 4-way hardware multithreading and features
a vector unit which uses wide 512 bit registers. Each core features
fully coherent L1 and L2 caches, with a bidirectional ring that pro-
vides fast access to L2 caches of other cores.

The Xeon Phi also offers high memory bandwidth of nearly
160 GBPS, but the L1 and L2 caches offer much higher memory
bandwidth than the memory, and using them effectively is the key
to approaching peak performance. Apart from thread parallelism,
it is crucial to properly utilize thewide vector unit;more so than on
the Xeonwhich has only 256 bit wide registers. Although the Xeon
Phi offers gather and scatter operations for vectors, vectorization
is significantly more effective if data is contiguous inmemory with
unit stride accesses. Data alignmentwill provide even better vector
Fig. 2. Pseudocode for physics calculations in CAM.

performance. The Xeon Phi also features low precision hardware
support for certainmath functions like power, logarithm, etc. apart
from FMA (Fused Multiply Add) that provide additional speedup
for workloads that have these computations.

Programming the Xeon Phi is similar to programming any other
x86 machine—the same programming model is applicable with a
host of popular libraries like MPI and OpenMP that are supported.
The same optimizations that apply on the Xeon also apply without
change on the Xeon Phi. In general, development time of a parallel
application on the Xeon Phi is short. The Xeon Phi offers three
modes of operation—native, offload and symmetric. We use the
offload model of execution in our study, where the host offloads
a portion of computation to the Xeon Phi either synchronously or
asynchronously with simultaneous CPU executions.

3. Related work

In this section,we present previous efforts that explored the use
of accelerators and co-processors for climate and weather models.
There have been a number of efforts in using GPUs for climate and
weather models. Michalakes and Vachharajani [15] used GPUs to
improve the performance of the Weather Research and Forecast
(WRF) model. Their work resulted in 5–20× speed-up for the
computationally intensive routine WSM5. In the work by Govett
et al. [8], the non-hydrostatic icosahedral (NIM) model was ported
to the GPU. The dynamics portionwhich is themost expensive part
of the NIM model was accelerated using GPU and the speed-up
achieved was about 34 times on Tesla—GTX-280 when compared
to a CPU. The Oak Ridge National Laboratory (ORNL) ported the
spectral element dynamical core of CESM, HOMME, to the GPU [2].
A very high resolution of (1/8)th degree was used as a target
problem. Using asynchronous data transfer, the most expensive
routine performed three times faster on the GPU than the CPU.
This executionmodel was shown to be highly scalable. The climate
model ASUCA [23] is a production weather code developed by the
JapanMeteorological Agency. By porting their model fully onto the
GPU they were able to achieve 15 TFlops in single precision using
528 GPUs. The TSUBAME 1.2 supercomputer in Tokyo Institute of
Technology was used to run the model. The CPU is used only for
initializing the models and all the computations are done on the
GPU. There are different kernels for the different computational
components.

In the work by Schalkwijk et al. [22], the authors have utilized
the GPUs for Large Eddy Simulation (LES) models, which has
allowed them to provide turbulence-resolving numerical weather
forecasts over a region the size of the Netherlands, at 100 m
resolution. Garcia et al. [25] accelerate a Cloud Resolving Model
(CRM) by implementing the MPDATA algorithm on GPU using
CUDA. They perform optimizations like data reuse on GPU for
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saving transfer time, coalesced memory accesses on GPUs, and
utilizing the texture memory and shared memory on the GPU.
Fuhrer et al. [6] optimize the atmospheric model COSMO by
rewriting the dynamical core using STELLA DSEL and porting the
remaining parts of the Fortran code to the GPUs using OpenACC
compiler directives.

Intel Xeon Phi processors have been used to provide high
performance for different scientific domains [9,12,13]. There have
been recent efforts in porting weather and climate models on Intel
Xeon Phi accelerators. Mielikainen et al. have a number of efforts
on optimizing Weather Research Forecast Model (WRF) on Intel
Xeon Phi architecture [16–18]. In [18], the authors have optimized
the Thomspson cloud microphysics scheme, a sophisticated cloud
microphysics scheme. They have used optimization techniques
such as modifying the tile size processed by each core, using SIMD,
data alignment, memory footprint reduction, etc. to achieve a
speedup of 1.8× over the original code on Intel Xeon Phi 7120P
and 1.8× over the original code on dual socket configuration of
eight core Intel Xeon E5-2670. In another work [17], the authors
optimize the longwave radiative transfer scheme of the Goddard
microphysics scheme of theWRFmodel, for Intel MIC architecture.
Their optimization yields a speedup of 2.2x over the original code
on Xeon Phi 7120P. They also optimize the updated Goddard
shortwave radiation of the WRF model for Intel Xeon Phi [16].
They observe a speedup of 1.3× over the original code on Xeon
Phi 7120P.

Betro et al. [1] highlight experiences and knowledge gained
from porting such codes as ENZO, H3D, GYRO, a BGK Boltzmann
solver, HOMME-CAM, PSC, AWP-ODC, TRANSIMS, and ASCAPE to
the Intel Xeon Phi architecture running on a Cray CS300-AC Cluster
Supercomputer named Beacon. Most of these were ported by
compiling with the flag -mmic. They conclude that accelerator
based systems are the wave of the future based both on their
power consumption and variety of programming paradigms to fit
the needs of all application developers.

Michalakes et al. [14] optimize a standalone kernel implemen-
tation of Rapid Radiative Transfer Model of the NOAA Nonhydro-
static Multiscale Model (NMM-B). They apply methods such as
dynamic load balancing, lowering inner loops, avoiding vector re-
mainders, trading computation for data movement, prefetching,
etc. and obtain a speedup of 1.3× over the original code on Xeon
Sandy Bridge and 3× over the original code on Intel Xeon Phi.

While existing efforts on accelerators and co-processors
focused on data management and vectorization, in addition
to these optimizations, our work proposes novel asynchronous
executionmodel for simultaneous executions on both the CPU and
coprocessor cores.

4. Aggregation of radabs for offloading to Intel Xeon Phis

As shown in Section 2, the radabs routine is invoked for each
chunk containing a set of columns. A simple strategy to provide
high performance for the radabs routine on Intel Xeon Phi systems
is to offload the calculations for each chunk to Intel Xeon Phi and let
each column of a chunk to be computed by a single Intel Xeon Phi
thread. However, by default, the number of columns in each chunk
is limited to load balance for the other physics computations.
Hence this strategy results in a large number of offloads, incurring
high offload overheads, and limited parallelism for each offload.
In our experiments, we found 10× degradation in performance of
radabs with this strategy. Another option is to configure CESM to
divide the domain into a small number of chunks, each containing
a large number of columns. However, as mentioned above, this
results in load imbalance in the other physics routines and also
affects the OpenMP parallelism of the chunk-level loop for the
other computations (e.g., convections) on the CPU cores for a MPI
process.

We propose twomodels of offloading: an asynchronousmodel
in which the radabs computations are offloaded in the current
time step and its results are used only in the next step, and a
synchronous model in which the results are used in the same
time step. For both the models, we aggregate all the chunks into
contiguous data and offload the radabs computations to Intel Xeon
Phis for the entire aggregated chunks. This strategy maximizes the
parallelism in the Xeon Phi and drastically reduces the number of
offloads, and hence the offloading overheads. For aggregation of
data of different variables needed for radabs, we used the Array
of Structures (AoS) since it provides good locality characteristics.
In our experiments, we found the aggregation overheads to be
negligible.

5. Asynchronous execution model

In this model, the CPU, after offloading radabs to Xeon Phi in
the current time step, does not wait for the results from Xeon Phi
cores to arrive in the same time step, but immediately proceeds
to the other computations. Any computations that depend on the
offloaded radabs use the results corresponding to the previous
offloads. The CPU utilizes the Xeon Phi results only when it reaches
the dependent computations in the next time step. As shown in
our experiments, the Xeon Phi completes the radabs calculations
before the CPU reaches the dependent computations in the next
time step, thereby completelymasking these calculations from the
CPU executions. The time spent in the radabs routine is only to
collect the relevant data for the next radabs computation and copy
back the results of the previous radabs computation.

Since only the results of the previous time step are used for the
dependent computations in the current time step, such an asyn-
chronous model can be followed if the offloaded function is slow-
varying. We harness the domain-specific knowledge related to
climatemodeling and use the stability of the radiation calculations
to follow asynchronousmodel for the radabs calculations. Since the
radabs computations are not performed every time step and the
numerical methods involved in the computations are stable, we
can use the absorptivities computed in the previous radabs time
step for the subsequent time step(s). In the default setup, values
obtained from radabs are used over the next 12 h of simulations. In
our asynchronous model, we propose to compute more often. The
greatly reduced time in the asynchronous model enables a more
frequent radabs computation. The frequent execution enabled by
the asynchronous model will improve the representation of emis-
sivities and absorptivities and hence improve the quality of climate
simulations.

When radabs is called for each chunk, the input arguments for
each invocation are marshaled into a buffer. After radabs is called
for the last chunk, the buffer is transferred to the Xeon Phis, and the
radiation calculations are executed asynchronously on the Xeon
Phis. The pseudo code for the asynchronous executions is shown
in Fig. 3.

6. Synchronous execution model

In the synchronous execution model, the CPUs, after offloading
the computations to Xeon Phi, wait for the results and use the
results in the same time step. For this to be beneficial, the Xeon
Phi computations of radabs must be faster than the corresponding
CPU computations, and the idling time on the CPU due to waiting
for the Xeon Phi results should be minimized. We explore various
ways to achieve this goal, namely, identify dependencies for radabs
and perform early starts of the computations that radabs depends
on, perform good vectorization of the computations on Xeon Phi
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Fig. 3. Strategy for asynchronous execution: Radabs.

and identify primary bottlenecks resulting in slower computations
on Xeon Phi and replace them with low-cost computations. Note
that these optimizations are of lesser relevance for asynchronous
executionmodel, since the asynchronous executions evenwithout
the optimizations are able to complete by the next time step when
the results are needed in the CPU, as shown in our experiments.
Once the relevant portions for optimizations were identified, the
use of Intel directives to achieve optimized executions on Xeon
Phi only needed a maximum of 3 days of work, which conveys the
ease of programming when compared to the other programming
models.

6.1. Early placement of radabs computations

Fig. 4 shows the original structure of the physics and radabs
computations. Using data analysis, we found that in each chunk-
level iteration, there exist computations on which radabs depends
on and independent computations that are not related to radabs.
In the figure, all the functions, namely, radtpl, radoz2, trcpth,
aer_trans_from_od, and radems, perform computations on which
radabs depends on. Hereon, we refer to these functions as feeder
functions. The functions, that are marked as indep_pre_radabs and
indep_post_radabs perform computations that are not related to
radabs computations. The computations which depend on the
results of radabs are marked as dep-post-radabs.

Recalling that all the longwave radiation functions including
the feeder functions and radabs are independent across various
columns and hence across chunks, we can perform all the
feeder functions for all the chunks first, making the input data
needed for the radabs for all the chunks available at the earliest
possible instance. This allows an early start of data transfer
and offloading of radabs to Xeon Phi. By performing radabs
offloads at the earliest possible instance, the radabs-independent
computations can be pushed down the code and can be performed
on the CPU cores simultaneously with the radabs computations
on the Xeon Phi cores. This reduces the waiting time incurred
by the CPU for the Xeon Phis to complete. We also found
that while the shortwave computations are performed before
the longwave computations in the original code, not all the
computations in the longwave computations depend on the results
of the shortwave computations. Only the dep-post-radabs in
longwave computations depends on the short wave calculations.
Hence the shortwave computations can also be pushed down
the code after radabs, but before dep-post-radabs, and can be
performed simultaneously on the CPU cores along with the radabs
computations on the Xeon Phi cores. This reduced thewaiting time
further. Overall, we found that the code reorganization and early
placement of radabs offloads resulted in 10% reduction in waiting
time by the CPU over offloading radabs at its default location in the
original code. The modified structure of the physics code is shown
in Fig. 5.

6.2. Vectorization of radabs

One of the important techniques to improve performance on
Xeon Phi is the vectorization of the loops, where independent
iterations are performed in separate vector units on a core. radabs
contains two large-level loops: the first loop had 300 lines of code
and the second loop contained 95 lines. We performed a number
of steps for vectorization:

1. Large loop lengths prevent vectorization on the light-weight
vector units. Hence, we performed loop fission by dividing the
original loop statement into blocks such that minimal or no
data dependency exists between the blocks. Loop fission also
necessitated the conversion of many scalars in the small loops
to equivalent arrays. This helped in vectorization of most of the
loops and loop statements.

2. We also extracted some assignments of scalar variables and
function calls with these scalar variables as arguments out
of the loop and created array variants of these assignments
and function calls with implicit indexing. This resulted in the
vectorization of these statements.

3. For some of the math functions, we used the corresponding
functions in the Intel Math Kernel Library (MKL). This signif-
icantly reduced the time taken for these functions and also
helped in vectorization.

4. For some statements using math functions, we used the
SIMD directive that is used to forcefully vectorize a block of
statements.

We found that the above vectorization strategies of loop fission,
scalar to array conversions, use of Intel MKL and SIMD directives
yielded 43%–55% improvement in performance of the individual
loops, and 36.1% improvement in performance for the radabs
computations on Xeon Phi. We also found using our 16-thread
experiments on Intel Xeon CPU cores that these vectorization
strategies also provide benefits on the CPU cores yielding 17%–35%
improvement in performance of the individual loops, and 13%
improvement in performance for the radabs computations.We find
that these vectorization steps yield higher benefits onXeon Phi due
to increased vectorization lengths.

6.3. Use of low-cost interpolations and search methods

We also found that the major bottlenecks in the executions of
the radabs on Xeon Phi are the many math functions including log ,
log and power functions in goffgratch and exp. These were found
to consume at least 30% of the overall execution time on Xeon
Phi. We explored the use of interpolation functions and lookup
tables [24] to replace these costly math functions. Specifically, for
each math function, we determined the set of ranges of parameter
values passed to the function at different locations in the code
using trial runs. We then conducted a series of offline experiments
to determine the best method in terms of speed and accuracy for
function evaluation in the range. In our offline experiments, we
divided each range into fixed size intervals and determined the
function values, Y , at discrete input parameter values, X , separated
by the fixed size intervals. The array of X and Y formed a lookup
table. For the range, we then tried to fit our interpolation functions
and chose the function that fits with the least approximation
errors. We explored linear, cubic and quartic spline functions for
interpolations. Thus, given an x value for a function invoked during
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Fig. 4. Physics and radabs computations in CAM.
the radabs execution, we can directly invoke the corresponding
best interpolation function.

For some ranges, especially for large rangeswhere interpolation
functions gave high approximation errors, we directly search for a
particular x value in our lookup table to obtain the corresponding y
value. For a range for a function, inwhich cubic spline interpolation
is determined to give the least approximation error, the spline
function uses different functions with different coefficients for
subrangeswithin the range. Here too,we need to search the lookup
table for the subrange in which a given x value falls and use the
corresponding coefficients for the spline function. While binary
search has smaller time complexity, the loop corresponding to
binary search is not vectorizable due to large jumps in accessing
the elements of the array that is searched. On the other hand,
vectorization of linear search is supported by the Intel Fortran
compilers. Thus, the choice of the search method should be
dependent on the tradeoffs between benefits due to vectorization
and the size of the array.

In cases of small ranges for the cubic spline functions, we use
linear search of lookup table, instead of binary search which will
be faster if the table size becomes large. We have a separate
lookup table based methodology for approximation of logarithms
(base 10) where the outer loop is not vectorized. This lookup table
consists of 104 log values corresponding to the integers 1–10 000.
For every new incoming parameter upon which log operation is
to be performed, we convert the parameter to a form where the
mantissa has 4 digits and calculate the corresponding exponent.
We then use this 4 digit mantissa for a O(1) lookup of the above
table, and add the exponent to it to obtain the approximate log
value. This algorithm of mantissa and exponent determination is
not vectorizable due to the presence of loop carried dependency,
but the lack of vectorization did not have an impact for the lookup
table search for this log call since the loop in radabs containing this
log call was not vectorizable in the first place.

For the subranges in the cubic spline functions, the sizes of the
lookup tables were also tuned using offline experiments. For each
subrange, we chose the lookup table size that provided the best
tradeoff of performance and accuracy. Specifically, we chose the
table size corresponding to the minimum time while satisfying
the accuracy requirement of at most 10−4 error value. Table 1
illustrates the choices of the best interpolation functions and
lookup table sizes for different invocations of math functions at
different locations in radabs.

6.4. Other optimizations

We also provided speedup of Xeon Phi executions of radabs by
exploring different floating point options for the compiler. The op-
tion ‘‘-fp-model source’’ maintains source precision but is slower
since it does not use vector units. The option ‘‘-fp-model source-
fast-transcendentals’’ essentially calculates the values of transcen-
dental functions (math functions) that are less accurate than with
‘‘fp-model source’’, but provides better performance since the op-
tion produces vectorized versions of these transcendental func-
tions that help vectorize outer loops. The options ‘‘-fp-model fast =

1’’ and ‘‘fp-model fast = 2’’ in addition to using vectorized tran-
scendentals, also provide faster versions of other arithmetic oper-
ations that are less accurate. Besides, we use ‘‘-fimf -precision =

high’’ which tries to improve the precision with these fast models,
while ‘‘-fimf -precision = medium’’ is the default. Table 2 shows
the performance with different compiler optimizations (-O2 and
-O3) and flags on Xeon Phi with 240 threads. We find that the per-
formance improves as fast-related flags are used. We also find that
the use of -O3 does not significantly improve performance over -
O2. Hence, in all our experiments, we use -O2 due to its higher ac-
curacy.

In addition to the use of advanced flags, on systems with
multiple Xeon Phi cards per node, we also divide the radabs
computations across all chunks equally among the available Xeon
Phi cards to provide additional speedups.

7. Experiments and results

7.1. Experimental setup

In our experiments, we used CESM v 1.2.2 with compset F
that involves data model for ocean. We used three different
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Fig. 5. Synchronous model with early placement of radabs computations.
Table 1
Interpolation and lookup table choices in radabs.

S. No. Function call and their locations in the model Interpolation and lookup table usage

1 log functions in trcab function Cubic spline with 16-point lookup table
2 log and power functions in goffgratch Cubic spline with 151-point lookup table
3 log-base 10 in loop 1 10,000-point lookup table with O(1) search
4 exp calls in trcab 2-point interpolation using Lagrange’s formula
Table 2
Performance with different optimization levels and flags of radabs on Xeon Phis.

S. No. Compiler switch -O2 (in sec) -O3 (in sec)

1 -fp-model source 2.1 2.05
2 -fp-model source -fast-transcendentals -fimf-precision = high 1.14 1.14
3 -fp-model -fast = 1 -fimf-precision = high 0.7 0.7
4 -fp-model -fast = 2 -fimf-precision = high 0.6 0.59
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Table 3
Details of resolutions.

Pseudonym Resolution lat × lon (deg) Columns

R1 (default) f19_g16 1.9 × 2.5 13824
R2 f05_g16 0.47 × 0.63 221184
R3 f02_g16 0.23 × 0.31 884736

resolutions in our experiments. Table 3 shows the parameters for
the resolutions used in the atmosphere model. These resolutions
are part of the CESM suite and simulate the entire earth. In all cases,
26 vertical levels were used. All calculations including those on
Xeon-Phi were using double precision.

The experiments were conducted on a cluster containing 8
nodes of 16-core (dual octo-core) Intel Xeon E5-2670 CPU with
a speed of 2.6 GHz. Each node is equipped with two Intel Xeon
Phi 7120 PX cards, each with 61 cores. For performance-related
experiments, we use single-node with 16 threads on the CPU for
the default R1 resolution due to the small size involved. For the
higher R2 and R3 resolutions, we use all the 128 CPU cores of
the cluster with 8 MPI tasks and 16 OpenMP threads per MPI
task. We use one or both the Xeon Phi cards per node depending
on the experiment. In each Xeon Phi, 240 threads were used.
The performance-related experiments were conducted with 5-day
simulation runs. For the fast-related compiler flags, we use ‘‘-fimf-
precision = high’’, implying high precision. Each result shownwas
obtained as a mean of five runs.

Our results on performance include the data transfer times
between the CPU and Intel Xeon Phis. The total data transfer per
offload is about 870 MB for input and 90 MB for output. The initial
one-time overhead for these data transfers is about 0.9–1.2 s. For
every subsequent offload corresponding to an invocation of radabs,
the data transfer time is about 0.26 s. Overall, the total data transfer
overheads in the synchronous model is only about 2.5% of the
model execution time. Note that most of the data transfers are
completely hidden in the asynchronous model.

7.2. Results on correctness

We first demonstrate the correctness of our code modifications
due to various optimizations. We verified the accuracy of the
results by finding the error growth of the temperature values
produced in the code over the simulations [21]. The error growth
curves compare the RMS difference between the results of the
original code and the results of the modified code due to our
optimizations, and the RMS difference between the results from
the original code and the results obtained by perturbing the inputs
by the least significant bit. We refer to these perturbations to
the least significant bit as induced perturbations. In general, for an
optimization or modification to be acceptable, the error growth
curve due to the modification should be smaller than the error
growth curve due to the induced perturbations. Our error growth
curves were obtained for a 2-day simulation run with the default
R1 resolution. For this, we used a single-thread run since our
optimizations strategies are not coupled with the parallelization.
For a few runs, we also verified that our single-thread errors
matched the multi-thread errors.

We first show the error growths with using the advanced
compiler flag of ‘‘fp-model fast = 2’’, which is expected to give fast
but less accurate results, over the default flag of ‘‘fp-model source’’,
which uses source precision. Fig. 6(a) shows the error results on
Xeon. We find that the use of the ‘‘fast = 2’’ optimization did not
alter the accuracy significantly. Hence the advanced compiler flags
can be safely used to potentially obtain high performance without
compromising on accuracy.

Fig. 6(b) shows the error growth on Xeon due to our vectoriza-
tion related efforts including replacing the non-vectorizable math
functions with the Intel MKL functions and using SIMD directive
to force vectorization at some locations. These options while im-
proving vectorization are known to yield less accurate results. The
results show that the error growths are maintained well below the
errors due to induced perturbations, thereby implying the stability
of these vectorization-related optimizations.

Fig. 6(c) shows the error growth due to our optimization of
replacing the expensive log , log − base10, exp and goffgratch
functions with low-cost interpolation functions and lookup table
methods. We find that our interpolation and lookup table
methods induce notable errors when compared to the induced
perturbations. To evaluate the reasonableness of the errors, we
compare with a method that replaces all the expensive functions
with simple linear spline interpolations, since such linear spline
interpolations are used in many other locations in CESM and
other scientific applications. For this linear spline interpolation
method, we created four lookup tables corresponding to the
four math functions, for input values from 0 (minimum range
for the inputs) to 325 (maximum range for the inputs) with
increments of 1. For every new input value with a math function,
a binary search of the corresponding lookup table was performed
in order to find the range in which the input value lies. Then,
linear interpolation using Lagrange’s classic interpolation formulae
was applied. Fig. 6(d) shows the error growth due to such
linear spline interpolations. We find that the simple linear spline
interpolation method that is commonly used for approximations
yields huge errors, and in comparison, our method of combination
of different low-cost interpolations for different ranges and
functions and lookup table search yielded reasonably accurate
results. In fact, the use of simple linear spline interpolations gave
degradation in performance by 18%–20% on Xeon while our low-
cost methods yielded performance improvement of 15%. This is
due to the non-vectorizable characteristics of the simple linear
spline interpolation function.

7.3. Performance of asynchronous model

Fig. 7 shows the performance of our asynchronous model of
offloading radabs to Xeon Phiwith respect to the original Xeon CPU
executions for different resolutions with increasing frequencies of
invocations (x-axis). In the asynchronous executionmodel,we only
want the Xeon Phi to complete the radabs computations by the
time the CPU reaches the next time step and is ready to consume
the radabs output. By means of using the offload wait directive, we
confirmed that the waiting time incurred by the CPU is zero in all
the cases. We find in the figure, that in all cases, the radabs times
are almost completely subtracted out from the CPU execution
times.

We also find that the performance improvements for the entire
atmosphere model increase with increasing radabs frequencies.
For example, for the default R1 resolution, the performance
improved from 3% to 45% for the atmosphere model as the
frequency increases from 12 to 1 h. This is beneficial since
now the climate models can afford to execute these important,
but expensive, radiation calculations at the same frequency
as the other calculations. We also find that the performance
improvements are significant for all resolutions. For example, for
1 h frequency, the performance improvement of the atmosphere
model was 14%–42%.

7.3.1. Savings for multi-century runs in asynchronous model
Multi-century simulation runs are typically of interest in

climate models to study the long-term effects on the climate
due to various factors including CO2 levels. We also extrapolated
the performance gains obtained in our radabs computations due
to asynchronous executions on Xeon Phi for a multi-century
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(a) With ‘‘fast = 2’’ compiler flag. (b) With vectorization and with ‘‘fp model source’’ compiler flag.

(c) With our low-cost approximations of transcendental functions
with ‘‘fp model source’’ compiler flag.

(d) With linear spline interpolation with ‘‘fp model source’’
compiler flag.

Fig. 6. Error growth curves on Xeon.
Table 4
Original code time and savings in execution days for multi-century runs with asynchronous model and ‘‘fp model source’’ compiler flag.

radabs frequency (h) R1 R2 R3
Original (Days) Savings (Days) Original (Days) Savings (Days) Original (Days) Savings (Days)

12 10.20 8.34 22.72 18.59 89.39 61.00
6 20.23 17.64 42.65 37.89 169.66 128.68
3 39.50 36.25 82.63 76.25 329.18 270.12
2 58.60 54.66 123.19 115.84 488.44 407.75
1 115.57 109.66 242.49 232.31 962.69 817.79
simulation run using our runs for limited number of simulation
days. Specifically, we obtained the performance gains in seconds
due to our asynchronous model over the default CPU execution for
a 5-day simulation run, and extrapolated the gains in terms of days
for a 1000-year simulation run. Table 4 shows savings in terms of
the number of days for execution for different radabs frequencies
and different resolutions. The table also shows the extrapolated
days for execution for the original code.

We find that the use of our asynchronous model results in
highly significant savings in execution days. As shown above,
the performance and hence the savings increase with increase in
radabs frequencies and for increasing resolutions. For the desired
frequency of one hour and highly needed highest resolution for
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(a) R1 resolution. (b) R2 resolution. (c) R3 resolution.

Fig. 7. Asynchronous model for different frequencies and resolutions with ‘‘fp model source’’ compiler flag.
Fig. 8. Synchronous model—2 Xeon Phis with ‘‘-fp-model fast = 2’’ compiler flag.

modeling studies, the use of our asynchronous model results
in savings of up to 817 days or 2.24 years in execution. These
are highly significant savings and imply not only improved
performance, but also savings in power consumption, electricity
and maintenance costs.

7.4. Performance of synchronous model

Our synchronous model primarily consists of our optimization
of early placement of radabs in the code for early offloads. Fig. 8
shows the performance benefits obtainedwith synchronousmodel
for radabs and radiation calculations. The results correspond to
execution with 2 Xeon Phi cards. We find that when compared
to the original code, the synchronous model results in 50%–70%
performance improvements in radabs and 6%–20% improvements
in total radiation calculations.

7.4.1. Compilation flags
Fig. 9 shows the performance of radabs calculations with

synchronous model when using different compiler flags on both
Xeon and Xeon Phi for different resolutions. We find that the
use of advanced flags like ‘‘fast = 2’’ improved the performance
from 25%–30% on Xeon, and from 62%–70% on Xeon Phi. Thus, the
compiler flags play amuchmore significant effect on Xeon Phi than
on Xeon.
7.4.2. Vectorization and low-cost approximations of transcendental
functions

Fig. 10(a) shows the performance with synchronous model due
to our vectorization related optimizations on both Xeon and Xeon
Phi. We find that our vectorization-related optimizations result
in 11%–20% improvement in performance on Xeon, and 25%–30%
improvement on Xeon Phi. Vectorization provides higher benefits
in Xeon Phi due to wider vector units. Thus vectorization can
serve as an important optimization strategy in future architectures
where large vector units are envisaged.

Fig. 10(b) shows the performance on both Xeon and Xeon
Phi with synchronous model due to our optimizations related
to low-cost substitutions, namely, use of interpolation functions
and lookup table methods. We find that our optimizations due to
these low-cost substitutions result in 12%–20% improvement in
performance on Xeon, and 15%–20% improvement on Xeon Phi.

7.5. Asynchronous vs. synchronous models

In this section, we compare both the models of execution in
different aspects. In general, the model to choose for a particular
application depends on factors including performance, accuracy of
results, code complexity and other factors.

1. Scalability: Fig. 11 shows the execution times for the atmo-
sphere model with both the synchronous and asynchronous
models for 32, 64 and 128 cores for the R2 resolution for the
12 h radabs frequency. We find that both the models provide
good scalability. For example, the speedup of execution on 128
cores with respect to the execution on 32 cores is about 3 for
both the synchronous and asynchronous models.

2. Accuracy vs. Performance Trade-off: The asynchronous execu-
tion model is expected to provide better performance since
the radabs calculations are completely masked in the Xeon Phi
while the CPU proceeds with the rest of the calculations. This is
illustrated in Fig. 12which shows the times spent by the CPU for
the radabs calculations on the Xeon Phi in both the models for
12 h radabs frequency. As can be seen, the asynchronous execu-
tionmodel inwhich the CPU spends time only for the offloading
overheads, provides 3X–5Xperformance improvement over the
synchronous model.
However, as mentioned earlier, the asynchronous model could
be considered to give lesser accuracy if evoked at the same
frequency as the original, since the radabs result for a time step
is only used in the next time step. Fig. 13(a) and (b) show the
error growths for the asynchronous and synchronous execution
models, respectively, for a 12 h frequency of long-wave
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(a) Xeon. (b) Xeon Phi.

Fig. 9. radabs timings with synchronous model for different flags.
(a) Vectorization. (b) Low-cost substitutions.

Fig. 10. Synchronous model—benefits due to vectorization and low-cost substitutions on both Xeon and Xeon Phi with ‘‘fp model source’’ compiler flag.
radiation calculations. The synchronous execution model is the
baseline model consisting of only the intelligent placement of
radabs calculations, and not the other optimizations. Both the
results were obtained on Xeon Phi with ‘‘fp model source’’
compiler flag. We find that while the asynchronous execution
model exhibits errors in calculations since the results of radabs
are used only in the next time step, the errors are reasonably
small. We find that even these errors are avoided in the
synchronous executionmodel, where the error growthmatches
well with the induced perturbations.
We also directly compare the accuracy of synchronous and
asynchronous execution models. Fig. 13(c) shows the compari-
son of the errors between the synchronous model with 12 and
1 h frequency of radabs calculations, and the errors between the
synchronous model and the asynchronous model both with 1 h
frequency. We find that the errors between the asynchronous
and synchronous models for 1 h frequency are significantly
smaller than the errors between the synchronousmodel for the
default 12 h frequency and the synchronous model for 1 h fre-
quency. This implies that it is advantageous to execute the asyn-
chronousmodel at the highest frequency of 1 h since it results in
less errors than the synchronousmodel at the default frequency
of 12 h. And, as seen in the earlier performance results, exe-
cuting the asynchronous model at the highest frequency gives
higher performance than executing the synchronous model at
the same highest frequency.

3. Asynchronous model can be a more generic model for
climate modeling codes, since they contain processes which
have different timescales due to the different computational
complexities. In such cases, slower time-scale processes can
be performed asynchronously on Xeon Phis. However, the
synchronous model may be hard to apply as it depends on
the existence of independent computations which can be
overlapped in order to get minimum waiting time.

4. Code changes for synchronous model can involve complex
movements. Most of the code for asynchronous model was
directly usable for synchronous execution. Further complexity
is added by the optimizations related to vectorization and low-
cost substitutions.

5. Utilization of Xeon in case of asynchronous model is more than
that in the case of synchronousmodel, as the CPUswait for Xeon
Phi computations to complete in the synchronous model.

6. In applications, where sufficient data can be collected at the
beginning of the time step, synchronousmodel of execution can
be the first choice to explore. However, in applications where
the data slowly builds over the time step, the asynchronous
model is preferable since the data can be aggregated and
offloaded at the end of the time step so that it can be used in
the next time step.

8. General principles for other scientific applications

While we had primarily worked on and demonstrated our
results for a climatemodeling application, we can derive a number
of general principles that can be applied for other scientific
applications.
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Fig. 11. Execution times for atmosphere model for different cores (R2 resolution
with 12 h radabs frequency).
Fig. 12. Execution times of radabs for different resolutions (12 h radabs frequency).
(a) Asynchronous execution model with ‘‘fp-model source’’ flag. (b) Synchronous execution model with ‘‘fp-model source’’ flag.

(c) (Async and Sync 1 h errors) vs. (Sync 12 h and Sync 1 h
errors).

Fig. 13. Error growth with synchronous and asynchronous execution models on Xeon Phi.
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When a candidate function for offloading is invoked in a
loop, the simplest strategy is to insert offloading directives above
the function. However, this can result in limited parallelism
for the computations in the function on Xeon. This will also
lead to multiple offloads corresponding to multiple iterations,
resulting in large offloading and data transfer overheads. While
this fine-level parallelism and offloading can be adopted if each
function execution has sufficient scope of parallelism, in general,
aggregating computations and data across multiple function calls
in the loop and offloading the aggregated computations can expose
significant parallelism on Xeon Phi and result in smaller offloading
overheads.

As noted above, asynchronous execution model is an attractive
model for completely masking the offloaded computations with
the CPU computations for slowly-varying functions. Domain
knowledge can be used to identify such functions for which the
results of the computations in the current time step may be used
in the subsequent time stepswithout considerable loss in accuracy.

When considering candidate functions for offloading, care
should be taken such that tuning the application parameters for
efficient offloading of a function does not impact the performance
of the other application modules executing on the CPU. This was
seen in our climate modeling example, where an easier way for
offloading radabs would have been to promote large parallelism
for a single radabs invocation by increasing the columns per
chunk parameter in CESM. However, large chunk sizes result in
load imbalances in the other modules of CESM, namely in the
physics routines. Hence, we adopted the aggregation strategy for
increasing the parallelism for radabs offloading.

The computations for offloading should be offloaded toXeonPhi
as early as possible in a time step so as to maximize the computa-
tions that can be performed on the CPU simultaneouslywith the of-
floaded computations. This involves careful identification and seg-
regation of the other computations into feeder computations on
which the offloaded computations depend and independent com-
putations. The feeder computations, if present in a loop, should be
extracted and performed for all iterations at once by performing
loop fission such that all the data needed for the computations that
will be offloaded are available at the earliest.

Use of architecture-tuned and highly optimized native math
libraries and functions like the Intel MKL will have to be
encouraged especially when encountering math functions that are
profiled to be expensive. Our error plots show that these libraries
help in increased performance without much loss in accuracy. The
speedup and accuracy provided by these libraries will have to be
compared with the default math functions in the original code
using different compiler flags with varying optimization levels.

In general, transcendental functions that are widely prevalent
in many large scientific applications can act as major bottlenecks
in performance as shown in our results. While most modern com-
pilers provide optimization flags to provide both high performance
and accuracy for these transcendentals, we have demonstrated
that these transcendentals can also be approximated with com-
bination of different low cost interpolation functions and lookup
table methods with reasonable accuracy. Performance-accuracy
tradeoffs of compiler flags and optimizations for these transcen-
dentals vis-a-vis the low-cost approximations will have to be care-
fully evaluated for optimal selections.

We found loop fission of large loops as an important technique
in our strategies, primarily for many of the vectorizations of the
offloaded codes as well as early placement of computations to be
offloaded. Such large loops are present in many scientific codes.
While our method involved a combination of careful analysis of
the blocks of the loop and experiments to identify the appropriate
locations in the loops for loop fission, in general, building a generic
tool that automatically identifies such locations for loop fission
primarily for improving vectorization will be highly useful for the
scientific community. Building such a tool can be part of our future
work.
9. Conclusions and future work

In this work, we successfully offloaded the time-consuming
long-wave radiation calculations in the atmosphere model of
CESM to Xeon Phi. We performed both asynchronous and
synchronous models of executions, and implemented several
optimizations including intelligent reorganization of code, early
start of offloads, vectorization techniques and use of low-cost
interpolation functions in place of expensive math functions.

Our asynchronous execution model resulted in performance
improvement of up to 45% in the atmosphere model. This resulted
in significant savings in wall-clock execution time of up to
2.25 years for multi-century climate simulations. The time savings
also translate to reduction in power consumption, electricity and
maintenance costs of the resources. Our synchronous execution
model resulted in performance improvements of about 10% in the
atmospheremodel. Our vectorization strategies providedup to 30%
performance improvement on Xeon Phi and is expected to increase
with future wider vector units. Our low-cost approximations of
transcendental functions using interpolation functions and lookup
table methods provided up to 20% performance improvement.
Compiler flags and optimization levels were shown to have
major impact on performance, and will have to be weighed with
our low-cost approximations in accelerating transcendentals for
performance-accuracy tradeoffs.

Accelerating large legacy scientific applications on Xeon Phi
requires a kernel-by-kernel approach for comprehensive set of
optimizations. In this work, we had worked on the most time-
consuming physics kernel in CESM. In future, we plan to adopt
similar strategies for other kernels and components of CESM and
provide large-scale improvements for the entire CESM on Intel
Xeon Phi architectures. We also plan to explore our optimizations
in the future Intel Xeon Phi architecture of Knights Landing.
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