
Matching Application Signatures for Performance
Predictions using a Single Execution

Anirudh Jayakumar, Prakash Murali, Sathish Vadhiyar
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore, India

jayakumar.anirudh@gmail.com, sercprakash@ssl.serc.iisc.in, vss@serc.iisc.in

Abstract—Performance predictions for large problem sizes
and processors using limited small scale runs are useful for a
variety of purposes including scalability projections, and help
in minimizing the time taken for constructing training data
for building performance models. In this paper, we present
a prediction framework that matches execution signatures for
performance predictions of HPC applications using a single small
scale application execution. Our framework extracts execution
signatures of applications and performs automatic phase identi-
fication of different application phases. Application signatures of
the different phases are matched with the execution profiles of
reference kernels stored in a kernel database. The performance of
the reference kernels are then used to predict the performance of
the application phases. For phases that do not match significantly,
our framework performs static analysis of loops and functions
in the application to provide prediction ranges. We demonstrate
this integrated set of techniques in our framework with three
large scale applications, including GTC, a Particle-in-Cell code
for turbulence simulation, Sweep3d, a 3D neutron transport
application and SMG2000, a multigrid solver. We show that our
prediction ranges are accurate in most cases.

Keywords—Modeling; Prediction; Matching Application Signa-
tures; Kernels; Phase Identification;

I. INTRODUCTION

Performance characterization and predictions of parallel
applications are essential and have long been used for various
purposes including scalability studies [1], identifying perfor-
mance bottlenecks [2], projections for future systems [3] and
tuning applications and algorithms [4]. A common approach
for performance prediction is to execute or benchmark the
application for different processors and problem sizes, ob-
serve the execution profiles including execution times, and
employ curve-fitting and machine learning techniques to map
the observed execution profiles to a performance model [5]–
[7]. The performance model can then be used for predicting
performance for a new problem size and number of processors.
In many of the existing strategies, significant number of bench-
marks are performed under controlled conditions to obtain
performance predictions with reasonable accuracy, resulting in
long training times for the model.

Limiting the number of benchmarks needed for building
the performance models for predictions will help minimize
the time taken for performing the benchmarking experiments
and the modeling process. Moreover, in certain constrained
environments, the benchmark runs and results are implicitly
limited. For example, in some large supercomputer systems,

application developers execute their applications with small
problem sizes on small number of processors of a special queue
called debug queue for development, tuning and debugging
purposes before performing large scale production runs on
large number of processors of production queues. The debug
runs are limited and are performed for very small number
of problem and system size configurations. A performance
modeling system for predicting performance of production
runs will have to be built using the limited debug runs.

In this work, we have developed a prediction framework
for performance predictions of HPC applications using a single
small scale application execution. Our framework employs a
novel strategy of matching execution profiles of the differ-
ent phases of the parallel applications to parallel reference
kernels stored in a kernel database. The reference kernels
are standard benchmarks from diverse application domains
as prescribed by Colella’s seven dwarfs [8], Berkeley View’s
thirteen motifs [9], and TORCH testbed of computational
reference kernels [10]. Our framework provides a suite, RK-
suite, of implementations, execution profiles and performance
models of reference kernels. Specifically, RK-suite consists
of 1. a collection, RK-collection, of these reference kernel
implementations, 2. execution profiles, RK-profile, including
cache hits and misses, instruction mix etc. obtained using
benchmarking runs of the reference kernels for a finite set of
problem sizes and number of processors, and 3. a performance
model, RK-model, that can be used to predict execution times
of the kernel implementations for other problem sizes and
processors. We claim that such a RK-Suite can be useful for
a number of purposes including evaluations and comparisons
of the high performance computing systems by supercomputer
installations, and hardware and software tuning by the vendors.

For a given application executed with a small problem size
and number of processors, we collect the execution profiles
or execution signatures of the application, automatically de-
tect the significant phases of the application, and match the
normalized execution profiles of the phases and the reference
kernels. For example, one of the reference kernels in our RK-
collection is a parallel FFT implemented in the NAS Parallel
Benchmark (NPB) [11]. The FFT implementation is executed
with different problem sizes and number of processors and
the execution profiles, RK-profile, are collected for these runs.
The execution times are predicted for other problem sizes and
number of processors using RK-model. An application like
Community Earth System Model (CESM) [12] can consist
of FFT calculations as one of its phases. The normalized

2015 IEEE 29th International Parallel and Distributed Processing Symposium

1530-2075/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPS.2015.20

1161

execution profile of the FFT calculations of the application
is compared with the normalized execution profile of the NPB
FFT reference kernel.

If there is a strong match, the execution estimates of the
reference implementation, RK-model, are used to predict the
performance of the application phase for large-scale runs on
large number of processors. For application phases that do not
match significantly with any of the reference kernels, we use
static analysis of the variables, loops and functions used in the
application phase to give prediction ranges.

We demonstrate this integrated set of techniques in our
framework with three large scale applications, including
GTC [13], a Particle-in-Cell code for turbulence simula-
tion, Sweep3d [14], a 3D neutron transport application and
SMG2000 [15], a multigrid solver. We show that our predic-
tions have errors in the range 0.4-18.7%, which are considered
to be good predictions even in controlled prediction environ-
ments in which multiple training runs are performed. We show
that some of the time-consuming phases in these applications
exhibit strong matching with the corresponding reference ker-
nels of completely different implementations. This provides
an important insight that the fundamental routines in many
of the large-scale applications may exhibit similar coding and
execution patterns.

Section II presents the overall design of our prediction
framework. Section III and IV describe our approach for
performance modeling using signature matching and static
analysis techniques, respectively. Section V discusses the phase
identification required for our performance modeling frame-
work. Section VI describes our experiments and results in
performance modeling and prediction for three large scale
applications using a single execution run on a smaller number
of processors. In Section VII, we describe relevant work on
performance modeling. Section VIII summarizes our work and
presents scope for future work.

II. PREDICTION FRAMEWORK

The overall working of our prediction framework is shown
in Figure 1. Our framework first classifies an application
execution into phases based on a single execution training
run (Section V), and collects application execution profiles for
these phases. It then tries to compare the execution profile of a
phase with the reference kernels stored in our reference kernel
database (Section III-A). If there is a strong match with a
kernel, it then uses the execution performance of the matched
kernel and the performance of the application phase during
the training run to predict the performance for larger problem
size and processor configurations (Section III). If the phase
does not strongly match with any of the reference kernels, our
framework performs static analysis of the loops and functions
in the application phases, finds the critical variables used in
these loops and functions, and form composite performance
models in terms of the critical variables (Section IV).

III. PERFORMANCE PREDICTION USING SIGNATURE
MATCHING

The fundamental components related to our signature
matching approach are a set of reference kernels, and a
distance calculation method for finding similarities between
two execution profiles.

A. Reference Kernels

Our parallel reference kernels, RK-collection, belong to
the application classes of Colella’s dwarfs [8] and Berkeley’s
motifs [9], and correspond to the reference kernels maintained
by the TORCH testbed [10]. The reference kernels in TORCH
belong to various application domains including dense and
sparse linear algebra computations, finite difference and finite
volume methods on structured grids, spectral methods, particle
based interactions, Monte Carlo methods, graph and sorting
problems. TORCH also provides serial implementations of
these kernels. These kernels and application classes are con-
sidered to cover most of the scientific applications. Our current
collection consists of parallel implementations of eighteen of
the kernels, and is shown in Table I.

For each of these kernels, we perform both strong and weak
scaling runs. For strong scaling runs, we choose a particular
problem size and execute on different power-of-two number
of processors, and also execute for different problem sizes
on a particular number of processors. For weak scaling, we
perform executions on power-of-two number of processors
such that the ratio, N/P , is kept constant, where N is the
problem size, and P is the number of processors. We obtain
the execution times corresponding to these runs. We then use
the actual execution times obtained for a finite set of N and
P to build a performance model, RK-model, that predicts
the execution time of the kernel for different N and P .
For performance modeling, we used cubic spline interpolation
which constructs a smooth piecewise polynomial curve that
passes through the data points. If the new data point for
prediction lies within the training data range, cubic spline
gives an interpolated value at that point. This enables us to
interpolate the kernel execution time for varying problem sizes
and processor configurations. When the new data point lies
outside the training data, we use model based predictions using
either the well known complexities provided by the kernel
developers or models based on generalized curve fitting. For
example, the complexities of the matrix computations used
in the HPCC benchmark are well known. If the complexities
are not available, we use generalized curve fitting to obtain
generic models in terms of N and P , assuming a fixed set of
polynomial and logarithmic complexities of N and P , namely,
N , N2, N3, logN , 1/P , and 1/logP , and obtain the best-
fit model. Such assumptions of the complexities based on
the observations of the complexities in most of the practical
parallel applications and algorithms have also been used in
earlier efforts [1].

For one of the runs, we also obtain the execution signature
for the kernel, RK-profile. In particular, we obtain the nor-
malized histogram of the instructions including floating point
adds, multiplies, load, stores etc. used in the execution. We use
the TAU profiling toolkit [21] to trace the instruction pointer
(IP) and obtain the instructions used in a kernel execution.
We instruct TAU to collect the kernel trace information at a
sampling frequency of ten million instructions. Our framework
parses the output from TAU, adds the number of times different
instructions were executed across all the sampling intervals
and forms the normalized histogram of the instructions. Nor-
malization is performed with the total number of instructions
used during the entire execution. Such a normalization helps
to compare problems of different sizes.

1162

Fig. 1. Prediction Framework

TABLE I. REFERENCE KERNEL DATABASE

Benchmark Suite Reference Kernel

NAS Parallel Benchmark (NPB) [11]

1. bt - block tridiagonal solver
2. fft - fast fourier transform
3. cg - conjugate gradient
4. lu - LU factorization
5. is - integer sorting
6. mg - multigrid solver
7. sp - scalar penta-diagonal solver

Skeleton Particle-in-Cell (PIC) Codes [16] 8. dep - deposit kernel
9. push - push kernel

Polyhedral Benchmrak Suite, PolyBench [17]
10. gemv - matrix-vector multiplication
11. sym - symmetric matrix multiplication
12. trm - triangular matrix multiplication

ParkBench [18]
13. dmm - general dense matrix multiplication
14. qr - QR factorization
15. trd - matrix tridiagonalization

HPC Challenge (HPCC) benchmark suite [19] 16. smm - sparse matrix multiplication
17. em tran - matrix transpose

Berkeley Benchmarking and Optimization (BeBOp) SpMV benchmark [20] 18. spmv - sparse matrix-vector multiplication

The actual execution times of the kernel benchmark runs,
the performance model, and the execution signatures together
constitute our kernel database, RK-suite. We claim that such
a database for these fundamental kernels can be used for
a variety of purposes including evaluation of supercomputer
systems by an installation site.

B. Application Signatures and Matching

For predicting the performance of a target large-scale sci-
entific application using the kernel runs, we perform a small-
scale training run of the application with a given problem
size, Nsmall, on a small number of processors, Psmall. During
the execution, we obtain the samples of execution traces
including the executed instructions at a sampling frequency
of ten million instructions using the TAU profiling toolkit. For
a given application phase, we form the normalized histogram
of the instructions used during the phase. We also observe the
execution time of the application phase as tsmall.

We then compare the normalized instruction histogram
of the application phase with the normalized instruction his-
tograms of the kernels in the kernel database. We choose the
most similar kernel for subsequent performance prediction of
the application if the similarity measure with the kernel is
within a specific threshold. For calculating similarities between

two normalized histograms, we use the χ2 (pronounced “chi-
square”) distance metric. For two histograms P and Q with
K bins, the χ2 distance is defined as

χ2(P,Q) =
K∑
i=1

(P [i]−Q[i])2

P [i] +Q[i]
(1)

For each bin, the summation of bin counts in the denomi-
nator of Equation 1 implies that χ2 distance considers small
differences between large bins to be less important than a
similar difference between small bins. χ2 distance assumes
a value between 0 and 2 with smaller distance implying
greater similarity between the application phase and the kernel.
We calculate the similarity as 1 − χ2/2, thus confining the
similarity values to lie between 0 and 1 with higher values
denoting higher similarities. We choose the most similar kernel
if the similarity value between the application phase and the
kernel is at least equal to a threshold. In all our experiments,
the most similar kernel matched with a similarity value in the
range [0.85, 0.9]. Hence for our current work, we chose the
threshold value as 0.85. In our future work, we plan to explore
smaller thresholds and using kernels with smaller similarity
values for predictions.

We use the executed instructions used for matching appli-
cation phases and kernels since this is effective in matching

1163

executed profiles of the same implementation with different
problem sizes and number of processors. Moreover, using
instructions for matching also corresponds to our hypothesis
that most scientific applications belonging to a common class
or implementing the same algorithm exhibit similar coding
patterns. Also, the number of time-critical operations for a
particular algorithm is invariant for different implementations
with the same data structures. Thus, matching using executed
instructions can identify different implementations of the same
algorithm with the same time complexities. Other metrics
including normalized number of loads, stores, cache misses,
branch instructions etc. can vary even for the same implemen-
tation for different problem sizes due to the inter-play of the
application and hardware characteristics. We also experimen-
tally verified that considering these other metrics did not give
good similarity measures for the same application executed
with different problem sizes and number of processors.

C. Application Prediction using Matched Kernel

We predict the performance or execution time of an appli-
cation phase for a large problem size, Nlarge, and/or number
of processors, Plarge, using the single small-scale applica-
tion training run with Nsmall and Psmall, the corresponding
execution time, tsmall, and the performance model of the
matched kernel. We use the performance model of the kernel
to find the problem size, Nkernel, for which the estimated
execution time of the kernel, tkernel, on Psmall number of
processors is the most similar to the actual execution time
of the application phase, tsmall, observed for the small scale
training run (Section III-B). i.e., we find Nkernel such that
|f(Nkernel, Psmall) − tsmall| is minimum, where f() is the
performance modeling function for the kernel.

We match the execution times of the application phase and
the kernel since a problem size, Nsmall, of the application
phase with the implementation followed in the application
may correspond to another problem size, Nkernel of the kernel
implementation. We calculate the ratio of these two problem
sizes as:

sFactorsize =
Nsmall

Nkernel
(2)

We also calculate the ratio of the corresponding execution
times of the application phase and the kernel as:

sFactortime =
tsmall

f(Nkernel, Psmall)
(3)

We then predict the execution time of the application phase
for the larger problem size, Nlarge, and number of processors,
Plarge using the model function for the kernel as:

tlarge = sFactortime × f(
Nlarge

sFactorsize
, Plarge) (4)

We obtain the predicted total execution time of the entire
application for Nlarge and Plarge as the sum of the predicted
execution times of the individual application phases.

TABLE II. MEAN SIMILARITIES BETWEEN NORMALIZED
HISTOGRAMS FOR THREE NPB BENCHMARKS

Benchmark Similarities Across
Iterations for the
same problem size

Similarities Across
Processes for the
same problem size

Similarities Across
Problem Sizes

CG 0.925 0.93 0.92
FT 0.95 0.95 0.95
MG 0.89 0.89 0.885

D. Demonstration

We demonstrate the promise and potential of our signature
matching techniques for predictions with three NAS parallel
benchmarks (NPB), namely, CG, FT and MG. We ran NPB
with problem sizes corresponding to classes A, B and C on
a dual octo-core Intel Xeon E5-2670 2.6 GHz server with
CentOS 6.4. We obtained normalized instruction histogram for
each sampling interval in each process. We then computed the
mean χ2 distance across different iterations of the loop of an
application for a problem size, across different processes for
an execution for a problem size, and across different problem
sizes. We computed the corresponding similarity values as
1−χ2/2. Table II shows the similarity values for the CG, FT
and MG benchmarks of NPB. We find the similarity values
for a benchmark are close to 90% and show little variations
when applied to iterations and processes of a single problem
size and also for multiple problem sizes. Thus, our technique
of signature matching can be reliably used for performance
prediction for larger problem sizes using execution profiles for
a small scale run. Comparitively, the similarity values between
the different benchmarks are low: the CG-FT, CG-MG and FT-
MG similarities are 0.63, 0.71 and 0.79, respectively. Thus,
the the signature matching technique can clearly find the most
similar kernel and distinguish unrelated kernels.

To demonstrate that the signature matching technique can
also be used to match two different implementations, we
computed the normalized histogram distances between the
three NPB benchmarks and the HPCCG application [22] with
a 256 × 256 × 256 grid. HPCCG also performs conjugate
gradient calculations like the CG benchmark of NPB, but with
a different implementation. Figure 2 shows the normalized
instructions for HPCCG and the three NPB benchmarks, CG,
FT and MG. We find that the instruction mix in HPCCG is
most similar to CG: there are very large number of move
operations (movsd) and a significant number of double-
precision addition, multiplication and subtraction operations.
The instruction mix in FT and MG are very different from that
of HPCCG. The distances computed between the normalized
histograms of HPCCG and CG, FT and MG are 0.875, 0.51
and 0.635, respectively. Thus, our signature matching tech-
nique adequately captures the conjugate gradient computations
in the HPCCG application using the NPB CG implementation.

IV. STATIC ANALYSIS

For an application phase whose execution signature does
not match with an existing reference kernel, we use static
compiler-based analyses and use a best-effort approach to
derive accurate performance models for the phase. We analyze
the individual loops and functions of the phase, derive fine-
level performance models for these, and form a composite
model of the phase in terms of these loop-level and function-
level models. The model due to static analysis generates only

1164

add
addsd cm

p lea mov

movapd
movsd

movslq
mulsd sub

Instruction name

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

in
st

ru
ct

io
n

fr
eq

ue
nc

y

(a) CG

add
addsd cm

p
imul lea mov

movapd
movsd

movslq
mulsd shl

subsd

Instruction name

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
or

m
al

iz
ed

in
st

ru
ct

io
n

fr
eq

ue
nc

y

(b) FT

add
addsd cm

p lea mov

movapd
movsd

movslq
mulsd sub

subsd

Instruction name

0.00

0.05

0.10

0.15

0.20

0.25

N
or

m
al

iz
ed

in
st

ru
ct

io
n

fr
eq

ue
nc

y

(c) MG

add
addsd cm

p
mov

movsd
movslq

mulsd sub

Instruction name

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

in
st

ru
ct

io
n

fr
eq

ue
nc

y

(d) HPCCG

Fig. 2. Histogram of Instructions used in CG, FT and MG of NBP, and
HPCCG

loose bounds for execution times and hence not applicable for
predicting large fractions of the entire application.

We require the user to provide the entry-level names of
the variables in the application that denote the problem size,
along with the values of the variables. These are the first
set of variables in the application program that are assigned
the values for the problem sizes either using an application
configuration file or as a command line argument. For example,
in a three-dimensional problem, the user may input the x, y
and z dimensions for problem size. We also require the user
to specify the subset of problem size variables whose values
are divided by the number of processors. We denote such
variables as P-dependent variables and the other variables as
P-independent. In the 3-D problem, the domain may be decom-
posed across the processors in the x and y dimensions, but not
in the z dimension. In this case, x and y will be P-dependent
and z will be P-independent. Our static analyzer first parses
the application code to find a list of critical variables that are
derived from or dependent on the entry-level variables. The
static analyzer particularly looks for assignment statements and
function arguments to find the critical variables. In addition,
the analyzer also evaluates the assignment expressions in
terms of critical variables using basic operations of addition,
subtraction, multiplication and division. A critical variable
may either be P-dependent or P-independent depending on the
entry-level problem size variables it was derived from.

The static analyzer then parses the code to find critical
blocks. We denote the loops, user-level functions and MPI
functions that are dependent on the critical variables as critical
blocks. A critical block that does not contain any other critical
block is denoted as a fundamental block. In our work, single-
level loops and MPI functions are fundamental blocks. A
critical block can nest other critical blocks. We denote such a
block as a super block. A super block, in addition to nesting
critical blocks, can also contain other regions of code denoted
as basic regions.

We model the time complexity of a single-level loop
dependent on a critical variable, C, in terms of the number

of iterations using either linear or logarithmic functions. Par-
ticularly, we model the number of iterations as C or logC, if
C is P-independent, and C/P or logC/P if P-dependent. We
obtain the total time of the loop corresponding to the single
execution training run, and fit the time complexity function of
the loop as:

a× iterations = totalT ime (5)

where iterations can either be C, logC, C/P , logC/P and
totalT ime is the time for the loop corresponding to the single
execution. We find the coefficient a and estimate the time for
the loop for a prediction run as a × iterationspred where
iterationspredicted is the predicted number of iterations for the
prediction run obtained using the value of C for the prediction
run.

Our static analyzer also parses the MPI functions that are
dependent on critical variables. The static analyzer uses a MPI
performance table to determine the message size as a function
of the critical variable, C, used in a MPI function. The MPI
performance table contains the times taken for different MPI
functions for different message sizes and number of processors.
We construct such a performance table using LogGP MPI
benchmark suite [23]. Supercomputer installations will be
interested in obtaining MPI performance of their systems and
will construct the table at the time of the installation. We
estimate the time for the MPI function for the prediction run
using the MPI performance table.

For modeling the time complexity of a super block contain-
ing some critical blocks and basic regions, we first determine
the time for the basic regions, basicCost, by subtracting
the times for the critical blocks from the total time of the
super block for the single execution run. We then model the
time complexity of the super block using the time complexity
functions of the nested critical blocks, basicCost for the basic
regions, the critical variable C used in the super block and the
total time taken for the super block, totalT imesuper as:

a×fsuper(C)× (basicCost+
∑

fi) = totalT imesuper (6)

where fi is the performance model for a critical block i nested
in the super block, and fsuper(C) of the superblock can be
either one of C, logC, C/P , logC/P . We find the coefficient
a using the time for the single execution run and use it to
predict the time for the prediction run.

We construct these performance models in a bottom-up
manner for the calling context tree of the application phases,
and determine the overall performance model for the entire
phase. Since we use either a linear or log function in the
performance models of the blocks, we provide a range of time
estimates for the prediction run.

For implementation of the static analyzer, we used the
TAU profiling toolkit [21] to obtain the total times for the
various blocks, and to construct the calling context tree.
We used the ROSE framework [24] to obtain the critical
variables and blocks based on the entry-level variables. The
ROSE framework builds an abstract syntax tree (AST) for the
application code, and also provides APIs to traverse the tree
and read information in each node. Our static analyzer builds a
XML file containing the calling context of the critical blocks
along with information for each critical block including its

1165

TABLE III. STATIC ANALYSIS RESULTS FOR NAS PARALLEL
BENCHMARKS

Benchmark Training
Run
(Class:Procs)

Prediction
Run
(Class:Procs)

Min
Predicted
time (secs)

Max
Predicted
time (secs)

Actual
Time
(msecs)

CG B:4 D:32 2618 5764 4900
FT C:16 D:128 134 754 467
MG C:4 D:32 213 533 471

type, critical variables used by the block, and the total times
taken by the block in the single execution training run. For
performance prediction of a prediction run, this XML file is
augmented with the values of the critical variables and the
number of processors for the single-execution training and the
prediction runs, and is given as input to our prediction engine.
The prediction engine starts from the inner-most block in the
calling context tree and incrementally derives performance
estimates. While our static analyzer currently works with the
source codes of the applications, it can also be extended to
work with application binaries using existing binary analysis
frameworks [25].

A. Demonstration

We demonstrate the accuracy of performance prediction
ranges obtained using static analysis with NPB. We perform
a single execution run with a benchmark for a small problem
size and number of processors and predict the performance
of the benchmarks for larger configurations. The CG and MG
benchmarks were run on a cluster of quad-core AMD Opteron
2218 based 2.64 GHz Sun Fire servers with CentOS 4.3 and
connected by Gigabit Ethernet. The FT benchmark was run on
a cluster of 64-core AMD Opteron 6274 2.4Ghz servers with
CentOS 6.2 and connected using Infiniband. Table III shows
the ranges of the predictions and the actual execution times.
We find that in all cases, the actual execution times are within
the prediction ranges.

V. PHASE IDENTIFICATION

For both our approaches related to matching signatures
and static analysis, the phases of an application will have
to be identified. Phase identification in application execution
has been targeted in earlier efforts for performance prediction,
and for runtime adaptations including hardware reconfiguration
and changing scheduling and load-balancing strategies [26],
[27]. For our purpose of matching application phases with
reference kernels and developing performance models for the
phases, we identify phases by obtaining aggregate profile
generated for the small-scale training run by the TAU toolkit
and choosing all functions or subroutines that have consumed
more than 5% of the total execution time of the training
run. The executions of the chosen functions and subroutines
constituted our application phases. Our strategy of phase
identification by identifying the time-consuming subroutines
is applicable to a large number of practical codes since most
applications are written in a modular way with important
operations encapsulated as subroutines. By fixing the threshold
as 5% for identifying time-consuming subroutines, we consider
any medium to long duration functions as potential phases for
signature matching, and not consider small duration functions
with negligible execution times.

TABLE IV. TRAINING AND PREDICTION CONFIGURATIONS FOR THE
THREE APPLICATIONS ON TYRONE AND PARAM CLUSTER

Configuration Training Run Prediction Run
Cores 16 32 128 256 1024

GTC
No. of particles (106) 14.75 73.73 1106 2654 11059
No. of grids 921600 1843200 3686400 3686400 3686400
Runtime (seconds) 293(T) 695(T),

584(P)
2843(T) 3200(T) 4225(P)

Sweep3d
Grid points (3D) 1503 2003 6403 10003 15003

Runtime (seconds) 160(T) 172(T),
14(P)

1586(T) 3530(T) 157(P)

SMG2000
Grid points (3D) 503 603 1003 1283

Runtime (seconds) 925(T) 1168(T) 8281(T) 26914(T)

For each of these subroutines or functions, we obtain the
function entry/exit timestamps from the TAU trace. From the
sampling trace, the instruction pointers between the entry-
exit ranges are collected and their corresponding instruction
type (mov,mul etc.) are retrieved from the objdump of the
binary. The objdump tool displays the assembler mnemonics
for the machine instructions from the executable binary. The
distribution of the instructions forms the signature of the
subroutine.

VI. EXPERIMENTS AND RESULTS

We use our overall prediction framework containing kernel
matching and static analysis techniques for performance pre-
dictions of three large-scale applications, namely, GTC [13],
a Particle-in-Cell code for turbulence simulation, Sweep3d
[14], a 3D neutron transport application and SMG2000 [15],
a multigrid solver. The experiments were carried out on two
clusers: a 800-core heterogeneous cluster called Tyrone located
in our department and a 3600-core cluster called Param Yuva2
located in Center for Development of Advanced Computing
(CDAC), Pune, India. The Tyrone cluster consists of 17 nodes,
9 nodes with 32-cores each and 8-nodes with 64-cores each.
Each of the nodes has 2.2 GHz AMD Opteron 6274 processor
and 128GB RAM. The cluster nodes are connected using
Infiniband. For our experiments, we used a maximum of 4
nodes of 64-core configurations. The Param Yuva2 cluster
consists of 225 nodes with 16 cores each. Each of the nodes
has 2.6 GHz dual octo-core Intel Xeon E5-2670 CPU and 64
GB RAM. For our experiments, we used 64 nodes of 1024
cores.

Table IV shows the configurations used for single-
exectution training run and prediction runs used for the three
applications on the two clusters. The qualifiers, (T) and (P)
represent the executions on the Tyrone and the Param clusters,
respectively. As can be seen in the table, the problem size is
scaled with the number of cores. We also find that we use 4-10
minute training runs to predict for runs that execute for more
than an hour.

A. Prediction Times and Errors

In our experiments, we found that our prediction frame-
work takes about 2.5 minutes to obtain data from the training
run. This includes about 45 seconds to perform the static
analysis of the run, about a minute for extracting the signatures,
and about 45 seconds for matching the signatures with the

1166

(a) GTC (b) Sweep3d (c) SMG2000

Fig. 3. Distribution of Times in the Three Applications for the 16-core
Training Run

reference kernel database. Given this data from the training
run, our framework takes only about 2-3 seconds for prediction
for a large-scale run.

B. GTC

Gyrokinetic Toroidal Code (GTC) is a 3-dimensional
code used to study microturbulence in magnetically confined
toroidal fusion plasmas via the Particle-In-Cell (PIC) method.
The application is composed of six main kernels for each
time step: charge deposition from particles onto the grid
(charge), solving the gyrokinetic Poisson equation on the grid
(poisson), computing the electric field on the grid (field), using
the field vector and other derivatives to advance particles
(push), smoothing the charge density and potential vectors
(smooth), and moving the particles between processors or
toroidal domains (shift).

Of the six main kernels of GTC, the charge and push
kernels act on particle data and hence consume more time
as compared to other operations that act mainly on grid data.
Figure 3(a) shows the distributions of the times consumed in
the charge, push and the remaining kernels for the single-
execution training run. We find that the charge and push
kernels together contribute 87.8% of the total runtime.

Our automatic prediction framework matched the charge
and push kernels with the reference kernels by finding simi-
larity measures. Figure 4 shows the similarity values of these
two GTC kernels with the kernels contained in our reference
kernel database. We find that the two GTC kernels showed the
strongest match or highest similarities with the corresponding
PIC kernels in our reference kernel collection, even though
the PIC kernels are from a completely different software
package from a different group. Specifically, the charge and
push kernels of GTC matched with the deposit, dep, and push
kernels of our reference kernel collection with the similarity
scores of greater than 0.85. This result and the subsequent
similar results with the other two applications reaffirm our
hypothesis that most scientific applications implementing com-
mon functionalities or methods or algorithms exhibit similar
codes.

Our prediction framework then estimated the total time
for the GTC application for prediction runs by estimating the
times for the charge and push kernels using signature matching
technique described in Section III and the times for the other
kernels using static analyses described in Section IV. Figure
5 shows the estimated and actual times for the kernels and
the entire applications for the prediction runs on 128 and 256
cores of the Tyrone cluster. To show that our prediction results
are not sensitive to the type of single-execution training run,
we also show results when the training run was performed

bt cg

de
p ff
t

ge
m

v is lu m
g

sm
m

dm
m m
v

pu
sh qr sp

sy
m

tr
an tr

d

tr
m

0.00

0.50

0.85

Si
m

ila
ri

ty

Push

(a) Push

bt cg

de
p ff
t

ge
m

v is lu m
g

sm
m

dm
m m
v

pu
sh qr sp

sy
m

tr
an tr

d

tr
m

0.00

0.50

0.85

Si
m

ila
ri

ty

Charge

(b) Charge

Fig. 4. Similarities of GTC Kernels with the Reference Kernels

Actual Predicted Actual Predicted Actual Predicted0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
(s

ec
on

ds
)

16→128 16→256 32→256

GTC
Other kernels
Charge
Push

Fig. 5. Predictions of Execution Times for GTC on 128 and 256 Cores on
the Tyrone Cluster

on 32 cores. Our predictions for the other kernels denote the
maximum of the range predicted by the static analysis. Table
V shows the prediction errors for the kernels and the entire
application for the prediction runs for all the three applications.
We find that for GTC, in all cases, we obtain prediction errors
less than 11%, which is significantly accurate considering that
only a single training run was used for the predictions. We
also find that the prediction accuracy for 256-core execution is
slightly better when predicting using 16-core training run than
with the 32-core training run. We believe that this accuracy
inversion is due to possible extraneous system loads at the
time of the executions.

C. Sweep3d

The ASCI Sweep3D is a scientific benchmark solving a
three-dimensional neutron transport problem from a scattering
source. The numerical solution to the transport equation in-
volves the discrete ordinates (Sn) method and the procedure
of source iteration. The solution is by a direct ordered solve
known as a “sweep”. The Sweep() subroutine constitutes the
majority of the runtime in Sweep3D. Figure 3(b) shows the
distributions of the times consumed in the sweep and the

1167

TABLE V. PERCENTAGE PREDICTION ERRORS FOR THE THREE
APPLICATIONS ON THE TYRONE CLUSTER

Training Run 16 procs. 32 procs.
Prediction Run 128 procs. 256 procs. 256 procs.

GTC
charge 2.6 7.3 6.4
push 3.1 6.1 6.2
Entire app 0.4-0.7 6.1-6.7 9.8-10.7

Sweep3d
sweep 18.1 7.7 2.4
Entire app 17.8-18.7 7.6-8.4 1.2-1.8

SMG2000
CycRed 11.28 16.06 18.42
Residual 6.28 9.91 13.51
Entire app 2.8-6.0 13.0-15.0 7.5-8.7

Fig. 6. Similarities of Sweep3d Kernel with the Reference Kernels

remaining kernels for the single-execution training run. We
find that the sweep subroutine consumed about 92% of the
total runtime. Our automatic prediction framework matched
the sweep kernel with the reference kernels and found the
strongest match with the lu kernel of the reference collection
with a similarity score of 0.88. Figure 6 shows the similarity
values of the sweep kernel with the kernels contained in our
reference kernel database.

Our prediction framework then estimated the total time for
the Sweep3d application for prediction runs by estimating the
times for the sweep kernel using signature matching and the
spline curve of the lu reference kernel. It predicted the times
for the other kernels using static analyses. Figure 7 shows
the estimated and actual times for the kernels and the entire
applications for the prediction runs on 128 and 256 cores of
the Tyrone cluster. Table V shows the prediction errors for
the sweep kernels and the entire application for the prediction
runs of Sweep3d. Our prediction errors are between 1.2% and
18.7% in all cases.

Actual Predicted Actual Predicted Actual Predicted0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
(s

ec
on

ds
)

16→128 16→256 32→256

Sweep3D

Other kernels
Sweep

Fig. 7. Predictions of Execution Times for Sweep3d on 128 and 256 Cores
on the Tyrone Cluster

(a) Residual (b) CycRed

Fig. 8. Similarities of SMG2000 Kernels with the Reference Kernels

D. SMG2000

SMG2000 is a parallel semicoarsening multigrid solver
that solves linear systems that result from hierarchically dis-
cretizing differential equations on logically rectangular grids.
The 3D algorithm semicoarsens in the z-dimension followed
by plane relaxation. Plane solves invoke one V-cycle of the
2D algorithm that semicoarsens in the y-dimension and are
followed by line relaxation. To perform the relaxation step
for the 3D problem, SMG invokes multiple 2D plane solves
which in turn employ multiple 1D line solves. These line solves
are performed using cyclic reduction, which is a recursive
algorithm to solve tridiagonal linear systems. At the end
of each iteration SMG2000 invokes the residual kernel to
compute the error in solution.

The cyclic reduction (CycRed) and Residual kernels con-
sume most of the execution times. Figure 3(c) shows the
distributions of the times consumed in these and the re-
maining kernels for the single-execution training run. Our
automatic prediction framework matched the Residual kernel
of SMG2000 with the symmetric matrix multiplication (sym)
reference kernel and the CycRed kernel of SMG2000 with the
block triagonal solver (bt) reference kernel of our RK-suite.
Figure 8 shows the similarity values of the two SMG2000
kernels with the kernels contained in our reference kernel
database. Even though the CycRed kernel of SMG2000 shows
higher similarities with the gemv and sym reference kernels
than with the bt kernel, our framework matches the parallel
CycRed with the parallel bt kernel since the gemv and sym
are serial kernels. Our framework automatically identifies if
an application phase is serial or parallel by looking for MPI
functions in the static code analysis. Both the CycRed and the
Residual kernels of SMG2000 match with the corresponding
reference kernels with similarity scores of 0.88 and 0.9,
respectively.

Our prediction framework then estimated the total time for
the SMG2000 application for prediction runs by estimating
the times for the CycRed and Residual kernels using signature
matching technique and the times for the remaining kernels
using static analyses. Figure 9 shows the estimated and actual
times for the two kernels and the entire applications for the
prediction runs on 128 and 256 cores of the Tyrone cluster. The
times for other kernels in the figure denote the maximum of the
ranges predicted by the static analysis. We note that the other
kernels which consumed 27% of execution time for the small
scale run shown in Figure 3(c), consume a small percentage for
the 128 and 256-core runs. Table V shows the prediction errors
for the kernels and the entire application for the prediction
runs of SMG2000. The total application prediction error ranges

1168

Actual Predicted Actual Predicted Actual Predicted0

5000

10000

15000

20000

25000

T
im

e
(s

ec
on

ds
)

16→128 16→256 32→256

SMG2000
Other kernels
CycRed
Residual

Fig. 9. Predictions of Execution Times for SMG2000 on 128 and 256 Cores

Actual Predicted Actual Predicted
0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
fo

r
G

T
C

(s
ec

on
ds

)

Other kernels
Kernel 2
Kernel 1

0

50

100

150

200

T
im

e
fo

r
Sw

ee
p3

D
(s

ec
on

ds
)

GTC Sweep3D

Predictions for 32→1024

Fig. 10. Predictions of Execution Times on 1024 cores of the Param Yuva2
cluster using 32-core training runs

from 2.8% to 15.0%.

Figure 10 shows the actual and predicted times for the GTC
and Sweep3d applications on 1024 cores of the Param Yuva2
cluster using the training run performed only on 32 cores. We
find that the prediction errors were less than 20%. These results
demonstrate the ability of our framework to predict for large
scale runs involving large/very large number of processors
using only a small-scale training run involving only a few
minutes of execution time. Thus our framework can be used for
scalability studies of applications that can help administrators
decide on large-scale procurements.

E. Discussion

While our results demonstrated the potential of our pre-
diction framework, the framework has some limitations. Our
current methodology considers only the distribution of in-
structions for matching kernels. Our work assumes that two
applications with similar signatures for small scale executions
will scale similarly for larger number of processors. However,
this assumption does not hold for those codes which have
different computation and communication patterns for larger
problem sizes and number of processors. Our framework also
does not consider different load conditions of the system and
network that can exist during the training and prediction runs.
Our static analysis can also miss data-dependent paths in the
application codes. Finally, our framework is not applicable for
languages with dynamic binding.

VII. RELATED WORK

There have been a number of performance modeling and
prediction frameworks that perform benchmark runs on small
scale systems and problem sizes, and predict for large scale

runs. For example, the work by Lee et al. [5] uses statisti-
cal analyses between application parameters and performance
including clustering, association and correlation analyses, and
employ piecewise polynomial regression and artificial neural
networks for predicting performance. The work by Singh et
al. [6] uses multi-layered neural networks on the sample data
obtained from benchmark runs for a subset of parameter spaces
to predict for the remaining parameter spaces. Barnes et al.
[7] employ regression-based approaches using execution times,
per-processor information and global critical paths of execution
to predict performance. Many of these approaches train the
performance models using a significant number of benchmark
runs on controlled environments, and consequently obtain good
prediction accuracies with prediction errors in the range 2.2-
17.3%. Our work focuses on constrained environments in
which the training set can be limited and non-deterministic.

Bailey and Snavley [28] collect application signatures
including memory accesses and communication patterns,
determine target machine characteristics including memory
and communication capabilities in an application-independent
manner and use convolution methods to combine application
signatures with machine profiles to extrapolate performance for
larger systems. This effort also requires conducting a series
of experiments on different machines to obtain application
signature summaries. They obtain larger prediction errors in
the range 13-30%, since their models do not consider all
necessary parameters on all the machines. Also, the number of
application and machine parameters can be large for modern
architectures.

The concept of predicting performance of applications
using extensive database of performance data of small funda-
mental modules appeared in the Prophesy framework by Taylor
et al. [29]. They use composition of the models of the modules
to build a performance model for an application. In a recent
work, He et al. [30] hypothesized that a small set of basic data
flow patterns or performance idioms such as stream, transpose,
reduction, random access and stencil covered scientific applica-
tions. They built a framework that automatically identified the
idioms in applications, and used the models of the idioms for
predictions of the applications. They demonstrate their method
with NAS parallel benchmarks (NPB) as applications and
motivate the definition of suitable idioms for approximating
performance. They report approximation accuracy in the range
80-96%. Our work extends the concept of idioms to parallel
application kernels for predicting performance of much larger
scale applications, and obtain similar accuracy.

The work by Calotoiu et al. [1] has developed a tool that
automatically generates performance model for each region
of the application. They then use small number of runs of
the application, perform extrapolations using the models and
match the extrapolated performance using their models with
the user expectations. The emphasis of their work is not
on performance modeling accuracy but to provide a binary
scalability indicator to detect scalability bottlenecks of the
different regions of the code.

The work by Sharkawi et al. [3] also projects application
performance by correlating the performance metrics of the
application with the metrics of some fundamental benchmarks
on a base system. In particular, they use the benchmarks from
SPEC CFP2006 for correlation with the application, identify a

1169

combination of the benchmarks referred to as surrogates that
have similar properties with the HPC application. They use
this information along with the performance of the surrogates
on a target machine to project the performance of the HPC ap-
plication on the target machine. They report average projection
difference to measured runtimes in the range 7-10%. While the
emphasis of their work is to project node level performance
of a HPC application with a fixed problem size on a target
machine using a base machine, our work focuses on projections
for larger problem and processor sizes on a system.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we had developed a prediction framework
that predicts performance of large-scale runs of parallel ap-
plications using a single small-scale training run. Our frame-
work matches the application phases to reference parallel
kernels and uses the performance of matched kernels for
predictions. We demonstrated our techniques with three large-
scale real scientific applications. We obtained predictions with
errors in the range 0.4-18.7%, which are considered to be
good predictions even in controlled prediction environments
in which multiple training runs are performed with different
problem sizes and number of processors. The performance
estimates by our prediction framework can be used for batch
job submissions and scheduling that employ strategies like
backfilling in production HPC environments. In the future,
we plan to investigate probabilistic predictions for application
phases with low similarities with the reference kernels. We
also plan to use our prediction framework in supercomputer
sites to predict production runs using debug executions.

IX. ACKNOWLEDGEMENTS

This work is supported by Department of
Science and Technology (DST), India via the grant
SR/S3/EECE/0095/2012. The authors would like to thank the
National Param Supercomputing Facility (NPSF), Centre for
Development of Advanced Computing (CDAC), Pune, India
for providing access to their large-scale Param Yuva2 system.

REFERENCES

[1] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using Automated
Performance Modeling to Find Scalability Bugs in Complex Codes,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13, 2013.

[2] G. Llort, H. Servat, J. González, J. Giménez, and J. Labarta, “On the
Usefulness of Object Tracking Techniques in Performance Analysis,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13, 2013.

[3] S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. Taylor,
and X. Wu, “Performance Projection of HPC Applications using SPEC
CFP2006 Benchmarks,” in Proceedings of the International Parallel
and Distributed Processing Symposium, ser. IPDPS ’09, 2009.

[4] H. Servat, G. Llort, J. Gimenez, K. Huck, and J. Labarta, “Unveiling
Internal Evolution of Parallel Application Computation Phases,” in
Proceedings of the International Conference on Parallel Processing,
2011.

[5] B. Lee, D. Brooks, B. de Supinski, M. Schulz, K. Singh, and S. McKee,
“Methods of Inference and Learning for Performance Modeling of
Parallel Applications,” in PPOPP, 2007.

[6] K. Singh, E. Ipek, S. McKee, B. de Supinski, M. Schulz, and
R. Caruana, “Predicting Parallel Application Performance via Machine
Learning Approaches,” Concurrency and Computation: Practice and
Experience, vol. 19, no. 17, pp. 2219–2235, 2007.

[7] B. Barnes, B. Rountree, D. Lowenthal, J. Reeves, B. de Supinski, and
M. Schulz, “A Regression-based Approach to Scalability Prediction,”
in Proceedings of the 22nd Annual International Conference on Super-
computing, ser. ICS ’08, 2008.

[8] P. Colella, “Defining Software Requirements for Scientific Computing,”
DARPA HPCS Presentation, 2004.

[9] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer,
D. Patterson, W. Plishker, J. Shalf, S. Williams, and K. Yelick, “The
Landscape of Parallel Computing Research: A View from Berkeley,”
University of California, Berkeley, Tech. Rep. UCB/EECS-2006-183,
2006.

[10] A. Kaiser, S. Williams, K. Madduri, K. Ibrahim, D. Bailey, J. Demmel,
and E. Strohmaier, “TORCH Computational Reference Kernels: A
Testbed for Computer Science Research,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2010-144, 2010.

[11] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and
M. Yarrow, “The NAS Parallel Benchmarks 2.0,” NASA, Tech. Rep.
NAS-95-020, 1995.

[12] “Community Earth System Model (CESM),” http://www2.cesm.ucar.
edu.

[13] D. Quinlan et al., “Gyrokinetic Particle Simulations,” http://w3.pppl.
gov/theory/proj gksim.html.

[14] “Sweep3d,” http://www.ccs3.lanl.gov/PAL/software/sweep3d.
[15] P. Brown, R. Falgout, and J. Jones, “Semicoarsening Multigrid on

Distributed Memory Machines,” SIAM Journal on Scientific Computing,
vol. 21, pp. 1823–1834, 2000.

[16] V. Decyk, “Skeleton PIC codes for parallel computers,” Computer
Physics Communications, vol. 87, no. 1-2, pp. 87–94, 1995.

[17] “PolyBench/C the Polyhedral Benchmark Suite,” http://web.cse.
ohio-state.edu/∼pouchet/software/polybench.

[18] T. Hey and D. Lancaster, “The Development of Parkbench and Perfor-
mance Prediction,” International Journal of High Performance Com-
puting Applications, vol. 14, pp. 205–215, 2000.

[19] P. Luszczek, D. Bailey, J. Dongarra, J. Kepner, R. Lucas, R. Raben-
seifner, and D. Takahashi, “The HPC Challenge (HPCC) Benchmark
Suite,” in Proceedings of the 2006 ACM/IEEE Conference on Super-
computing, ser. SC ’06, 2006.

[20] “BeBoP SpMV Benchmark,” http://bebop.cs.berkeley.edu/spmvbench.
[21] S. Shende and A. D. Malony, “The TAU Parallel Performance System,”

International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–331, 2006.

[22] “Sandia National Laboratory - Mantevo Project,” https://software.
sandia.gov/mantevo/.

[23] T. Hoefler, A. Lichei, and W. Rehm, “Low-Overhead LogGP Parameter
Assessment for Modern Interconnection Networks,” in IEEE Interna-
tional Parallel and Distributed Processing Symposium, ser. IPDPS ’07,
2007.

[24] D. Quinlan et al., “ROSE Compiler Infrastructure,” http://www.
rosecompiler.org.

[25] “MAQAO (Modular Assembly Quality Analyzer and Optimizer),” http:
//www.maqao.org.

[26] C.-H. Chang, P. Liu, and J.-J. Wu, “Sampling-Based Phase Classifi-
cation and Prediction for Multi-threaded Program Execution on Multi-
core Architectures,” in International Conference on Parallel Processing
(ICPP), ser. ICPP 2013, 2013.

[27] C. Ding, S. Dwarkadas, M. Huang, K. Shen, and J. Carter, “Program
Phase Detection and Exploitation,” in 20th International Parallel and
Distributed Processing Symposium, April 2006.

[28] D. Bailey and A. Snavely, “Performance Modeling: Understanding the
Past and Predicting the Future,” in Euro-Par, 2005.

[29] V. Taylor, X. Wu, J. Geisler, X. Li, Z. Lan, M. Hereld, I. Judson, and
R. Stevens, “Prophesy: Automating the Modeling Process,” in Active
Middleware Services, 2001, pp. 3–11.

[30] J. He, A. Snavely, R. van der Wijngaart, and M. Frumkin, “Auto-
matic Recognition of Performance Idioms in Scientific Applications,”
in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE
International, 2011.

1170

