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Abstract—GCNs have been increasingly used for the classi-
fication of brain functional networks to aid early prediction
of neurodegenerative diseases. It is important to analyze the
performance and capabilities of these GCNs for the classification
and obtain insights on how and when the GCNs can be used.
In this work, we perform detailed analyses of the performance
of GCNs for the classification of brain functional networks of
Alzheimer’s data. We study the impact of the various parameters
including the thresholds used for graph generation, graph sizes,
data sizes or the number of subjects, and classification accuracy
across different visits of the subjects. We have also developed
a transfer learning approach to train using one dataset and
apply the weights on another dataset to make use of larger
data sizes. Finally, we have developed GPU-based acceleration
methods to decrease the training time. We find that the accuracy
of the models improves when taking into account all visits of the
subjects and also improves with increasing graph sizes. The use
of transfer learning has also improved classification accuracy.
Finally, the use of CUDA streams for asynchronous computations
has resulted in a reduction in execution times by up to 60%.

Index Terms—Brain functional networks, Alzheimer’s data,
GCNs, Transfer learning, GPU Acceleration.

I. INTRODUCTION

Studying functional connectivity in human brain to aid

early prediction of neurodegenerative diseases has been at the

forefront of research [1] [2]. Much of the understanding of

the human brain rests on the way how it is measured and

modeled [3]. Exploring the human brain from the viewpoint of

connectivity patterns reveals important information regarding

the structural, functional, and causal organization of the brain

This work is supported by Pratiksha Trust Initiative in Brain, Computation
and Data (Pratisksha Trust), India.

[4]. With the launch of the Human Connectome Project [5],

computational methods to study connectivity in brain have

become prevalent. Brain functions can be learnt through

neuroimaging techniques that assess changes in metabolism

via positron emission tomography (PET) or changes in blood

oxygenation level-dependent (BOLD) responses via functional

MRI (fMRI). fMRI and PET offer low temporal resolution

but significantly high spatial resolution. Among the two, PET

is significantly costlier and involves usage of radioactive

isotopes. Hence, fMRI data, especially rs-fMRI (resting state

fMRI) data, has been widely used for brain studies [4].

Resting state functional MRI (rs-fMRI) provides us with

information about the default state of the brain, and allows us

to evaluate functional connectivity and its alterations in brain

disorders. Brain functional connectivity (FC) derived from rs-

fMRI data has become a powerful approach to measure and

map brain activity.

In early rsfMRI studies, functional connectivity was of-

ten summarised by a few spatial maps spanning the whole

brain. Example approaches are seed-based correlation and

low-dimensional ICA decomposition [6]. In contrast to seed-

based correlation and low-dimensional ICA, high-dimensional

parcellation into many nodes (potentially hundreds) allows a

richer analysis of the network connections; by shifting the

emphasis from large-scale maps with fine spatial detail to

a network description of nodes and edges, new information

can be obtained. A detailed network model may reveal which

nodes (sub-parts of the large-scale networks) are responsible

for the correlations seen between the larger-scale networks

[6]. To compare connectomes across subjects, it is essential
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to have the same parcellation in each subject, which preserves

the node correspondence between the subjects. Once we apply

a parcellation scheme in the form of a predefined atlas, we

can assign each parcel (node) a representative time series,

by averaging the time series from all the voxels within that

parcel. We will thus obtain a N node ×N timepoints data matrix,

using which we can obtain a subject-specific N node × N node

connectivity matrix. A major challenge for studying brain

functional networks is to enable the application of biologically

interpretable models using large numbers of nodes in a robust

and practical way [6].

There are many studies dealing with the classification of

brain functional networks generated using rs-fMRI images.

In one such study by Jie et.al [7], sub-network kernel ap-

proach was used to compare similarity of brain graphs using

the SVM tool. They have made use of ADNI data [8]

for rs-fMRI images of subjects with progressive stages of

Alzheimer’s - normal (CN), mild cognitive impairment (MCI)

and Alzheimer’s disease (AD). The authors point out that

the definition of brain nodes can dictate the accuracy of the

classification task. Hence, this forms one of the topics under

our study to enhance the methodology for improving accuracy.

For any machine learning task like classification, it is always

better to have large amount of training data. Since it is a tough

ask to obtain a larger dataset under a single domain/disease,

we have explored the capabilities of transfer learning [ in

section III] to pre-train the weights on some other similar,

larger dataset and then train the models on the actual target

dataset.

Graph Convolution Networks (GCNs) are neural network

mechanisms that directly work on graphs and use techniques

like convolutions and message passing to exploit their struc-

tural information [9]. GCNs have been increasingly used for

classification of brain functional networks. It is important

to analyze the capabilities and performance of the GCNs

for the classification of brain networks. This will help in

providing valuable insights on how and when the GCNs

should be used for this domain. In this work, we have used

GCNs for the classification of Alzheimer’s data. We primarily

use the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database, which contains brain images for different subjects

for the purpose of classifying them based on the degree of

progression towards Alzheimer’s disease. As graph inputs

to our GCN model, we use correlation matrices constructed

using timeseries of regions of interest (ROIs) of the brain,

obtained from the resting-state fMRI images [10].

We study the impact of the various parameters including

the thresholds used for graph generation from the ADNI

data, graph sizes, data sizes or the number of subjects and

classification accuracy across different visits of the subjects.

Secondly, to overcome the limitation of small data size in

ADNI, we have used a transfer learning approach to initially

train our model on a similar larger brain dataset and use these

trained weights as initial parameters, and train on ADNI data.

Finally, we have used GPU-based acceleration and CUDA

streams to decrease the training time. The graph generation

stage involves computing the Pearson Correlation Coefficient

(PCC) across every pair of brain regions chosen as nodes and

can be done in parallel. The amount of parallelism available

increases as we increase the node count, and hence GPUs

can be effectively used in graph generation. We have used

CUDA streams for asynchronous computations of a batch

for training while simultaneously transferring the data for the

next batch. We find that the accuracy of the models improves

when taking into account all visits of the subjects and also

improves with increasing graph sizes. The use of transfer

learning has also improved classification accuracy. Finally,

the use of CUDA streams for asynchronous computations has

resulted in decrease of execution times by up to 60%.

II. DATA SETUP AND PREPROCESSING

A. Data Setup

The data for this work is downloaded from two publicly

available brain data projects - Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) [8] and Autism Brain Imaging

Data Exchange (ABIDE) [11]. Images for both databases are

downloaded from the Laboratory of Neuroimaging’s Image

Data Archive (LONI IDA) [12], as resting-state fMRI images

in the NIFTI format [13].

For our experiments, we primarily have made use of the

data from the ADNI2 study. This study aims to understand

the progression of Alzheimer’s disease among individuals

aged 55 to 90 years. Using images from a total of 189

subjects of mean age of 73.4 ± 7.4 years and multiple visits,

a total of 609 images was obtained. The participants are

divided into four categories depending on the mini-mental

state examination (MMSE), Clinical Dementia Rating (CDR),

and Memory Box score results, which indicate the progression

of Alzheimer’s disease. The scans were performed on Phillips

Medical Systems scanners with a field strength of 3 T [14].

The raw data is arranged in the form of 4-D voxels, 3-D in

space, and 1-D in time. Each voxel gives the BOLD (Blood
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Oxygenation Level Dependent) reading, which is the brain

activity at that particular voxel coordinate and time step. The

preprocessing section outlines the steps used to create graphs

from the raw data.

1) ADNI Data: The ADNI dataset classifies the images

into four labels - CN (Control Normal), EMCI (Early mild

cognitive impairment), LMCI (Late mild cognitive impair-

ment), and AD (Alzheimer’s disease). The images are col-

lected from older population.

Since ADNI data contains information on the progression

of Alzheimer’s disease, multiple images are taken for each

subject involved in the study over a period of time. Thus, our

paper involves clinical data of 189 subjects with a total of 609

images. The demographic distribution of the 189 subjects is

given in Table I.

Label Count Gender Age

CN 52 30F/22M 75.59±6.76
EMCI 59 37F/22M 72.02±6.81
LMCI 45 18F/27M 72.91±8.39

AD 33 18F/15M 73.09±7.32

TABLE I: ADNI Subject demographic

B. Data Pre-processing

Preprocessing is a crucial step in preparing raw fMRI data

for analysis. We aim to remove artifacts in the data, reduce

noise, and use transformations to convert the images to a

standard format. The preprocessing steps for this study involve

the usage of FMRIB’s Software Library (FSL) tools [15].

The images downloaded from the LONI IDA website [12]

are raw fMRI images in the NIfTI format (Neuroimaging

Informatics Technology Initiative) [13]. Following are the

various preprocessing steps [16]. The steps are illustrated in

Figure 1.

1) Step 1 - Brain extraction and smoothing fMRI images:
FSL FEAT is used for fMRI analysis. We begin with the tool

FSL BET for Brain Extraction, to remove the non-brain tissue

including the skull and neck. Next, MCFLIRT is used for

Motion Correction. Since the subject might not be perfectly

still during the image acquisition, we align the images to the

middle time-step(s) to account for random head movements.

Subsequently, the FEAT tool also performs spatial smoothing

using a 3D Gaussian kernel of full-width at half-maximum

(FWHM) value of 5mm and intensity normalization of all

time-series within a particular image. Also, the temporal high-

pass filter of 0.01 Hz cut-off frequency is used to allow

the stimulus readings to remain while removing noise and

artifacts.

2) Step 2 - Linear Registration:: Subsequently, the images

are aligned to a standard space using FSL-FLIRT (FSL’s

Linear Image Registration Tool) [17] where all the images are

registered with the MNI152 template [18] (Montreal Neuro-

logical Institute’s standard template based on the readings of

152 subjects) using 12 degrees of freedom. As a result, we

obtain images of size 91x109x91 voxels for each time course.

These T1-weighted images with 1mmx1mmx1mm voxels are

consistent with the brain atlases used on the images.

3) Step 3 - Graph creation: Once the raw fMRI data is pre-

processed, we obtain standardised images of size 91×109×91
voxels for each time series. Thus each image is of size

91 × 109 × 91 × 140, since all ADNI images contain 140

time-steps. This is consistent with the ATLAS files we use

to wrap the data and identify ROIs from the corresponding

coordinates. We then generate graphs from the voxel data.

The graph generation is explained in detail below.

Standardised image to adjacency matrix: We primarily

make use of the library NiBabel [19], which is created for

the purpose of neuroimaging in Python. We make use of

the AAL (Automatic Annotated Labelling) atlases, since the

AAL atlases are defined in the same standard space as our

data (MNI152). We make use of the light AAL90 atlas which

specifies 4132 voxel coordinates and their corresponding ROI

(Region of Interest) label.

We begin by loading the data using NiBabel into a NumPy

array, and the AAL90 atlas in the same format, and map each

voxel of the atlas to the corresponding voxel in the image

data array along with its corresponding label. We take the

average of the BOLD value of all voxels within an ROI and

generate a time-series matrix for each image of size 90 ×
timesteps. Then, we normalize each time-series matrix, so

that the values across images can be compared. From the

normalized timeseries matrix, we generate a correlation matrix

by calculating the Pearson correlation coefficient (PCC) of

BOLD time-series values of each pair of ROIs.

The GCN model we are currently implementing makes

use of adjacency matrices as a graph input. Thus, using

appropriate cut-off value to threshold the PCC values in the

correlation matrix, we binarize it and obtain an adjacency

matrix as a graph input. For our work, we used the cut-off

value of 0.15.

Graph coarsening: Graphs that are generated keeping 4132

voxels × 140 timesteps will lead to 4132-node graph. We have
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Fig. 1: Preprocessing the raw images: (1) Raw fMRI image (2) Brain extraction and motion correction (3) Linearly registered

with MNI152 space (4) Comparison of the preprocessed image with standard image (5) Correlation matrix generated by PCC

of time-series matrix

explored the options for coarsening the graph to generate a

smaller graph of about 200 vertices, without compromise on

the meaningful representation of graphs. The procedure for

graph coarsening is as follows.

We partition the graph into subgraphs, each containing

nodes from one region of interest (ROI) in the atlas. Each ROI

is represented by one subgraph. Using Louvain’s algorithm

for community detection [20], we form communities/clusters

from each subgraph. Each community so formed is considered

as one node of the coarsened graph. We generate the edges in

the coarsened graph as follows. One node in the coarsened

graph consists of many vertices of the original graph. we

define an edge between two nodes of the coarsened graph

if there were more than a certain fraction of all the possible

edges between each pair of vertices from two different com-

munities. For our work, we used a fraction of 0.5. We ignore

the self edges, i.e., the edges between vertices belonging to

the same community.

III. HIERARCHICAL GCNS AND TRANSFER LEARNING

A. Baseline GCN Model

For the baseline model, we used Standard Graph Con-

volution Networks (GCNs). Feedforward networks are best

suited for regular and euclidean data, but graph structures

that are non-Euclidean requires networks that can capture the

structural information.

GCNs use the message passing technique where the model

learns the node features by inspecting and aggregating features

from neighbouring nodes [9]. Formally, the GCN take two

matrices as input - 1) Feature Matrix X of size N × D,

where N is the number of nodes and D is the number of

Input features and 2) Adjacency Matrix A of size N ×N and

generate Graph Representations Z as output. The intermediate

hidden layer can be written as a non-linear function

H l+1 = f(H l, A) (1)

H(0) = X (2)

H(L) = Z (3)

where L is the number of layers. The function f(.; .)
includes enforcing self-loop in A, normalizing it by the degree

matrix, D, and passing the arguments to feed forward network

with ReLU activation function, we get

H l+1 = f(H l, A) = ReLU(D̂
−1
2 ÂD̂

1
2H lW l) (4)

Â = A+ I (5)

where I is the identity matrix and D̂ is the diagonal node

degree matrix of Â.

At the last layer, the learned node embeddings are averaged

to get the graph embedding. Although workable, the graph

level representation generated using this method is inherently

“flat”, since the entire graph structure information is neglected

during this process. Also, averaging large number of node

embeddings leads to substandard graph embeddings.

B. Hierarchical GCN

Hierarchical Graph pooling with structured learning [21] is

used for all our runs. This model learns graph representations

in a hierarchical way with two operations at each layer: (i)

Node representation learning by message passing technique,
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similar to Baseline GCN model and (ii) Structure learning
downsampling by node clustering.

Hence by the end, the essential topological information is

preserved. At each layer, two neural network models are used:

(i) GCN model for node representation and (ii) A Neural

Network to cluster similar nodes, to coarsen and learn the

structure of the graph. The graph pooling operation proceeds

by selecting a subset of the nodes at each layer to form a

subgraph for the subsequent layer. This method is better suited

for our study since the brain data can be expressed as graphs,

and hence GCNs are suitable.

Figure 2 illustrates the working of the hierarchical GCN

model. The effectiveness of this method had been tested by

Zhang et.al [21] on publicly available datasets, where they

have demonstrated better classification accuracies compared

with the existing kernel, GNN, and the pooling-only strategies

for these datasets.

C. Transfer Learning

Transfer learning is a ML method where a model trained for

a task is reused as the starting point for a model on a different

task, assuming both the tasks are sufficiently similar. This

helps in the utilization of knowledge (features or weights)

acquired from source learned to solve a related target task.

The benefits of transfer learning are : (i) Higher Start: The

initial learning of the model, prior to training is higher than

it otherwise would be, (ii) Higher Slope: The learning

rate is steeper, this convergence is faster, and (iii) Higher
asymptote: The convergence of the model is at higher

performance level.

These benefits facilitate the model to perform well even

in low data regime. In our experiments, the target dataset

- ADNI has a limited size (189 subjects). Thus to improve

the model’s performance, we pre-trained our model on a

larger dataset, called ABIDE (Autism Brain Imaging Data

Exchange). ABIDE has a dataset size of about 600 subjects.

We trained the source model on the ABIDE dataset, the

weights are saved and the same weights are used to initialize

the target model while training the ADNI dataset.

IV. HIGH PERFORMANCE MACHINE LEARNING

We also used high performance computing approaches for

the acceleration of some of the steps described earlier.

A. Graph creation with GPUs

As explained earlier, we have to compute Pearson correla-

tion coefficient(PCC) for 4132 × 4132 voxel pairs. In general,

we will have to compute PCC for N ×N voxel pairs where

N can be quite large, which is time consuming, and hence

suitable for HPC acceleration. We have used GPU kernel

calls to generate adjacency lists for each node, in parallel. We

pass the entire voxel × timesteps matrix into the GPU device

memory. In each kernel call, we select one row (read voxel)

at a time, and we compute PCC of this row with all other

rows of the matrix and thus obtain a list of correlation values

corresponding to that row. After applying a suitable threshold,

this list is converted to adjacency list which can be transferred

back to host memory and stored. After completing the kernel

calls for all the rows, we will have the adjacency matrix of the

graph ready. We have enabled the code to run for upto 95K

voxel entries, which can be scaled further, depending on the

application scenario. For 4132 node graph, the performance

of pandas based python code and our GPU code had similar

runtimes (about 8 seconds). This is due to lesser availability of

data parallelism and lower node count. When we tested with

greater number of vertices (95k), our GPU acceleration for the

graph generation step resulted in the reduction of execution

time from tens of hours to a few minutes (about 25min).

B. GPU Executions for Aysynchronous Computations in
GCNs

The HGP-SL GCN model implemented in this paper makes

use of the GPU PyTorch library in Python for Deep Learning.

The model is trained and tested successively over several

epochs and validated at the end. For each iteration of training

and testing, the data stored in the host (CPU) is communicated

to the device (GPU).

We begin by performing an analysis of how the total time

taken is being distributed among different operations. We

notice that the majority of the time is taken during the training

(around 84 %) as shown in Figure 3a. Upon further splitting

the training step, we notice that the majority of the time is

consumed for transferring the data from the CPU to the GPU

at every iteration, as shown in Figure 3b.

Thus, we conclude that the data transfer from host to device

poses a significant bottleneck, as the subsequent operations of

training the model can only be resumed once the data has been

received by the GPU. As our dataset grows in size, either due

to increasing graph sizes or number of images, this causes a

bottleneck in both the times taken and memory consumption.
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Fig. 2: HGP-SL model [22]

(a) Split-up of total time taken

(b) Split-up of training time alone

Fig. 3: Time split-ups

We make use of CUDA streams to hide the data movement

overheads. Instead of sequentially proceeding from training

to testing during each iteration on the default stream, we

introduce an additional stream only for data transfer of the

next iteration’s batch of data. Thus, instead of all the processes

being run on the default stream on the GPU, we implement

two parallel CUDA streams; one for the training of the present

iteration, and the other for the data transfer of the succeeding

iteration. The preceding iteration’s data is erased from the

GPU once it is used for training the model. For this, we have

implemented bookkeeping of the regions of the memory used

by the CUDA kernels.

Thus, using asynchronous computation by utilizing two

parallel CUDA streams and conducting data transfer and

training at the same time help to tackle the bottleneck that

the data transfer poses. The results of this implementation are

demonstrated in the next section.

V. EXPERIMENTS AND RESULTS

Unless explicitly specified, for each run we use 200 epochs,

batch size 4, learning rate 0.01, dropout ratio 0.5. The training

set is 70% of the total dataset, chosen randomly. All other

parameters are the default as set by the code. For ADNI data

with 609 images from each subject, the labels are AD - 92,

MCI - 363, CN - 154.

For each run, we used 70% of the subjects for training, 20%

for testing and 10% for validation. The split was performed

before running the GCN so care was taken that the same

subject was not used for training, testing and validation. The

same splits were also used for transfer learning. Hi-GCN was

trained on our own (ADNI) data and the results mentioned

correspond to these experiments. We used the same dataset
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Fig. 4: Comparison of accuracy scores between single visit

and multiple visits of the subjects.

(ADNI) and similar split (70/30/10) as we used with the

HGCN model.

First, we show results on the effects of various parameters

on the classification accuracy of the GCN models. Next,

we show the effectiveness of the transfer learning approach.

Finally, we show the reduction in execution times due to HPC

acceleration.

A. Effect of Multiple Visits

Working with the ADNI dataset, we analyse the effect of

multiple visits for each subject on the accuracy of the model.

For this purpose, we consider the last visit of each subject and

make our analysis. From Figure 4, we observe that accuracy

scores improve with multiple visits. This is mostly due to the

availability of a larger number of training images for each

label.

B. Classification Accuracy for Visits of Same subjects

The available subject data is pre-grouped into separate sets

for each visit of a subject. Here, we consider the images of

the common subjects across the screening visit and the visit

one year later, which gives us 81 common subjects in both

subsets. The label information for these subjects are CN -

20, MCI - 47, and AD - 14. We try to understand how the

classification accuracy is impacted over time.

From Figure 5, we can observe that accuracy scores in-

volving MCI, esp MCI vs AD, have dropped from screening

to year 1. This might be attributed to the fact that with the

progression of the disease, MCI subjects might become more

Fig. 5: Comparison of accuracy scores at the time of screening

and after 1 year of screening for different subjects.

similar to AD, and thus resulting in reduced classification

accuracy.

C. Effect of Graph Sizes

Here, we compare graphs created using two atlases -

AAL90 and AAL116. As labeled in Figure 6, AAL90-90
uses the AAL90 atlas as-is, AAL90-196 uses graph coarsening

method described in Section II-B3 to split the entire atlas into

196 regions. In other words, each of the 90 ROIs is partitioned

into about 2-3 sub-regions and edges are defined across each

pair of sub-regions. AAL116-116 uses the AAL116 atlas as-is

and AAL116-580 uses k-means clustering to divide each ROI

in the AAL116 atlas into 5 regions.

We notice that the accuracy scores across all graph sizes

are similar for MCI vs CN. But a significant jump in accuracy

is observed for the other two classification tasks when graph

coarsening methods were applied for AAL90 atlas defined

ROIs to obtain a larger 196v graph. However, the application

of K-means clustering on AAL116 does not improve accuracy

since it does not take into account the naturally defined sub-

regions in the brain, as it predefines the number of sub-

regions expected from each region. The graph coarsening

method, which is based on the activity happening across and

within each region, to sub-divide the regions, shows good

improvement in the accuracy score.

D. Varying Threshold Cut-offs

Each subject’s fMRI image is processed to generate cor-

relation matrix, which is converted into an adjacency matrix
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Fig. 6: Comparison of accuracy scores across graphs of

different sizes generated by using different brain atlases.

by applying a threshold on the PCC values. Negative PCC

values are converted to positive by applying mod function.

To choose the ideal threshold value, we analyze the effect of

different thresholds on accuracy. Results are shown in Figure

7.

We observe that increasing the threshold value leads to

sparser graphs which resulted in lesser classification accuracy;

on the other hand, low threshold values lead to highly dense

graphs that will deplete the meaning of functional connectivity

of the regions (nodes). Thus, a trade-off is to be maintained.

Threshold of 0.15 relatively performs better in MCI vs CN,

while 0.2 performed marginally better in AD vs CN and AD

vs MCI. So a threshold value between 0.15-0.2 can be chosen

to give the best results.

E. Transfer learning with ABIDE data

The ADNI dataset has a limited number of unique subjects

(189), and hence is not quite appropriate for employing deep

learning algorithms. Thus, we make use of another resting-

state fMRI dataset, the ABIDE dataset [11], which is centered

on autism subjects and has 589 subjects. The ABIDE dataset

classifies the images into 2 labels - CN (Control Normal)

and AU (Autistic). The images are collected from a younger

population. The demographic distribution is given in Table II.

Label Count Gender Age

CN 300 56F/244M 18.24±8.19
AU 289 29F/260M 17.67±8.93

TABLE II: ABIDE Subject demographic

Fig. 7: Comparison of accuracy scores across different thresh-

old values. Adjacency matrices are generated by applying

threshold values on the correlation matrices.

We use the weights of the model pre-trained with the

larger ABIDE dataset to initialize the smaller ADNI dataset.

From Figure 8, we see that employing transfer learning has

marginally improved the accuracy scores of the 3 ADNI

classification tasks. A possible reason for not obtaining much

better improvement is that i) ADNI dataset has 3 labels and

ABIDE has 2. Thus, it would only partly help to pre-train

the GCN weights with ABIDE, to be later used by ADNI. A

future task could be to use a dataset with 3 labels similar

to ADNI. ii) There is a dissimilarity in the datasets with

respect to the age group; ABIDE dataset has a mean age of

around 18yrs, while ADNI dataset has a mean age of around

73yrs. This affects the similarity in the rs-fMRI images,

even among normal controls, and hence would contribute

in reduced improvement in accuracy scores due to transfer

learning.

F. Comparisons with State-of-Art

We compared our models with another GCN-based brain

disorder prediction model Hi-GCN [21] proposed by Jiang

et al and with our baseline standard GCN model, SGCN.

SGCN is the standard GCN approach, where the model learns

embedding for each node using the message passing technique

and the last layer is a pooling layer to get the embedding for

the complete graph. HGCN also learns the embedding of the

graph in a hierarchical way, but has two operations at each

layer, namely, graph pooling and structure learning. The graph

pooling operation utilizes node features and graph structure
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Fig. 8: Comparison of accuracy scores between models with

and without using Transfer learning with ABIDE dataset.

information to perform down-sampling on graphs. Then, a

structure learning layer is stacked on the pooling operation,

which aims to learn a refined graph structure that can best

preserve the essential topological information.

Our approach, Hi-GCN is a hierarchical version of GCN,

but the hierarchy is defined in a different way. It jointly learns

the graph embedding taking care of two aspects, namely,

region to region brain activity correlations in the same subject

and subject to subject relation in the population network

(all graphs). So, a high-level embedding of brain network

representation is learned by deriving the embedding for a

single subject and aggregating embedding of its neighboring

subjects in an end-to-end fashion with global supervision.

Time complexity is less for SGCN and similar for Hi-GCN

and HGCN. Table III summarises the classification accuracy

results for AD Vs MCI. The hierarchical GCN model with

Transfer Learning (HGCN w/ TL) performed better than the

other models. This can be attributed to a better hierarchical

encoding of the brain graphs and use of prior knowledge via

transfer learning.

G. Asynchronous Computations with CUDA Streams

In this subsection, we analyze the effect of CUDAstreams

on the total runtime of the model. We perform the comparison

with the same datasets with graphs of 196 nodes.

Figure 9 shows the execution times with and without using

CUDA streams. We notice that as the batch size increases,

the effect of CUDA streams becomes more evident, becoming

half the runtime of executions without CUDA streams towards

larger batch sizes of 128 images. In the case of graphs with

Model AD vs MCI
(Average Accuracy)

Hi-GCN [21] 78.5
SGCN 80.0
HGCN 80.3

HGCN w/ TL 81.8

TABLE III: Classification accuracy across different models.

Hi-GCN is the model proposed by Jiang et al. SGCN is

our baseline standard GCN model, HGCN is the hierarchical

model w/ and w/o Transfer Learning (TL).

196 nodes, our approach conserves memory by consistently

deleting unnecessary data during each iteration of training and

testing by bookkeeping of memory regions. Thus, we find that

CUDA streams enable us to run our model with batch sizes of

128 images even when it runs out of memory in the original

flow.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have explored the robustness of GCN mod-

els for classification in brain functional networks obtained via

rs-fMRI and we have analyzed the effect of various parameters

including number of visits, number of subjects, size of brain

graph constructed and dataset sizes. We have performed this

study with Alzheimer’s data. We have also proposed a transfer

learning approach to use large-scale data to train models

and use the models for classification in networks where the

data size is comparatively small. This is important to study

different brain networks where the data may be sparse. Finally,

we have proposed HPC acceleration methods including use of

CUDA streams to reduce the training time.

We used two GCN based methods - standard and hierar-

chical, for the MCI-AD classification. The use of transfer

learning has also improved classification accuracy. Finally,

the use of CUDA streams for asynchronous computations has

resulted in reduction in execution times by up to 60%.

We would like to extend this study for different kinds of

brain networks. We also plan to develop domain adaptation

techniques to improve the accuracy of the models even further.

Finally, we also plan to develop GPU parallel methods for

computations of similarities between the different brain net-

works. In particular, methods will be developed to accelerate

GED (Graph Edit Distance) computations [23], for comparing

brain networks.
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(a) 90 nodes

(b) 196 nodes

Fig. 9: Effect of cudastreams on runtime comparison
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