Check for
Updates

Dynamic Strategies for High Performance Training of
Knowledge Graph Embeddings

Anwesh Panda
Department of Computational and Data
Indian Institute of Science
Bangalore, India
anweshpanda@alum.iisc.ac.in

ABSTRACT

Knowledge graph embeddings (KGEs) are the low dimensional rep-
resentations of entities and relations between the entities. They can
be used for various downstream tasks such as triple classification,
link prediction, knowledge base completion, etc. Training these
embeddings for a large dataset takes a huge amount of time. This
work proposes strategies to make the training of KGEs faster in
a distributed memory parallel environment. The first strategy is
to choose between either an all-gather or an all-reduce operation
based on the sparsity of the gradient matrix. The second strategy
focuses on selecting those gradient vectors which significantly con-
tribute to the reduction in the loss. The third strategy employs
gradient quantization to reduce the number of bits to be communi-
cated. The fourth strategy proposes to split the knowledge graph
triples based on relations so that inter-node communication for the
gradient matrix corresponding to the relation embedding matrix
is eliminated. The fifth and last strategy is to select the negative
triple which the model finds difficult to classify.

All the strategies are combined and this allows us to train the
ComplEx Knowledge Graph Embedding (KGE) model on the FB250K
dataset in 6 hours with 16 nodes when compared to 11.5 hours
taken to train on the same number of nodes without applying any
of the above optimizations. This reduction in training time is also
accompanied by a significant improvement in Mean Reciprocal
Rank (MRR) and Triple Classification Accuracy (TCA).

CCS CONCEPTS

« Computing methodologies — Parallel algorithms; Machine
learning approaches.

KEYWORDS

Knowledge graph embeddings, communication minimization, gra-
dient quantization, selection of gradient vectors.

ACM Reference Format:

Anwesh Panda and Sathish Vadhiyar. 2022. Dynamic Strategies for High
Performance Training of Knowledge Graph Embeddings. In 51st Interna-
tional Conference on Parallel Processing (ICPP °22), August 29-September 1,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9733-9/22/08...$15.00
https://doi.org/10.1145/3545008.3545075

Sathish Vadhiyar
Department of Computational and Data
Indian Institute of Science
Bangalore, India
vss@iisc.ac.in

2022, Bordeaux, France. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3545008.3545075

1 INTRODUCTION

Knowledge Graphs (KG) are multi-relational graphs consisting of
entities and relations. An instance of a KG is represented as a triple.
Each triple consists of two entities and a relation between those
two entities. They are popularly known as {head, relation, tail} or
{subject, predicate, object}. An example can be {New Delhi, capital
of, India} where {New Delhi} and {India} are entities and {capital of}
is the relationship between them. Knowledge graph embeddings are
vectorized representations of these entities and relations, and has
various applications including triple classification, link prediction,
knowledge base completion, etc.

With the increase in the size and sparsity of graphs, the time and
memory requirements for training of Knowledge Graph Embed-
dings (KGE) increase. Hence there arises a demand for distributed
training for exploring larger problems. There are two main ap-
proaches to distributed training. One is the parameter server [14]
approach in which some nodes, known as servers, are used to store
the model parameters. Data is distributed uniformly among the
other nodes, known as worker nodes. In an iteration, the work-
ers pull the updated model parameters and use the local data to
compute gradients which are sent back to the servers to update
the model parameters. The main drawback of this approach is the
communication bottleneck to the server. To overcome this issue
we can use more than one server. But this creates an all-to-all
communication pattern that is not efficient.

To overcome the disadvantage of the above-mentioned approach,
synchronous all-reduce and all-gather methods are proposed for
smaller models. In this approach, data is uniformly distributed
among the workers and the same model is replicated in every
worker. Each worker uses its part of the data to compute gradients
which are aggregated using either an all-reduce or an all-gather
operation to update the model in each worker. The workers need
to be synchronized at the end of each iteration. This method is well
implemented in a framework named Horovod [17], which along
with the deep learning library Tensorflow [1] is used in our work.

The above-mentioned approach has communication and syn-
chronization bottlenecks. Another aspect of KGE training is the
quality of the negative samples. Sampling more number of nega-
tive samples up to a certain threshold gives both convergence and
generalization benefits, but requires more training time. Also with
the increase in the number of nodes, the number of batches trained
simultaneously and the effective batch size increases which not

https://doi.org/10.1145/3545008.3545075
https://doi.org/10.1145/3545008.3545075
https://doi.org/10.1145/3545008.3545075
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545008.3545075&domain=pdf&date_stamp=2023-01-13

ICPP °22, August 29-September 1, 2022, Bordeaux, France

only makes the training difficult but also brings down the gener-
alization ability of the model. In this work, we address the above
issues and try to reduce the training time while making a better
generalization of the model.

In this work, we propose five methods to solve the above-mentioned
challenges. The first method involves dynamically choosing be-
tween either an all-reduce or an all-gather method based on the
number of non-zero gradient rows of the gradient matrix. The sec-
ond method relies on the idea that the 2-norm of a gradient vector
can be considered as a metric for the effective reduction in final loss.
With this notion, we drop the gradient vectors with lower values of
2-norm by defining a Bernoulli random variable. The third method
is to quantize the gradient values to 1-bit by using the sign of the
gradient values and maximum of the absolute values in a gradient
vector. Hence instead of communicating 32 bits for a gradient value,
we communicate only 1 bit reducing the communication volume
by a factor of 32. The fourth strategy is all about partitioning the
triples among the nodes so that no two nodes have triples having
the same relation. This helps us eliminate the inter-node communi-
cation for the relation gradient matrix. The fifth technique relies on
the fact that KGE models can be efficiently trained with lesser but
effective negative samples. We identify that the negative samples
which the model finds difficult to classify are the most effective ones
and use only them for training. This helps us reduce the number of
triples for training which reduces the total training time and avoids
the class imbalance problem due to the presence of more negative
triples than positive ones. Experiments were conducted with the
ComplEX[18] KGE on two datasets, namely, FB15K and FB250K
datasets[7]. Our strategies put together help in training the model
on the FB250K dataset in 6 hours on 16 nodes when compared to
11.5 hours it takes to train it on the same number of nodes without
applying any of these optimizations. This performance improve-
ment is also accompanied by an increase in accuracy parameters,
namely, Mean Reciprocal Rank (MRR) and Triple Classification Ac-
curacy (TCA). We also show huge performance improvement on
the FB15K dataset in terms of training time, MRR and TCA.

The primary contribution of this work is to explore the com-
bined effects of multiple important strategies for performance and
accuracy of the KGE models. Strategies including dynamic selection
of allgather and allreduce communication and relation partition are
novel contributions of the work.

The paper is organized as follows. Section 2 deals with the works
done related to the parallelization of deep learning models and KGE
training. We also list the works undertaken to improve the conver-
gence and reduce the adverse effects of large batch training. Section
3 introduces briefly the ComplEx [18] KGE model, details of the
datasets and experimental setup including the hyper-parameters.
This section then gives the baseline methodology and the corre-
sponding results. Section 4 explains the proposed methods in detail
with the supporting experiments. Section 5 presents the results and
gives analysis. Section 6 gives conclusions and future work.

2 RELATED WORK

There have been some efforts by Zhang et al. [23] and Niu et al.
[16] to train the KGE using shared memory parallelism by employ-
ing lock-free updates in a multi-threaded environment. Gupta and
Vadhiyar [7] proposed three optimizations, namely, avoiding zero

Anwesh Panda and Sathish Vadhiyar

gradient row communication, variable margin approach, and dist-
Adam optimizer to train TransE [19] embeddings efficiently using
32 nodes in a distributed memory paradigm. In our case, with the
ComplEx KGE model[18], the number of gradient rows with abso-
lute zero values is less. Hence we introduce a method to eliminate
the insignificant gradient rows. PyTorch Big Graph [13] tried to
split the graph into buckets and train the non-overlapping parts
simultaneously without involving any communication between
them. But, with their proposed techniques, the communication of
entity embedding is reduced but not eliminated. We introduce a
relation partition in which we eliminate the communication for
the relation gradient matrix and also take advantage of gradient
quantization.

A lot of work has been done on gradient sparsification and quan-
tization to reduce the communication volume for training deep
learning models. Aji et al. [2] proposed to communicate the gradi-
ent values whose magnitudes are greater than a certain threshold
value. He also suggested storing the gradient values that are not
communicated as residuals which are to be added with the gradient
values in the next iteration. Wangni et al. [20] formulated the spar-
sification as an optimization problem to control the variance of the
sparse gradient vector compared to its dense counterpart. Lin et al.
[15] proposed to scale the locally accumulated gradient residuals
with the momentum term in the case of momentum stochastic gra-
dient descent. In our case, the size of each gradient vector is smaller
(up to 200 dimensions), and communicating only a small percentage
of the values can affect convergence. Also, in the other works, the
indices of the data will have to be communicated, requiring large
volume of communication.

The quantization method aims to reduce the number of bits
to be communicated for a specific gradient value. Wen et al. [21]
proposed terngrad which required three numbers to represent the
gradient value and can be communicated using 2 bits. Alistarh et
al [3] also proposed a 2-bit scheme called g-sgd in which they sug-
gested quantizing the gradient vector by splitting it into multiple
blocks. While q-sgd used the 2-norm of a vector along with its sign
to represent a gradient value, terngrad suggested using the infinity
norm. Wu et al. [22] suggested accumulating the error in the form
of residual for the above-mentioned two methods and use it as
feedback in the next iteration. Karimireddy et al. [9] suggested a
1-bit quantization method in which the sign of the gradient value
is used along with the average of the gradient vector. The work
also suggested accumulating the quantization error at every itera-
tion and use it as feedback in the next iteration. We performed a
comparison between various 1-bit and 2-bit quantization schemes
and tried different techniques to assign the quantized values for
a given gradient vector. Based on these comparisons, we choose
the 1-bit quantization scheme with the sign of the gradient values
multiplied with the maximum of the absolute value of the gradient
vector as the quantized value.

Another approach is to factorize the gradient matrix to convert it
to smaller ones. But factorization of a single matrix gives rise to at
least two matrices which demand all-reduction of both the matrices.
Cho et al. [5] proposed a method to use the same random matrix in
all the processors and factoring the original matrix into the random
matrix and one other matrix so that only one matrix needs to be
all-reduced. Then the random matrix and the all-reduced matrix

Dynamic Strategies for High Performance Training of Knowledge Graph Embeddings

can be used to reconstruct the approximate gradient matrix. As
each row of the gradient matrix corresponds to different entities
or relations in our case, reconstruction of the factored matrix does
not seem intuitive and shows poor convergence in practice.

Keskar et al. [10] addressed the loss of generalization issue of
large batch training, which can lead to convergence to a sharp
minima. Goyal et al. [6] proposed strategies like linear scaling and
progressively increasing the learning rate to overcome the large
batch training issue. For linear scaling, the learning rate is multi-
plied by the number of processors. However, in our experiments
with large number of processors, we observed that such linear scal-
ing resulted in reduced validation accuracy. This is due to the high
learning rate caused by the divergence from the minima. Hence, we
fixed an upper bound for the learning rate. This method successfully
solves the issue of large batch training to a large extent.

Kotnis et al. [12] studied the effect of negative sampling and pro-
posed the nearest neighbor negative sampling which shows a good
improvement in performance. The basic idea is to take the sample
which is difficult to classify for the model. For a given head and rela-
tion, the work takes the tail entity which is closest to the positive tail
entity in the embedding space. However, the approach is computa-
tionally expensive. In our approach, we take k negative samples ran-
domly for a given positive sample and use the one which the model
finds difficult to classify by using the scores assigned by the model.

3 BACKGROUND AND ANALYSIS

3.1 KGE models

Knowledge Graphs (KGs) are multi-relational graphs consisting of
entities and relations. An instance of a KG is represented as a triple.
Each triple consists of two entities and a relation between those
two entities. They are popularly known as {head, relation, tail} or
{subject, predicate, object}. An example can be New Delhi, capital
of, India where New Delhi and India are entities and capital of is
the relationship between them. Knowledge graph embeddings are
vectorized representations of these entities and relations and KGEs
can be used for triple classification, link prediction, knowledge base
completion, etc.

KGE models define a scoring function for a correct triple and
an incorrect triple. In this work we use complex model [18], since
complex models are important classes of models used in many
applications and generalize other models including real models [7].
Strategies developed with these models are generally applicable
to the other models. In our work, out of the five strategies, all
the strategies, except the negative sample selection strategy, are
applicable to the other KGE models.

In the complex model, instead of using real embedding vectors,
complex embedding vectors are used. The score function is defined
as the real part of the element-wise product of head embedding,
relation embedding, and conjugate of tail embedding.

¢(h,r,t) = Re(< Ep,, Er,Et >)
=< Re(E;), Re(E},), Re(E;) >
+ < Re(Ey), Im(Ey), Im(E;) > (1)
+ < Im(E,),Re(Ep,), Im(E;) >
— < Im(E,),Im(Ep), Re(E;) >

ICPP °22, August 29-September 1, 2022, Bordeaux, France

The loss function is defined as
min > 1og(1+ exp(=Yp. ., r,r)) + 21167
h,r,t
where Yy, ., = 1 for a correct triple and -1 for an incorrect
or false or negative triple. The negative triples are obtained by
randomly replacing either head or tail entity of a correct triple with
some other entity.

3.2 Evaluation Metrics

We follow standard evaluation techniques as followed by ComplEx
[18], namely, filtered-MRR (filtered Mean Reciprocal Rank) and
triple classification accuracy. For calculating raw MRR, first, we
replace the head with every other entity in the dataset and find the
rank of the original triple based on the score. We repeat the same
process by replacing the tail. We take the reciprocal of the rank
and take the average of both. We do the same for all the test triples
and take an average. In the case of filtered MRR, we skip the triples
which are already present in the dataset. The triple classification
accuracy is obtained by evaluating if a given test triple is correct or
not. We use the well-known library OpenKE [8] for modeling and
evaluation.

3.3 Experimental Setup

We performed experiments on two datasets i.e. FB15K [4] and
FB250K [7]. Both these datasets are created by skimming the orig-
inal Freebase dataset which consists of around 2 billion triples.
FB15K consists of 14951 entities and 1345 relations and approx-
imately 600K triples. FB250K has around 16 million facts, 240K
entities, and 9280 relations. Although the FB15K dataset is a smaller
one, it is used as a benchmark dataset in almost all the KGE models.
Hence, we use it to show the efficacy of our techniques in terms
of generalization and accuracy. FB250K dataset is used to show
the scalability of our approaches. We use the same train, test, and
validation splits which was created by the original creator of the
datasets. All our results were obtained as average over five runs.
We performed our experiments with equal number of batches
per worker with batch-size of 10000 and using Adam optimizer [11].
The experiments were performed on a CrayXC40 supercomputing
system in our Institute. We experimented with maximum of 16
nodes where each node has 2 CPU sockets with 12 cores and 128GB
RAM. Hence the calculation in a node is multi-processed by 24
cores. We start with an initial learning rate of 0.001 scaled by a
scaling factor which we define for different methods and with a
tolerance of 15, reduce it by a factor of 0.1 until a defined minimum
learning rate. This means that if we do not see any improvement in
validation accuracy until 15 epochs, we decrease the learning rate.
We also specify the number of negative samples for each method.

3.4 Baseline Method

We consider ComplEx [18] KGE model parallelized with the dis-
tributed library Horovod [17] with both sparse and dense updates
of the gradient matrix. The dense updates involve performing an
all-reduce operation which involves communicating the whole gra-
dient matrix including the zeros so that values at each row and
column get aligned to perform the addition operation. On the other
hand, sparse updates involve the all-gather operation where only

ICPP °22, August 29-September 1, 2022, Bordeaux, France

4
Allreduce
03 = Allgather
5
(=}
I
<
0?2
15
=
s
21 L
-
o .
2 3 3 [
Number of Nodes
(a) TT on FB15K
. Methods.
Allreduce
. = Allgather
330
I
£
2 .
=
|20
2 ——
L
) [12 16
Number of Nodes
(b) TT on FB250K
——a
et
Allreduce
360 = Allgather
73
2
S
o
&
w320 .
IS
]
Ee) »
£
5
Z 280
.
4 8 12 16
Number of Nodes
(c) N on FB250K
500{ @
" Allreduce
B 400 = Allgather
s
5]
[o)
300 .
=4
£
i 200
5 L
o
G100 .
o .
3 12 16

8
Number of Nodes

(d) epoch time on FB250K

Figure 1: Baseline Results

the non-zero rows of a gradient matrix are communicated and gath-
ered by all the processors. We first used the linear scaling rule to
scale the learning rate which is to simply multiply it by the num-
ber of nodes. But it resulted in highly unstable training because
of the higher learning rate for the number of nodes greater than
four. Hence we take the maximum scaling factor as 4. Formally,
Ir = Ir x min(4, number of nodes). The number of negative samples
for FB250K is 1 and for FB15K is 10 per one positive triple.

The baseline results are shown in Tables 1 and 2 and Figure 1. For
FB15K, all-reduce always results in smaller execution times than
all-gather primarily because it is a small dataset and the gradient
embedding matrix is small because of which the sparsity is less.

Anwesh Panda and Sathish Vadhiyar

1.0

[e]

5 [—

15 [
5509

[<Fs) m—— FB15K
-

o__6 fb250k
S08 7
"g (@)}

£ 07 | :

0 20 40 60 80 100
epochs

Figure 2: Number of non-zero gradient rows

Figure 1b shows the total training time for the FB250K dataset.
Initially, training time for all gather seems to be less than all-reduce
until the number of nodes equals 4 which can be explained by the
lesser epoch time as shown in Figure 1d. However, after 4 nodes
the situation reverses, and all-reduce performs better.

In Figure 1c, we can see the increase in the number of epochs
with the increase in the number of nodes. With the increase in the
number of nodes, the time taken for a full epoch decreases but the
number of epochs required for convergence increases due to an
increase in the effective batch size. In Figure 1b, we can see the
saturation of total time after the number of nodes equals 4. This is
because with the increase in the number of nodes, reduction in time
per epoch is less whereas the number of epochs for convergence
increases giving rise to higher total time. This lesser reduction
in epoch time is due to the increase in all-gather volume with
an increase in the number of nodes creating a communication
bottleneck, as explained in the following section.

4 OPTIMIZATIONS

This section discusses our proposed methods to improve the base-
line results. The objective is to reduce the total training time by
reducing communication and improving the convergence rate with-
out compromising accuracy.

4.1 Dynamic Selection of AllReduce and
AllGather Communications

We find two methods for accumulating the gradients for all the
workers, namely, all-reduce and all-gather operations. For an all-
reduce operation, every worker must have the full gradient matrix
communicated between them so that elements at a given index can
be added across all the workers. This is beneficial when we have a
dense matrix. But with more sparsity, it may not be beneficial to
work with the full gradient matrix but to gather the rows of the
matrix among all the workers. In this work, we try to dynamically
choose between either an all-reduce or an all-gather operation
based on the sparsity. As shown in Figure 1d related to the time
taken for one epoch for all-gather and all-reduce operation for
varying number of nodes, for a smaller number of nodes, an all-
gather operation gives better performance while for higher number
of nodes all-reduce gives better performance.

Figure 2 shows that with an increase in the number of epochs as
we go along training the model, the number of non-zero gradient

Dynamic Strategies for High Performance Training of Knowledge Graph Embeddings

ICPP °22, August 29-September 1, 2022, Bordeaux, France

all-reduce all-gather
No of nodes TT N TCA MRR TT N TCA MRR
1 3.26 301 90.7 0.59 3.26 301 90.7 0.59
2 1.27 257 90.2 0.57 3.52 358 90.6 0.59
4 0.78 300 90.3 0.58 2.48 349 90.3 0.58
8 0.54 381 90.3 0.58 2.34 314 90.1 0.56

Table 1: Baseline result on FB15K dataset. TT refers to total training time in hours, N refers to number of epochs, MRR refers

to Mean Reciprocal Rank, TCA refers to Triple Classification Accuracy

all-reduce all-gather
No of nodes TT N TCA MRR TT N TCA MRR
1 37.2 250 89.6 0.28 37.2 250 89.6 0.28
2 35.3 252 89.6 0.28 26.3 283 89.9 0.28
4 24.04 302 89.6 0.28 19.6 298 89.7 0.28
8 14.3 323 89.5 0.29 17.53 339 89.1 0.28
16 11.3 379 88.5 0.28 16.1 386 88.5 0.28

Table 2: Baseline result on FB250K dataset

rows decreases which motivates us to point towards an all-gather
operation. Hence we start the first epoch with an all-reduce opera-
tion. At every kth epoch, we perform an all-gather operation and
compare the time taken for both. If the time taken for all-gather
operation is less, we switch to all-gather for the rest of the training.
Else, we continue to perform all-reduce. We set k to be 10 in our
case.

4.2 Selecting the Gradient Vectors

The above-proposed optimization heavily relies on the fact that
a certain number of gradient vectors needs to be completely zero
which is not the case for most of the datasets. It also takes a lot of
training to reach that state. This motivates us to introduce sparsity
by selecting the gradient vectors which contribute more towards
the decrease in the overall loss. The change in loss heavily depends
on the change in parameter vector which in turn relies on the
magnitude of gradient vectors. Hence we use the 2-norm of the
gradient vectors to decide the contribution of each gradient vector.

Now the task is to decide a certain threshold below which we
can drop a gradient vector. One method is to set the average of the
2-norms of the gradient vectors as a threshold. This simply means
we will drop all the gradient vectors whose 2-norm will be lesser
than the average value. By this process, we may miss the vectors
which are just below the threshold but have the potential to cause a
significant impact. Hence, we design this task with the help of the
Bernoulli random variable for each gradient vector. If the variable
takes 0 values then we drop that gradient vector. Formally, if X; is
the random variable corresponding to the i*" gradient vector
P(X; = 1) = min(1, 1Zll)
where C = average of the 2-norms of all gradient vectors

Figure 3a shows the triple classification accuracy along with
sparsity for 3 scenarios. The average scenario is when we take the
average as threshold and averagex0.1 is when we multiply 0.1 with
the average value and take it as a threshold. The second method
is because we observed that only taking the average results in

S ono —— Dense
F oss average
0.60 —— averagex0.1
023 —— random selection

0 20 80 100

40 60
no of epochs
(a) Comparing Based on TCA
—— average

averagex0.1
=== random selection

fraction of non-zero gradient rows

no of epochs

(b) Comparing based on sparsity

Figure 3: Different thresholds for random selection

skipping of many gradient vectors. By multiplying the average by
0.1, we attempt to reduce this skipping by a factor of 10. The third
method is random selection which is as described earlier. From
Figure 3a we can see that the convergence curve for the random
selection method almost overlaps with its dense counterpart and
also introduces a good amount of sparsity as shown in Figure 3b,
which results in reduced communications.

4.3 Gradient Quantization

Gradient quantization involves reducing the number of bits to rep-
resent the gradient values. In this work, we focus on 2-bit and 1-bit
quantization to represent a 32-bit scalar gradient value.

ICPP °22, August 29-September 1, 2022, Bordeaux, France

—— without quantization
using mean quantization
055 with random selection+

mean quantization

o E)) %0
no of epochs

Figure 4: 2-bit quantization with random selection on FB15K
dataset

Our 2-bit quantization scheme is motivated by TernGrad [21]
with some minor changes. Instead of using the maximum of the
absolute values of the gradient vector, we use the mean of the abso-
lute values as we found experimentally that it gives better results.
Our 2-bit quantization method can be summarized as follows.
quant(v) = sign(v) = mean(|v|) * P
where v is the original gradient vector.
sign(v) represents the sign of the elements of vector v
P is a binary random vector with

P(P; = 1) = min(1, -2

Fig. 4 shows the effect when we merge random selection of
gradient vectors with 2-bit quantization on the FB15K dataset. We
can see that the performance of the 2-bit quantization scheme is
not affected by the addition of random selection.

In the 1-bit quantization scheme, we eliminate the zeros which
we introduce in the 2-bit quantization scheme. We explored dif-
ferent methods including average, max, negmax, posmax, negavg,
posavg. For example, negmax is when we represent negative values
of the gradient vector by the maximum of all the negative values.
We found experimentally that the max method, where we take the
maximum of the absolute values of all the elements, outperform
the other methods in terms of accuracy. The 1-bit method can be
summarized as follows.
quant(v) = sign(v) * max(|vl)

The results for 2-bit and 1-bit gradient quantization with random
selection are given in Figure 5 for the FB15K dataset. Note that for
the FB15K dataset we do not include dynamic allreduce-allgather
along with random selection as all-reduce seems to always perform
the best for this dataset due to the smaller gradient matrices. Figure
5a shows the comparison of total training time between 2-bit and
1-bit gradient quantizations embedded with random selection. The
1-bit quantization strategy seems to be more beneficial in terms of
the total training time while the accuracy metrics of MRR, as shown
in Figure 5b remain almost the same for both the cases. Hence for
our further experiments, we use 1-bit gradient quantization scheme
with the sign of the gradient value multiplied with the maximum
of absolute values of the gradient vector. We found that after the
introduction of the gradient quantization, the fraction of Allreduce
communications reduced by about 60%.

Anwesh Panda and Sathish Vadhiyar

- 1-bit quantization
» = 2-bit quantization
53
<]
I
<
o
£
F2
<
S
o
Q
w
1
.
2 2 6 8
Number of Nodes
(a) Comparison of total training time
0.60 .
1-bit quantization
0.59 = 2-bit quantization

RR
=}
@
&
L4

p)
Number of Nodes

(b) Comparison of MRR

Figure 5: Comparison between 1-bit and 2-bit quantization
on FB15K

SN. | head relation tail
1 1 1 2

2 2 1 10
3 3 2 5

4 6 3 9

5 7 3 8

Table 3: Triples

4.4 Relation Partition

The primary operations in the KGE algorithms is to collect the
gradient vectors in each processor by either an all-gather or an
all-reduce operation to obtain the global gradient matrix in each
processor and update the model. There are two gradient matrices in
each processor, namely, entity gradient matrix and relation gradient
matrix. We propose to arrange the triples in such a way that the
communication required to accumulate the gradients is minimized.
There are some efforts [13] to partition entities to minimize com-
munication overhead. Instead of partitioning the entities, we focus
on partitioning the relations. In our approach, we eliminate the
need of accumulating the gradient matrices for relation embeddings
in each processor, thus eliminating the communication overhead.
This is done by assigning triples corresponding to non-overlapping
relations to different processors. Let us consider the below scenario
where we have 5 triples (Table 3) to be distributed across two pro-
Ccessors.

For this case, if we assign the first and second triples to processor-
1 and the rest to processor-2, the relations in the two processors do
not overlap. Hence we do not need to communicate the gradient
matrices corresponding to the relation embeddings.

Dynamic Strategies for High Performance Training of Knowledge Graph Embeddings

without partition
= with partition

0.5

50 75 160
Number of Epochs

(a) Comparing TCA on FB15K

vethoss
400 without partition
= with partition

Epoch Time in Seconds

8 12 16
Number of Nodes

(b) Comparing epoch time on FB250K

Figure 6: Comparing with and without relation partition

Hence, we first sort the triples based on the relations. Then we
construct an array representing the number of triples corresponding
to each relation. Then we perform a prefix sum over the array. For p
processors, we have to perform p-splits so that the number of triples
in each processor remains balanced. This can be done by performing
a binary search over the prefix array to find the range of relations
for each split which are then scattered across the processors.

The relation gradient matrix is smaller when compared to the
entity gradient matrix and hence the timing benefits obtained with
this method may not be significant. But the benefit of this method
is realized with gradient quantization. Since we do not need to
communicate the relation gradient matrix, we also do not need to
quantize the values and hence the values can be used with full pre-
cision. This gives rise to improvement in convergence and accuracy
for the gradient quantization methods.

We had earlier found that random selection with 1-bit gradient
quantization is effective in reducing the training time. Here, we
explore the impact of relation partition on the method. Figure 6a
shows the improvement in convergence with the addition of our re-
lation partition method to the scheme of 1-bit gradient quantization
plus random selection. In Figure 6b, although initially the reduction
in time was not significant, with the increase in the number of
nodes, large reductions in times were obtained.

4.5 Negative Sample Selection

For ComplEx[18] KGE, the number of negative triples dictates the
accuracy and convergence. From the original ComplEx paper[18], it
can be seen that the accuracy (MRR) and convergence improve till
a certain number of negative triples per one positive triple. Beyond
this number of negative triples, both the accuracy and convergence
show degradation. However, a large number of negative triples in-
creases the computation cost. The objective is to use those negative

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Sample TT(in N MRR TCA
Ratio hours)

loutof1 | 0.41 423 0.523 89.3
1outof5 | 0.66 240 0.59 90.53
loutof10 | 0.775 229 0.61 90.7
1loutof20 | 0.97 210 0.629 90.74
1outof30 | 1.06 187 0.63 90.8
5outof 5 | 1.29 390 0.585 90.5
10 out of | 2.1 344 0.592 90.5
10

Table 4: Sample selection with 1-bit gradient quantization
on 2 nodes

triples which will be effective in increasing accuracy and conver-
gence. These are typically the negative triples which the model
finds difficult to classify.

Formally, from the loss function it can be seen that the model
tends to give high positive scores for the positive triples and high
negative scores for a negative triples. So the negative triple which
has the least negative score is the one that needs to be considered.
In our method, we sample n negative samples for a given positive
triple. Then we perform a forward pass to find out the scores for
all the n negative triples. Then we find the triple with the least
negative score and use it for training. Another point to note here
is that a forward pass is far less expensive than the backward pass
where the gradients need to be computed. When there are multiple
negative samples for one positive sample, there may be a chance
of a class imbalance problem which is successfully avoided in our
case.

Table 4 shows the training details for different negative sample
selection on the FB15K dataset based on which the plots in Figure
7 are drawn. Figure 7a shows the comparison between different
sample selection ratios. In the figures, m out of n means that n
negative samples are drawn out of which m are used for training.
From the plot, it is visible that even for 1 out of 5, the convergence
is better than that of 10 out of 10. This may be due to the avoidance
of the class imbalance problem caused by the use of more than one
negative sample per positive sample. Hence, we decide to sample
one negative sample and use the best one for training. From Figure
7c, we observe that with the increase in n, MRR improves but not in
a proportional manner and tends to saturate after a certain number.
From Figure 7b, we can see that the training time increases due to
more sample scores required for the forward pass. But the increase
in time is far less than that of sampling and training n out of n
samples as gradient computation of n — 1 negative samples per
positive sample is avoided. Also from Figure 7d, the number of
epochs required for convergence is lesser for 1 out of n sample
selection and it further decreases with the increase in n.

5 EXPERIMENTS AND RESULTS

We presented results for the various methods for both FB15K and
FB250K datasets. Note that we have used the same experimental
setup as given in Section 3. The additional point here is to note
that the ratio for the Sample Selection strategy is 1:10 in the case of

ICPP °22, August 29-September 1, 2022, Bordeaux, France

0.9
—————
/ ,_..-——-”_'_________,_.._.
0.8 // — loutofl A
1 outof5
§0_7 / —— loutof10 4
—— 1 out of 20
0.6 —— 1 out of 30
—— 5outof5
10 out of 10
0.5t | | .
0 20 40 60 80 100
epochs

(a) Comparison of Convergence

2.0
loutofn
=noutofn
.
>
» >
0 10

30

-
o

TT in Hours
e
o

o
@

Number of Samples

(b) Comparison of Total Training Time

0.625
.

veteas
0.600 loutofn

P’ =noutofn
0.575
0.550
0 10

(c) Comparison of MRR

400 \
350 loutofn

=noutofn

MRR

20 30
Number of Samples

Number of Epochs
w
g
S

.
0 10 20 30
Number of Samples

(d) Comparison of Number of Epochs Required for Con-
vergence

Figure 7: Comparison between two sampling schemes on
FB15K dataset

FB15K dataset and 1:5 for FB250K dataset. As seen in Table 4, for the
FB15K dataset, the ratio of 1:10 gave near-maximum accuracy with
the least training time. Hence this ratio was chosen for the FB15K
dataset. We chose a ratio of 1:5, i.e., smaller number of negative
samples for the FB250K dataset due to the larger size of the data and
the resulting larger training time involved. In general, the values for
the ratio can be tuned as a hyper-parameter based on the size of the

Anwesh Panda and Sathish Vadhiyar

N Number of epochs

TT Total training time in hours

MRR Mean Reciprocal Rank

TCA Triple Classification Accuracy

RS Random selection of gradient vectors

DRS Dynamic all-gather reduce along with
RS

RS+1-bit RS along with 1-bit gradient quantiza-
tion

DRS+1-bit DRS along with 1-bit gradient quantiza-
tion

RS+1-bit+RP+SS RS+1-bit along with Relation partition
and Sample Selection

DRS+1-bit+RP+SS | DRS+1-bit along with Relation partition
and Sample Selection

Table 5: Terms and Parameters

data and the training time required. For the results obtained without
the Sample Selection strategy, the number of negative samples per
positive sample is 10 in the case of the FB15K and 1 in the case of the
FB250K dataset. Table 5 gives the different terms and parameters
considered.

5.1 Results for FB15K Dataset

For the FB15K dataset, we have not included the dynamic gather-
reduce optimization as all-reduce seems to be always faster in the
case of a small dataset. We use the FB15K dataset primarily for the
analysis of accuracy. Figure 8 shows the results.

From Figure 8c, one can see that the MRR remains almost the
same in the random selection (RS) method when compared to the
baseline, but with the introduction of 1-bit quantization with a
higher number of nodes (in this case 8), it degrades to 0.56. In all-
reduce it is 0.58 causing 3.4% reduction in MRR. The results are
obtained for 10 negative samples per positive sample in the case of
RS and RS+1-bit. In the case of RS+1-bit+RP+SS, we keep the ratio
of sample selection as 1 to 10 (10 sampled and best one is chosen for
training) and obtain huge benefits with both relation partition and
sample selection methods, which drastically reduces the training
time (Figure 8a) while increasing MRR (Figure 8c). When compared
to the all-reduce baseline, the maximum reduction for training time
is 73% for a single node execution whereas the minimum reduction
is 59% for two-node execution. Similarly, when compared to the
all-gather baseline, the maximum reduction for training time is
92.7% for an eight-node execution whereas the minimum reduction
is 73% for single-node execution. The training time is even lesser
than all-reduce for all the nodes. We did not observe any specific
pattern for the number of epochs with the increase in the number
of nodes. From Figure 8b, it can be observed that the number of
epochs required for RS+1-bit+RP+SS is always lesser than that for
the other methods. We also obtain an improvement in MRR when
compared to the baseline with a minimum increment of 15% over
the all-reduce baseline for an eight-node execution and a maximum
increment of 19% over the all-gather baseline for an eight-node
execution.

Dynamic Strategies for High Performance Training of Knowledge Graph Embeddings

allreduce
= allgather
53 =RS
5 = RS + 1-bit
£ + 1-bit + RP + SS
[
E2
=
o
=4
£
s
g, =
E * »
'9 - .
>
.
2 4 6 8
Number of Nodes
(a) Comparison of Total Training time(in hours)
.
350
2
8
00
ks Ps allreduce
5 = allgather
3 =RS
250 - ~RS + 1-bit
z - RS + 1-bit + RP + SS
200
Ad
2 4 6 8
Number of Nodes
(b) Comparison No of epochs for convergence
L2 >
ha Methods
allreduce »
= allgather
0.65 =RS
= RS + 1-bit
o RS + 1-bit + RP + SS
o
=
0.60
—
»>
6

2 8

4
Number of Nodes

(c) Comparison of MRR

Figure 8: Comparison of Different Methods on FB15K
dataset

5.2 Results for FB250K Dataset

Figure 9 shows the results for theFB250K dataset. Figure 9a shows
that all the three methods, namely, DRS, (DRS+1-bit), (DRS+1-
bit+RP+SS), result in smaller training times than the baseline. For
smaller number of nodes (DRS+1-bit+RP+SS) (with a sample se-
lection ratio 1 to 5) is the clear winner whereas for larger number
of nodes its performance is similar to (DRS+1-bit) and is the low-
est among all the methods in terms of the training time. When
compared to the all-reduce baseline, the maximum reduction for
training time is 52% for a two-node execution whereas the mini-
mum reduction is 36% for a single node execution. Similarly, when
compared to the all-gather baseline, the maximum reduction for
training time is 61% for an eight-node execution whereas the mini-
mum reduction is 35% for a two-node execution. From Figure 9b, it
can be noticed that the total number of iterations increases with
the increase in the number of nodes which is due to the increase
in effective batch size. This is one of the main reasons why we do
not get a strong scaling. Overall the number of epochs required is
far lesser in the case of (DRS+1-bit+RP+SS) due to the introduction
of relation partition and sample selection leading to better conver-
gence. The maximum reduction in the number of epochs was 45%

ICPP °22, August 29-September 1, 2022, Bordeaux, France

v allreduce
330 = allgather
2 -DRS
Y = DRS + 1-bit
£ DRS + 1-bit + RP + SS
=
EZO
£
© —
£
g
S10 o
—_—
4 8 12 16
Number of Nodes
(a) Comparison of Total Training time(in hours)
400
e
350
e |) T T
S 300 allreduce
5 = allgather
s -DRS
5 = DRS + 1-bit
g0 DRS + 1-bit + RP + SS
£ . .
5
Z 200 »
150) @
4 8 12 16
Number of Nodes
(b) Comparison No of epochs for convergence
.,
» » » *
0.325 Methods
allreduce
= allgather
-DRS
= DRS + 1-bit
& 0.300 DRS + 1-bit + RP + SS
= .
0.275) N \
0.250
4 8 12 16
Number of Nodes
(c) Comparison of MRR

Figure 9: Comparison of Different Methods on FB250K
dataset

and is obtained for a 2-node execution and the minimum reduction
of 31% is obtained for a four-node execution when compared to the
all-reduce baseline. In Figure 9c, it can be seen that the methods DRS
and (DRS+1-bit) perform either similarly or worse in terms of MRR
when compared to the baseline. With the increase in the number of
nodes, their performance degrades even further. The reduction of
MRR is a maximum of 10.35% for (DRS+1-bit) with eight and sixteen
node executions. But with the introduction of relation partition and
sample selection, MRR increases and remains fairly constant with
the increase in the number of nodes. The maximum increment in
MRR is 21% for a single node execution when compared to both the
all-reduce and all-gather baselines and the minimum increment is
13% for an eight-node execution when compared to the all-reduce
baseline.

5.3 Summary of Results and Discussions

From the results, it is clear that the combined method (DRS+1-
bit+RP+SS) outperforms all the others both in terms of the training
times and accuracy. The time taken for an epoch is reduced by
introducing Random Selection and 1-bit Gradient Quantization

ICPP °22, August 29-September 1, 2022, Bordeaux, France

which in turn reduce the communication volume causing the reduc-
tion in communication time. Relation Partition also contributes to
this reduction as it eliminates communication of relation gradient
matrix and hence the communication time. The Sample Selection
method improves convergence, reducing the number of iterations
for the convergence. This reduction in the number of iterations
is accompanied by an increase in the epoch time required for an
extra forward pass which in the worst case may cancel out the
benefits obtained. But, the Sample Selection method helps in the
increase of MRR. The convergence and accuracy benefits are also
obtained from the Relation Partition method which allows us to
use full precision values for the relation gradient matrix. On an
average, we obtain a 44.95% reduction in the total training time
and 17.5% increase in MRR in the case of the FB250K dataset and a
65.2% reduction in total training time and 17.7% increase in MRR in
the case of the FB15K dataset.

6 CONCLUSIONS AND FUTURE WORK

We have presented five methods to reduce the training time and
increase the MRR and TCA. We have presented the results for
the FB250K dataset up to 16 nodes and shown scalability of our
methods. We have also shown results for the FB15K dataset on
the convergence and accuracy for the ComplEx [18] KGE model.
Among our methods, dynamic all-reduce all-gather decides dynami-
cally between all-reduce and all-gather operation and picks the one
which will give the maximum timing benefit. Random Selection
and Gradient Quantization reduce the communication volume and
hence reduces the communication time overhead. Relation partition
not only contributes to the reduction in time by eliminating the
communication of relation gradient matrix but also contributes to
the convergence in the case of gradient quantization. The Sample
Selection method not only increases the MRR and TCA but also
brings down the number of iterations for convergence with a small
overhead of an extra forward pass. On an average, we obtain a
44.95% reduction in total training time and 17.5% increment in MRR
in the case of the FB250K dataset and a 65.2% reduction in total
training time and 17.7% increment in MRR in the case of the FB15K
dataset. As future work, we would like to explore our methods with
other KGE models on different datasets.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th { USENIX}
symposium on operating systems design and implementation ({ OSDI} 16). 265-283.

[2] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse communication for dis-
tributed gradient descent. arXiv preprint arXiv:1704.05021 (2017).

Anwesh Panda and Sathish Vadhiyar

B3

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2016.
QSGD: Communication-efficient SGD via gradient quantization and encoding.
arXiv preprint arXiv:1610.02132 (2016).

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational

data. In Neural Information Processing Systems (NIPS). 1-9.

[5] Minsik Cho, Vinod Muthusamy, Brad Nemanich, and Ruchir Puri. 2019. GradZip:
Gradient Compression using Alternating Matrix Factorization for Large-scale
Deep Learning.

[6] Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangging Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

[7] Udit Gupta and Sathish Vadhiyar. 2019. Fast and Accurate Learning of Knowledge

Graph Embeddings at Scale. In 2019 IEEE 26th International Conference on High
Perﬁrmance Computing, Data, and Analytics (HiPC). IEEE, 173-182.

[8] Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi
Li. 2018. Openke: An open toolkit for knowledge embedding. In Proceedings of
the 2018 conference on empirical methods in natural language processing: system
demonstrations. 139-144.

[9] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi.

2019. Error feedback fixes signsgd and other gradient compression schemes. In

International Conference on Machine Learning. PMLR, 3252-3261.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-

skiy, and Ping Tak Peter Tang. 2016. On large-batch training for deep learning:

Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).

Bhushan Kotnis and Vivi Nastase. 2017. Analysis of the impact of negative

sampling on link prediction in knowledge graphs. arXiv preprint arXiv:1708.06816

(2017).

[13] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large-scale graph
embedding system. arXiv preprint arXiv:1903.12287 (2019).

[14] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
distributed machine learning with the parameter server. In 11th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 14). 583-598.

[15] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep

gradient compression: Reducing the communication bandwidth for distributed

training. arXiv preprint arXiv:1712.01887 (2017).

Xiao-Fan Niu and Wu-Jun Li. 2017. ParaGraphE: a library for parallel knowledge

graph embedding. arXiv preprint arXiv:1703.05614 (2017).

Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed

deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume

Bouchard. 2016. Complex embeddings for simple link prediction. In International

Conference on Machine Learning. PMLR, 2071-2080.

[19] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 28.

[20] Jiangiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. 2017. Gradient sparsi-
fication for communication-efficient distributed optimization. arXiv preprint
arXiv:1710.09854 (2017).

[21] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai
Li. 2017. TernGrad: Ternary gradients to reduce communication in distributed
deep learning. arXiv preprint arXiv:1705.07878 (2017).

[22] Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. 2018. Error

compensated quantized SGD and its applications to large-scale distributed opti-

mization. In International Conference on Machine Learning. PMLR, 5325-5333.

Denghui Zhang, Manling Li, Yantao Jia, Yuanzhuo Wang, and Xueqi Cheng. 2017.

Efficient parallel translating embedding for knowledge graphs. In Proceedings of

the International Conference on Web Intelligence. 460-468.

[4

[10

[11

[12

=
S S

oy
=,

[23

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Analysis
	3.1 KGE models
	3.2 Evaluation Metrics
	3.3 Experimental Setup
	3.4 Baseline Method

	4 Optimizations
	4.1 Dynamic Selection of AllReduce and AllGather Communications
	4.2 Selecting the Gradient Vectors
	4.3 Gradient Quantization
	4.4 Relation Partition
	4.5 Negative Sample Selection

	5 Experiments and Results
	5.1 Results for FB15K Dataset
	5.2 Results for FB250K Dataset
	5.3 Summary of Results and Discussions

	6 Conclusions and Future Work
	References

