
HyDetect: A Hybrid CPU-GPU Algorithm for
Community Detection

Anwesha Bhowmik
Department of Computational and Data Sciences

Indian Institute of Science
Bangalore, India

banwesha@iisc.ac.in

Sathish Vadhiyar
Department of Computational and Data Sciences

Supercomputer Education and Research Centre
Indian Institute of Science

Bangalore, India

vss@iisc.ac.in

Abstract—Community detection is an important problem that
is widely applied for finding cluster patterns in brain, social,
biological and many other kinds of networks. In this work, we
propose a divide-and-conquer community detection algorithm for
hybrid CPU-GPU systems. The graph representing a network is
partitioned among the CPU and GPU devices of a node, and
independent community detection using Louvain’s algorithm is
carried out in both the parts. The communities are iteratively
refined by a novel strategy for identifying and moving ”doubtful”
vertices between the devices. The resulting accuracy is found
comparable with the single device parallel Louvain algorithms.
Our hybrid algorithm helped to explore large graphs that cannot
be accommodated in a single device. By harnessing the power of
GPUs, our hybrid algorithm is able to provide 42-73% smaller
execution times over state-of-art CPU-only algorithms.

Index Terms—Community detection, Hybrid CPU-GPU exe-
cutions, Louvain algorithm.

I. INTRODUCTION

Community detection is an important problem with appli-

cations in the analysis of various networks including social,

brain and biological networks. A network is modeled as a

graph with the entities represented by the vertices and the

connections or relations between the entities represented by the

edges of the graph. Given a graph, the community detection

problem is to find communities in the graph such that the

intra-community edges are more than the inter-community

edges. Related vertices in the graph are assigned to the same

community.

One of the widely used algorithms for community detection

is the algorithm by Louvain [1]. This algorithm uses a metric

called modularity for measuring the goodness of the communi-

ties. It iteratively improves the communities of the vertices by

moving the vertices to the neighboring communities until the

gain in the modularity values due to the movements converge.

The algorithm also compresses the graph between the phases

such that the communities formed in the previous graph are

represented as vertices in the reduced graph. Parallelization of

Louvain algorithm is challenging due to high communication

and synchronization requirements for calculating the modular-

ities and updating the community information. Recently, paral-

lel Louvain algorithms have been devised for multi-core CPU

[2], many-core GPUs [3] and multi-node distributed memory

architectures involving CPUs [4], [5]. In this work, we propose

a hybrid CPU-GPU algorithm for community detection that

simultaneously harnesses both the CPU and GPU resources.

The advantage of the hybrid CPU-GPU algorithm is that it can

be used to explore large graphs that cannot be accommodated

in the GPU memory. By harnessing the power of GPUs, it can

also give better performance than the CPU-only algorithms.

Our hybrid algorithm uses the divide-and-conquer paradigm

for simultaneous execution on the CPU and GPU cores of a

node. The algorithm partitions the graph into two parts, one

for the CPU and another for GPU, and simultaneously invokes

parallel Louvain algorithm on the respective devices. The

communities that are thus formed on the individual devices

will be incomplete due to the lack of complete information,

i.e., the entire graph. A novel heuristic is employed to de-

termine doubtful vertices that have been wrongly assigned to

the communities. These doubtful vertices are moved across

the devices and Louvain algorithm is executed again on the

devices with these doubtful vertices. This process is repeated

until the number of communities in the devices converges at

which point all the communities are moved to one device

and the final set of communities are formed by executing the

Louvain algorithm on the device.

Our experiments with large graphs show that the hybrid

algorithm gives almost 2x speedup over multi-core parallel

Louvain algorithm with less than 1% change in modularity.

Our HyDetect algorithm gives at least 42-73% smaller ex-

ecution times than state-of-art multi-core CPU-only parallel

Louvain’s algorithm implementation for large graphs that

could not be accommodated in the GPU memory.

Section II gives the necessary background, while Section

III describes related work in parallel Louvain algorithm. The

hybrid CPU-GPU algorithm is explained in Section IV. The

implementation details are described in Section V. Section

VI presents experiments and results for performance and

accuracy. Section VII gives conclusions and future work.

II. BACKGROUND

A. Modularity

We consider a weighted graph G(V,E) where V is the set

of vertices and E is the set of edges. wi,j represents the weight

of the edge between vertices i and j. The community detection

problem is to partition the graph into a set of communities such

2

2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/19/$31.00 ©2019 IEEE
DOI 10.1109/HiPC.2019.00013

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:51:03 UTC from IEEE Xplore. Restrictions apply.

that the vertices within communities have higher connectivity

than vertices of different communities.

Different metrics are used to measure the quality of the

communities formed, i.e. to check whether the resulting output

has more connectivity within communities than with the other

communities. One of the popular metrics for community de-

tection is modularity [6]. Modularity measures the difference

between the fraction of edges within the same communities

compared to the expected fraction that would exist on a

random graph with identical vertex and degree distribution

characteristics. The modularity Q of a given graph G can be

expressed as

Q = 1/2m
∑

i,j

(Ai,j − ki ∗ kj
2m

)δ(ci, cj) (1)

where

Ai,j represents the adjacency

m=sum of all the edge-weights

ki= weighted degree of vertex i wrt the edge weights

ci=community that contains vertex i

δ(ci, cj) = 1 if ci = cj , 0 otherwise.

The modularity depends on the sum of the weights of the

edges, denoted as ec, between the vertices of a community c,
and the sum of the weights of all the incident edges on all the

vertices of the community c, denoted as ac. The modularity

can also be expressed as

Q =
∑

c∈C

[
ec
2m
− (

ac
2m

)2] (2)

where

ec =
∑

(wi,j) ∀i, j ∈ c

B. Louvain’s algorithm

One of the commonly used algorithms for community

detection is the algorithm by Louvain [1]. Louvain’s algorithm

consists of multiple phases, and each phase runs in multiple

iterations until convergence. The algorithm begins by setting

each vertex as a community. In every iteration in a phase, each

vertex is moved to a neighborhood community that results in

maximum change in modularity. A phase continues until the

change in modularity in two successive iterations is less than a

threshold value. At the end of a phase, the graph is coarsened

such that vertices in a community are collapsed to a new

coarse vertex and the sum of the edge weights between two

communities is considered as the weight of the edge between

the corresponding two coarse vertices. In the next phase,

communities are formed in the new coarse graph. This cycle

continues until there is not any significant improvement in

modularity between two successive phases. Figure 1 illustrates

the algorithm. Algorithm 1 shows the steps in a phase of the

sequential Louvain algorithm.

III. RELATED WORK

Lu et al. proposed a multithreaded version of Louvain

algorithm using vertex following, coloring and minimum label

Algorithm 1: A Phase of the Sequential Louvain Com-

munity Detection

1 Input: Graph G=(V,E), threshold τ ;

2 Qprevious ←∞ ;

3 Cprevious ← each vertex itself is a community ;

4 while True do
5 for each v ∈ V do
6 N(v) ←− neighbor communities of v ;

7 target= maxw∈(N(v))ΔQv,w ;

8 if gain then
9 Move v to target and update Ccurrent ;

10 end
11 end
12 Qcurrent ←−

ModularityCalculation(V,E,Ccurrent) ;

13 if (Qcurrent −Qprevious) < τ then
14 break ;

15 else
16 Qcurrent ←− Qprevious ;

17 end
18 end

heuristic [2]. In the minimum label heuristic, if i and j are

two vertices as well as singleton communities, then at the

modularity optimization phase (line 7 in Algorithm 1) there is

movement from vertex i to vertex j iff c[i]>c[j]. This heuristic

helps in preventing conflicting simultaneous movements of

vertices to each others’ communities. Using graph coloring

heuristic, vertices are divided into independent sets and modu-

larity optimization is performed in each set in parallel. Vertex

following heuristic discards the isolated vertices as well as

one-degree vertices at the first step and then performs Louvain

algorithm. This algorithm achieved at least 1.59x speedup over

sequential Louvain algorithm in real-world graphs. It achieved

1.4-13.2 speedup over sequential louvain algorithm using Intel

Xeon X7560 server with four sockets each with 32 cores and

256 GB of memory. Que et al. [4] proposed a distributed sys-

tem community detection Louvain algorithm. The algorithm

uses efficient strategies to store and process dynamic graphs

using hash tables. Fibonacci hashing is used to generate hash

functions. Using The hardware systems Zeus, an IBM Power7-

IH cluster, and Mira, a 48rack BlueGene/Q system operated

by the Argonne Leadership Computing Facility (ALCF) they

achieved fair amount of speedup for small,medimum and large

real life graphs(upto 49.8x speedup).

Wickramaarachchi et al. [7] presented a coarse-grained

algorithm based on MPI for communication. A speedup of

about 5x is achieved using 128 processes in this algorithm

using 16 compute nodes consisting of two Quad-core AMD

Opteron 2376 2.3 GHz processors and 8 cores each node.

Another distributed Louvain algorithm was implemented by

Ghosh et al. [5] which partitions the graph randomly. At the

end of each iteration communication is involved to obtain

information about remote communities. The work reduces the

3

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:51:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Louvain Algorithm

communications based on probabilistic heuristics which marks

a vertex as active or inactive. An active vertex is a vertex

that participates in the next iteration with high probability.

Communications and computations are avoided for the inactive

vertices. The work achieved 1.8x-46x speedup using NERSC

Cori supercomputer which has 32 cores in each node.

Naim et al. [3] presented a GPU based scalable commu-

nity detection algorithm. The work implements edge-based

parallelism. For nodes of highly varying degrees, the nodes

are placed in different buckets based on their degrees. Each

node is allocated a different number of threads based on its

bucket. This achieved 270x speedup compared to sequential

implementation using a Tesla K40m GPU with 12 GB of

memory, 2880 cores running at 745 MHz, and with CUDA

compute capability 3.5 and outperforms existing shared mem-

ory implementations.

Cheong et al. [8] presented a hybrid GPU algorithm which

uses a coarse grain model across multiple GPUs and a fine

grain model in each GPU. The work parallelizes the modular-

ity optimization phase. They obtained speedups in the range

of 1.8-5x for single GPU performance and 3-17x when using

four GPUs.They used server with Intel Xeon E5405 2 GHz

processor and four NVIDIA Fermi C2070 GPUs. However, the

work reports low modularity values due to loss of information.

Sharma and Oliveira [9] introduced a novel hybrid com-

munity detection strategy which uses both shared and dis-

tributed memory. uses a multi-level community detection and

coarsening algorithm based on label propagation. They also

use a preprocessing step to assign strengths to the edges

based on graph topology and to remove weak edges that do

not belong to community. Their multi-core shared memory

implementation partitions the graph across cores. The cores

perform independent assignment of strengths to the edges and

removal of weak edges. For label propagation, a global queue

is maintained for assigning labels to nodes. The nodes from the

queue are cyclically assigned to the cores. This shared memory

implementation uses a master thread for synchronization in

the strength calculation and label propagation stages. In the

distributed memory implementation, the graph is partitioned

across nodes. The shared memory algorithm is adopted in each

node with inter-process communications during label propa-

gation. The communities are merged in a single master node

using a gather operation. Their strategy forms communities

with high modularity for large synthetic and real world graphs.

It achieved up to 6x speedup using 8 MPI nodes with 16 cores

in each node. The use of master threads and master process

results in global synchronizations in this algorithm while in

our hybrid algorithm, global synchronization is avoided at all

levels.

Soman and Narang [10] proposed a variant of the label

propagation technique for community detection on multi-core

and GPU architectures. In particular, they proposed a weighted

label propagation where the edges are assigned weights based

on the number of triangles containing the edges. The vertices

obtain the labels from the edges. The algorithm has almost

linear time complexity and it detects overlapping communities.

On multi-core architectures, the algorithm is implemented in a

lock-free manner while the GPU implementation uses bitonic

sort for the vertices to find the maximum labels in their

vicinity. The work demonstrated high speedups on Power 6

architectures with 32 cores and NVIDIA Fermi architectures.

Rintu and Vadhiyar [11] developed a generic framework called

HyPar for divide-and-conquer executions of graph applications

on hybrid CPU-GPU architectures. The work demonstrated the

use and performance benefits of the framework with different

graph applications including a community detection algorithm

that used label propagation. Community detection algorithms

using label propagation have high amount of parallelism and

provide good speedups at the cost of low modularity values.

The Louvain algorithm dealt in this paper has high amount of

dependencies and hence difficult to parallelize.

Zeng and Yu [12] have developed a distributed-memory

implementation of the Infomap algorithm. Their parallel algo-

rithm duplicates high-degree nodes as delegates to processors

for balancing the load among the processors. The Infomap

algorithm is a different strategy to Louvain algorithm. It uses

a map equation for obtaining a compressed representation of a

set of random walks in the graph. The map equation requires

the calculation and updates of exit and visit probabilities

of the vertices. In a parallel implementation, these updates

result in heavy synchronization and communication. The work

by Zeng and Yu proposes optimized information swapping

strategy among the processors. While their results show linear

scalability wrt their algorithm for different processors, the

4

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:51:03 UTC from IEEE Xplore. Restrictions apply.

efficiency of the Infomap strategy when compared to Louvain

algorithm is yet to be explored.

Our work, while following a hybrid approach also achieves

high modularity by using novel techniques for refining the

communities. We primarily target large graphs that cannot be

accommodated on GPUs.

IV. HYBRID CPU-GPU COMMUNITY DETECTION

In our hybrid model, the graph is partitioned into two parts

for the two devices, namely, CPU and GPU, of a node. The

devices then perform independent and simultaneous Louvain’s

community detection on their respective parts and form pseudo
communities based on the partial information corresponding to

the parts. These pseudo communities will have vertices that

actually do not belong to the communities that would have

been determined for the overall graph. Hence the next step in

our algorithm is to determine these doubtful vertices which

are the vertices that do not belong to the communities formed

on a device.

The doubtful vertices thus formed in both the devices

are then exchanged with the other device. Each device then

executes Louvain’s algorithm again for the subgraph in the

device that includes the communities that were earlier formed

and the doubtful vertices that migrated into the device from the

other device. This results in the formation of communities with

a new set of doubtful vertices. These new doubtful vertices

are exchanged again. At each step the graph is coarsened to

form a reduced graph of new vertices that correspond to the

communities. This continues until the number of communities

in each device is small and all the communities of both the

devices can be accommodated in a single device. At this stage,

all the communities are moved to a device and Louvain’s

algorithm is executed with all the communities, and the final

communities are formed.

The steps of the hybrid algorithm are described in the

following subsections.

A. Partitioning

The graph is partitioned into two parts, one for the CPU

and the other for the GPU so that the devices can perform

independent computations of the Louvain algorithm on their

respective parts. The partitioning is based on the proportional

performance of the implementations of the Louvain algorithm

on the two devices for the given graph. We have explored

multiple partitioning strategies including a simple 1-D vertex-

block partitioning, Metis[13], [14] and ParMetis[15]. In the

1-D vertex-block partitioning, the CSR (Compressed Sparse

Row) arrays representing the graph are divided into two

contiguous segments of vertices along with the edges incident

on the vertices. As shown in our experiments, we found that

the partitioning by Metis gave good performance in most

cases.

To determine the ratio of CPU-GPU performance for pro-

portional partitioning based on the performance, a small num-

ber of different induced subgraphs (for our study, 3 subgraphs

are used) is formed and the implementations of the Louvain’s

algorithm are executed with each of these subgraphs on both

CPU and GPU. The ratio of the execution times on the CPU

and GPU is noted and an average of the ratios is obtained for

these subgraphs. The original graph is then partitioned into

CPU and GPU parts in this ratio by using Metis ratio-based

partitioning.

Each subgraph in the above-mentioned procedure is gener-

ated randomly such that the number of vertices in the subgraph

is 5-10% of the total number of vertices in the original graph.

In addition to performance, the GPU memory requirements

are also considered to determine the ratio.

B. Independent Computations

After the partitioning, community detection using Louvain’s

algorithm is performed independently in the CPU and GPU.

For independent computations in the CPU, the shared memory

multicore algorithm by Lu et al.[2] is used. We extended this

algorithm to also calculate internal degree of a vertex in its

community and the maximum degree of a vertex in all the

communities. These values are used for determining affinity

of a vertex to a community in subsequent steps. For GPU, we

use the algorithm by Naim et. al[3]. This algorithm allocates

different number of threads based on the degree of the vertices.

After the communities are formed in the devices due to

the independent computations, the graph is reduced to form a

coarse graph with the communities as the vertices and the

edges between the communities as the edges between the

coarse vertices.

C. Doubtful Vertices

The independent computations in the CPU and GPU results

in incomplete or erroneous communities because of the partial

information of the graph in the respective parts. A vertex may

be wrongly assigned to a community or an isolated vertex may

belong to a community.

The vertices that may have been wrongly assigned to

communities will have to be determined. These vertices are

denoted as doubtful vertices. We have developed a novel

heuristic for determining the doubtful vertices. We use the

concept of relative commitment of a vertex in a community.

Relative commitment can be defined as the interest of a vertex

to be in its community[16]. To find the relative commitment

of a vertex, the ratio of the internal degree of the vertex

in the community and the maximum internal degree in that

community is calculated. The lower this relative commitment

of a vertex is, the more prone it is to leave the community.

In addition two more factors are considered to designate

vertices as doubtful vertices:

1) A vertex in a community may have a low relative com-

mitment ratio, but it may be connected to the vertices

which have a higher ratio in the community. In such

cases, the vertices with the lower ratios may be “pulled”

into a community by the vertices with the higher ratios.

2) Even if the vertex has a higher ratio in a community,

it may be connected to vertices of other communities

that have very high ratios. These vertices of other

5

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:51:03 UTC from IEEE Xplore. Restrictions apply.

communities may attract the vertex under consideration

into their communities.

Hence, the relative commitment values of both the neighbors

of the vertex within the community, denoted as internal
neighbors, and the neighbors belonging to other communities,

denoted as external neighbors should be considered.

The relative commitment, RC, of a vertex, v, belonging to

a community, c, is calculated as follows.

RC(v, c) =
IntDegree(v, c)

Maxvi∈cIntDegree(vi, c)
(3)

where IntDegree(v, c) is the internal degree of a vertex, v,

in a community, c, i.e., the total number of edges connecting

the vertex to its neighbors within the community.

The sum of the relative commitments of all the neighbors

of v belonging to the same community as v is denoted as

IntRC.

IntRC(v, c) =
∑

vi∈neigh(v)

RC(vi, c) ∀vi ∈ c (4)

Similarly, the sum of the relative commitments of all the

neighbors of v belonging to the other communities formed in

the same partition in the same device (CPU/GPU) is denoted

as ExtRC.

The affinity of a vertex, v, to community, c, is then defined

as

aff(v, c) =
RC(v, c).IntRC(v, c)

(IntRC(v, c) + ExtRC(v, c))
(5)

Note that the affinity values are in the range [0,1]. A vertex,

v, is then denoted as a doubtful vertex if its affinity, aff(v, c)
is less than a threshold, τ .

These doubtful vertices are determined as part of the

independent Louvian algorithm calculations in the devices.

The calculation of community ids of all vertices and the

degree of each vertex in a community are part of independent

computations. They are used for determining the doubtful

vertices.

The doubtful vertices are isolated from the coarse graph.

Thus, at the end of this step, a part in a device will contain

the coarse graph plus the isolated doubtful vertices and their

connections.

D. Migration of Doubtful Vertices

Some of the vertices in a part on a device are doubtful since

they may belong to communities formed in the other device.

Hence, the doubtful vertices are candidates for migration to

another device. As a next step, the subset of doubtful vertices

to be moved to another device will have to be identified.

We use a simple heuristic that calculates the number of

border edges and non-border edges of the doubtful vertices.

A border edge of a doubtful vertex refers to an edge of the

doubtful vertex that resides in the other device. A non-border

edges of the doubtful vertex refers to an edge in the same

device. We calculate the ratio of the border edges and non

border edges of the doubtful vertices. A high ratio implies

that the doubtful vertex has more connections to the other

device and should be considered for migration to the other

device. The algorithm for finding a subset of doubtful vertices

for migration is shown in Algorithm 2.

Algorithm 2: Finding Subset of Doubtful Vertices for

Migration

1 Input: G(V,E),Gnew(Vnew, Enew),threshold τ ;

2 MigrationSet = ∅ ;

3 forall v ∈ doubtfulV ertices do
4 borderedge[v] = 0 ;

5 nonborderedge[v] = 0 ;

6 end
7 forall v ∈ doubtfulV ertices do
8 borderedge[v]+ = number of neighbors of v in the

other device ;

9 nonborderedge[v]+ = number of neighbors of v in

the same device ;

10 end
/* Second pass */

11 forall v ∈ doubtfulV ertices do
12 if borderedge[v]

nonborderedge[v] > τ then
13 add v to MigrationSet ;

14 end
15 end

The identified doubtful vertices are moved simultaneously

between CPU and GPU using cudaMemCpyAsync. At the end

of this step, each device will have a coarse graph plus the

doubtful vertices in the same device plus the doubtful vertices

migrated from the other device.

E. Repeated Invocation of Steps and Obtaining Final Com-
munities

With the communities modified in each device due to

isolation and migration of doubtful vertices, the Louvain’s

algorithm is executed independently on the devices again,

the parts are coarsened further, and a new set of doubtful

vertices is identified, isolated and migrated. This process is

repeated until the reduced graphs in both the parts can be

accommodated in a single device, denoted as finalDevice. At

this point, all the communities and doubtful vertices of both

the devices are moved to the finalDevice and Louvain’s

algorithm is invoked for one final time on the device to obtain

the final communities.

In our experiments, it was found that the GPU implementa-

tion is at least ten times faster than the CPU implementation.

Hence, GPU is chosen as the finalDevice.

F. Putting It All Together

The hybrid algorithm is shown in Algorithm 3. The paral-

lelism and simultaneous executions on the CPU and GPU are

illustrated in the flowchart in Figure 2.

6

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:51:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Hybrid Algorithm For Community Detection

1 Input: GraphG=(V,E), threshold τ ;

2 CPU Part,GPU Part ←− Partition(G,E);

3 repeat
4 Ccpu,Cgpu ←− independentLouvain(CPU Part,GPU

Part) ;

5 (doubtcpu, doubtgpu)← finddoubtful(Ccpu, Cgpu) ;

6 (finaldoubtcpu, finaldoubtgpu)←
findDoubtfulForMigration(Ccpu, Cgpu) ;

7 In parallel move finaldoubtcpu, finaldoubtgpu)
between CPU and GPU ;

8 until the current coarse graph can be accommodated in
GPU;

9 Move all communities to the GPU and perform Louvain

Algorithm in the GPU ;

Fig. 2. Hybrid Algorithm

V. IMPLEMENTATION AND OPTIMIZATIONS

Compressed format is used for storing graph data structures

which helps in efficient access to the neighbors of each

vertex. The CPU implementation of independent computations

uses STL library vector containers and C++ STL map data

structure to store the neighboring communities of a vertex.

OpenMP[17] is used to achieve parallelism in the independent

CPU computation. Boost Graph Library[18], which provides

abstractions to access efficient graph data structures, is also

used. For migration of the doubtful vertices, the neighbors of

each doubtful vertex should be accessed. v in graph g.

For GPU implementation, the Thrust library of CUDA

[19] is used. Thrust provides vector containers (thrust ::
host vector and thrust :: device vector) similar to STL

vector containers. The degree of each vertex in the graph is

calculated using thrust :: transform function where the

operation is thrust :: minus. Minus is a common functor

in C++ library.

We also use thrust :: raw pointer cast to create a raw

pointer from a pointer-like type. The device pointer wrapped

raw pointer acts like Thrust iterator. It helps to access the

device memory from the host. While compressing the graph

after a phase, the edge weights of each community need to be

updated. For this purpose the reduce function of Thrust is used.

It calculates the total edge weights of the same community.

For modularity calculations, a sequence of operations needs to

be performed. These operations are performed by defining a

Thrust user-define functor. A Thrust transform function which

uses the user-defined thrust functor can then be used for

modularity calculations.

Thrust functor is also defined for doubtful vertex calcu-

lations to determine and return if a vertex is doubtful. The

functor uses find function that returns the first iterator i in

the range [first, last) such that (∗i == value) if found

or last if no iterator exists. For the doubtful vertex calcu-

lations, the value is the maximum relative commitment value

which is decided by thrust :: max element. We also use

reduce by key to add internal degree of the vertices in the

same community. Apart from these, thrust :: fill is also used

to initialize the device vectors.

Our software is available for download from https://github.

com/marslabiisc/HyDetect.

VI. EXPERIMENTS AND RESULTS

Most of the experiments were performed on a GPU node

called Turing node. This consists of a 6-core Intel Xeon E5-

2620 processor at 2.10 GHz with 24GB RAM and NVIDIA

Kepler K40M GPU card. The GPU consists of 2880 streaming

processor (SP) cores at 745 MHz and 15 streaming multipro-

cessors (SMX) with a global memory of 12GB. The compute

capability of GPU is 3.5.

Some of the experiments corresponding to the graphs, UK-

2002 and RMat24, were performed using a GPU server which

consists of a dual octo-core Intel Xeon E5-2670 2.6 GHz

processor with Cent OS 6.4, 128 GB RAM, and 1 TB hard

disk. The CPU is connected to a NVIDIA Tesla K20m GPU

card. The K20m GPU has 2496 GPU cores with a global

memory of 4.68 GB at peak memory bandwidth of 208 GB/s.

The graphs used in our experiments are shown in Table

I. We primarily consider large graphs that cannot fit within

the GPU memory for which our hybrid CPU-GPU work

will be useful. The space complexity of the state-of-art GPU

implementation[3] is O(3*no of nodes in the graph + 2*no

of edges in the graph + maximum degree of the graph). The

graphs shown in the table were carefully chosen such that

7

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:51:03 UTC from IEEE Xplore. Restrictions apply.

Graph |V | |E| Approx.
Diam.

Avg.
Deg.

Max.
Deg.

uk2002 18.5M 523M 29 28.27 194955
rMat24 16.8M 536M 9 31.9 3582
eu2015 11.2M 759M 8 67.42 398609
gsh 30.8M 1.16B 9 37.73 2.18M
Arabic 22.7M 1.2B 29 55.5 575662
uk2005 39.4M 1.84B 20 46.69 1.78M
it2004 41.2M 2.27B 27 55.01 1.33M

TABLE I
GRAPH SPECIFICATIONS. IN THE TABLE, M STANDS FOR MILLION AND B

STANDS FOR BILLION.

their space complexities by the above formula exceed the GPU

memory and hence cannot be executed by the state-of-art GPU

implementation.

The graphs were obtained from the University of Florida

Sparse Matrix Collection [20], the Laboratory for Web Al-

gorithmics [21][22] and the Koblenz Network Collection[23].

As shown in the table, we have used several real world graphs

from different categories and having different characteristics

including varying degrees for our experiments. These graphs

were converted to undirected graphs. GTgraph [24] was used

to generate the rMat24 graph. All the results shown are

obtained using averages of three runs.

Our hybrid algorithm, referred to as HyDetect, is compared

with two different implementations: 1. a CPU-only multi-

core implementation of Louvain algorithm[2] and 2. a base

hybrid CPU-GPU version of Louvain’s algorithm. The base

hybrid CPU-GPU algorithm partitions the graph into two

parts for the CPU and GPU devices, performs independent

Louvain algorithm computations on the devices once, moves

the communities formed on the CPU to the GPU and executes

Louvain’s algorithm computations again on the GPU with

these communities to form the final communities. The base

hybrid version does not involve determination and migration of

doubtful vertices. This base hybrid version acts as an intuitive

and first-step reasonable implementation of hybrid CPU-GPU

algorithm.

A. Partitioning Strategies

We explored three different partitioning strategies, namely,

1-D block partitioning, Metis[13], [14] and ParMetis[15], for

the partitioning step of our HyDetect algorithm. The com-

parisons between the strategies were made in terms of time

taken for the partitioning, the number of cut edges produced

and the total time taken for our HyDetect algorithm using

the resulting partition. This total time also includes the time

taken for partitioning. The number of cut edges indicate the

quality of the partitioning with a better partitioning strategy

expected to yield smaller number of cut edges. The quality of

the partitioning can in turn have an impact on the subsequent

steps of our HyDetect algorithm in terms of the number of

doubtful border vertices and the time taken for migration of

these vertices. Table II shows the results.

The 1-D block partitioning strategy consumes only a few

seconds for partitioning since it is the simplest strategy that

directly divides the CSR arrays. However, the quality of the

partitioning is poor as can be seen by the large numer of

cut edges produced. Partitioning tools including Metis and

ParMetis employ advanced strategies to provide good-quality

partitions with small number of cut-edges. Of these, ParMetis

takes more time for partitioning due to the parallelization

overheads.

In terms of the total times taken by our HyDetect algo-

rithm including the partitioning times, as shown in the third

column for each partitioning strategy in the table, we find

that employing Metis partitioning results in the least execution

times in most cases. Hence, we employ Metis partitioning in

our subsequent experiments. The timing results that are shown

subsequently include the partitioning times.

B. Thresholds in the Algorithm

Our HyDetect algorithm uses two thresholds: a threshold,

P1, for determining if a vertex is a doubtful vertex and a

threshold, P2, for deciding if it has to be moved to the other

device. We performed experiments with various values of these

threshold to analyze the impact of the threshold values on the

overall execution times and modularity values. Table III and IV

show the results. The best results, in terms of least execution

times and highest modularity values, are highlighted in bold.

We find from Table IV that (P1 = 0.5, P2 = 0.6) yield the

highest modularity values in all cases. We also find from Table

IV that these parameter values yield execution times that are

competitive with the least execution times. Hence we chose the

threshold values as (P1 = 0.5, P2 = 0.6) in our subsequent

experiments.

C. Comparison with CPU-only and Base Hybrid Methods

Figure 3 compares our hybrid method, HyDetect with the

state-of-art multi-core CPU-only and base hybrid methods in

terms of execution times and modularities. The modularity

values indicate the qualities of the communities formed. As

Figure 3(a) shows, HyDetect gives 42-73% lesser execution

times than the state-of-art multi-core CPU-only method for

comparable modularities. When compared to the base hybrid

method, HyDetect gives significantly better modularities for

equivalent execution times. This is because the base hybrid

method does not detect and isolate the doubtful vertices.

Hence, communities are formed in the individual devices with

wrongly assigned vertices and these communities are merged

in the final step resulting in poor quality communities.

D. Scalability Results

In this section, we analyze the scalability of HyDetect

in terms of reduction in execution times over the state-of-

art CPU-only algorithm for increasing graph sizes. For this

analysis, we add two more large graphs, Syn-Graph-1 and Syn-
Graph-2. These are generated using synthetic graph generator

suite [24] according to DARPA HPCS SSCA#2 benchmark

[25]. Table V shows the results.

We find that our HyDetect algorithm gives significantly

lesser execution times than CPU-only algorithm for graphs

8

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:51:03 UTC from IEEE Xplore. Restrictions apply.

Graphs 1-D block Metis ParMetis
Partitioning
Time (s)

Cut Edges
(M)

HyDetect
Time (s)

Partitioning
Time (s)

Cut Edges
(M)

HyDetect
Time (s)

Partitioning
Time (s)

Cut Edges
(M)

HyDetect
Time (s)

uk-2002 0.78 13.31 10.28 25 1.59 33.85 29 1.57 38.4
rMat24 14 153 936 491 73 1025 803 73 1294
eu-2015 11 116.71 178 71 6.04 201 123 6 500
gsh 19 148.81 906 357 77.56 878 901 77.55 1410
Arabic 12 15.55 163 53.1 2.60 154.1 144 2.71 240

TABLE II
COMPARISON OF DIFFERENT PARTITIONING STRATEGIES IN TERMS OF THE TIME TAKEN FOR PARTITIONING, NUMBER OF CUT EDGES IN MILLIONS (M),

TOTAL TIME TAKEN FOR THE HYDETECT ALGORITHM WITH THE PARTITIONING

Graph P1 = 0.2,
P2 = 0.3

P1 = 0.35,
P2 = 0.4

P1 = 0.5,
P2 = 0.6

P1 = 0.65,
P2 = 0.7

P1 = 0.7,
P2 = 0.8

uk2002 42 38 33 31 29
rMat24 1047 1049 1040 1021 1022
eu2015 269 211 251 212 201
gsh 800 792 785 785 784
Arabic 169 154 151 152 149

TABLE III
VARIATION OF EXECUTION TIMES (SECONDS) OF HYDETECT WITH THRESHOLDS

Graph P1 = 0.2,
P2 = 0.3

P1 = 0.35,
P2 = 0.4

P1 = 0.5,
P2 = 0.6

P1 = 0.65,
P2 = 0.7

P1 = 0.7,
P2 = 0.8

uk2002 0.96 0.979 0.979 0.98 0.971
rMat24 0.44 0.446 0.459 0.45 0.451
eu2015 0.829 0.86 0.88 0.881 0.879
gsh 0.735 0.74 0.751 0.755 0.75
Arabic 0.98 0.96 0.98 0.979 0.98

TABLE IV
VARIATION OF MODULARITY OF HYDETECT WITH THRESHOLDS

Graph Vertices Edges CPU-only
time (secs.)

HyDetect
time (secs.)

Exec. Time
Reduction

eu-2015 11.2M 759M 801 451 43
Arabic 22.7M 1.2B 310 154 50%
it-2004 41.2M 2.27B 2105 1123 46%
Syn-
Graph-1

41M 3B 2500 1956 21.76%

Syn-
Graph-2

49M 3.2B 5970 5910 1.0%

TABLE V
SCALABILITY WITH INCREASING GRAPH SIZES

up to 41 million vertices. We obtain about 21% reduction in

execution time even for large graphs like Syn-Graph-1 where

only 25% of the graph could be accommodated in the GPU.

Our experimental setup and the results show that there is a

significant number of large graphs where the GPUs cannot

accommodate the graph in entirety but can accommodate at

least 25%, for which our hybrid algorithm can be useful and

is shown to give smaller execution times than the state-of-

art CPU version. It is only for graphs that are larger than

this size, i.e., where only less than 25% of the graph can

be accommodated in the GPU, our hybrid algorithm gives

negligible performance gains over the CPU version.

E. Comparison with State-of-Art

Note that the CPU-only algorithm by Lu et al.[2], over

which our HyDetect algorithm shows large improvements, is

original state-of-art shared-memory algorithm and one of the

highly competent shared-memory algorithms.

The work by Sharma and Oliveira [9] is a distributed

memory algorithm. Their work builds on their shared-memory

algorithm on a single node and extends to multi-node dis-

tributed memory algorithm using MPI+OpenMP. The use of

master threads and master process in their algorithm results in

global synchronizations in each iteration while in our hybrid

algorithm, global synchronization is avoided at all levels.

Accordingly, their work shows large times for two graphs.

For example, for the Twitter-2010 graph, their algorithm runs

in 13000 seconds on 16 cores while our hybrid algorithm,

utilizing 6 CPU cores and a K20 GPU, runs in 2101 seconds.

One of the recent works is the distributed Infomap algo-

rithm by Zeng and Yu [12]. The Infomap algorithm is a

different strategy to Louvain algorithm. To our knowledge,

we are not aware of comparison between the two strategies

9

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:51:03 UTC from IEEE Xplore. Restrictions apply.

0
50

0
10

00
15

00
20

00
25

00

uk−2002 rMat24 eu−2015 gsh Arabic friendster uk−2005 it−2004

Comparison with CPU−only Multicore and Base Hybrid CPU−GPU Versions
(Execution Time)

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0
50

0
10

00
15

00
20

00
25

00

Multicore CPU−only
Base Hybrid CPU−GPU
HyDetect

(a) Execution Time

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

uk−2002 rMat24 eu−2015 gsh Arabic uk−2005 it−2004

Comparison with CPU−only Multicore and Base Hybrid CPU−GPU Versions
(Modularity)

M
od

ul
ar

ity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multicore CPU−only
Base Hybrid CPU−GPU
HyDetect

(b) Modularity

Fig. 3. Comparison with CPU-only and Base Hybrid Methods

in the literature. In general, Infomap algorithm involves larger

communications for exchange of exit and visit probabilities of

vertices. For example, for one of the graphs, UK-2005, their

algorithm executes in 25 seconds on 512 cores. Assuming

linear scalability, which is an optimistic scenario for graph

applications, their algorithm will consume 2000+ seconds on

6 cores of CPU. Our HyDetect algorithm, by utilizing 6 CPU

cores and an NVIDIA K20 GPU card, is able to execute the

same graph in 413 seconds.

F. Execution Phases of HyDetect

Figure 4 shows the times for the different execution phases

of HyDetect. We find that most of the times are spent in the

useful computations related to independent computations of

Louvain’s algorithm on the CPU and GPU. These independent

computations occupy about 49-77% of the total time. Note

that the independent computations also involve identifying the

doubtful vertices and finding the subset of doubtful vertices

for migration.

Partitioning also takes significant time, about 7-48% of the

total time. This is due to the overheads of Metis partitioning

employed in our work. However, the high quality Metis

partition results in a small number of doubtful vertices. This

results in reduced times for migration of the doubtful vertices

and the formation of the final communities in the GPU as can

be seen in the figure.

We can see that the migration phase, where the final set of

doubtful vertices are moved simultaneously between the de-

vices and the Louvain algorithm computations are performed

with the already formed communities, takes significantly less

0
50

0
10

00
15

00
20

00
25

00

uk−2002 rMat24 eu−2015 gsh Arabic friendster uk−2005 it−2004

Comparison with CPU−only Multicore and Base Hybrid CPU−GPU Versions
(Execution Time)

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0
50

0
10

00
15

00
20

00
25

00

Migration of Doubtful Vertices
Finding Doubtful Vertices for Migration
Independent Computations
Partitioning

Fig. 4. Times for Various Execution Phases of the HyDetect Algorithm

time compared to initial independent computations. This is

due to the reduction in the size of the graph as the algorithm

progresses. The formation of the final communities in the GPU

consumes only a few seconds.

VII. CONCLUSION AND FUTURE WORK

In this work, we have developed an hybrid CPU-GPU

community detection algorithm called HyDetect based on Lou-

vain’s algorithm. Our hybrid algorithm performs independent

and simultaneous Louvain’s community detection on the parti-

tions on CPU and GPU, determines wrongly assigned vertices,

migrates these vertices in parallel and performs iterative re-

finement of the communities. We had also developed a novely

heuristic for determining wrongly assigned vertices or doubtful

vertices. Our experiments show that our HyDetect algorithm

gives 42-73% lesser execution times than state-of-art multi-

core CPU-only parallel Louvain’s algorithm implementation

for large graphs that could not be accommodated in the GPU

memory. In future, we plan to extend the work to multi-node

multi CPU-GPU framework for exploring very large graphs

that could not be accommodated in the memory of a single

node.

REFERENCES

[1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008,
oct 2008. [Online]. Available: https://doi.org/10.1088%2F1742-5468%
2F2008%2F10%2Fp10008

[2] H. Lu, M. Halappanavar, and A. Kalyanaraman, “Parallel heuristics for
scalable community detection,” Parallel Computing, vol. 47, pp. 19 –
37, 2015, graph analysis for scientific discovery. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819115000472

[3] M. Naim, F. Manne, M. Halappanavar, and A. Tumeo, “Community
Detection on the GPU,” in 2017 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2017, 2017, pp. 625–634.

[4] X. Que, F. Checconi, F. Petrini, and J. Gunnels, “Scalable Community
Detection with the Louvain Algorithm,” in 2015 IEEE International
Parallel and Distributed Processing Symposium, IPDPS, 2015, pp. 28–
37.

[5] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu,
D. Chavarrı́a-Miranda, A. Khan, and A. Gebremedhin, “Distributed
Louvain Algorithm for Graph Community Detection,” in 2018 IEEE
International Parallel and Distributed Processing Symposium, IPDPS,
2018, pp. 885–895.

[6] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, p. 026113, Feb
2004. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.
69.026113

10

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:51:03 UTC from IEEE Xplore. Restrictions apply.

[7] C. Wickramaarachchi, M. Frincu, P. Small, and V. K. Prasanna, “Fast
parallel algorithm for unfolding of communities in large graphs,” in 2014
IEEE High Performance Extreme Computing Conference (HPEC), Sep.
2014, pp. 1–6.

[8] C. Y. Cheong, H. P. Huynh, D. Lo, and R. S. M. Goh, “Hierarchical
parallel algorithm for modularity-based community detection using
gpus,” in Euro-Par 2013 Parallel Processing, F. Wolf, B. Mohr, and
D. an Mey, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 775–787.

[9] R. Sharma and S. Oliveira, “Community detection algorithm for
big social networks using hybrid architecture,” Big Data Res.,
vol. 10, no. C, pp. 44–52, Dec. 2017. [Online]. Available:
https://doi.org/10.1016/j.bdr.2017.10.003

[10] J. Soman and A. Narang, “Fast community detection algorithm with
gpus and multicore architectures,” in Proceedings of the 2011 IEEE
International Parallel & Distributed Processing Symposium, ser. IPDPS
’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
568–579. [Online]. Available: https://doi.org/10.1109/IPDPS.2011.61

[11] R. Panja and SVadhiyar, “HyPar: A Divide-and-conquer Model for Hy-
brid CPU-GPU Graph Processing,” Journal of Parallel and Distributed
Computing, vol. 132, pp. 8–20, 2019.

[12] J. Zeng and H. Yu, “A Distributed Infomap Algorithm for Scalable
and High-Quality Community Detection,” in Proceedings of the 47th
International Conference on Parallel Processing, ser. ICPP 2018, 2018.

[13] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM Journal on Scientific Comput-
ing, vol. 20, no. 1, pp. 359–392, 1998.

[14] ——, “A software package for partitioning unstructured graphs, parti-
tioning meshes, and computing fill-reducing orderings of sparse matri-
ces,” University of Minnesota, Department of Computer Science and
Engineering, Army HPC Research Center, Minneapolis, MN, 1998.

[15] ——, “Parallel Multilevel K-way Partitioning Scheme for Irregular
Graphs,” in Proceedings of the 1996 ACM/IEEE Conference on Super-
computing, ser. Supercomputing ’96, 1996.

[16] P. Parau, C. Lemnaru, and R. Potolea, “Assessing vertex relevance based
on community detection,” in 2015 7th International Joint Conference on
Knowledge Discovery, Knowledge Engineering and Knowledge Manage-
ment (IC3K), vol. 01, Nov 2015, pp. 46–56.

[17] OpenMP Architecture Review Board, “OpenMP application program
interface version 3.0,” May 2008. [Online]. Available: http://www.
openmp.org/mp-documents/spec30.pdf

[18] Boost C++ Libraries. [Online]. Available: http://www.boost.org/
[19] NVIDIA, “Cuda c programming guide version 8.0,” https://docs.nvidia.

com/cuda/cuda-c-programming-guide/, September 2016.
[20] T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-

tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, p. 1, 2011.

[21] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004), 2004, pp. 595–601.

[22] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th international conference on World
Wide Web, S. Srinivasan, K. Ramamritham, A. Kumar, M. P. Ravindra,
E. Bertino, and R. Kumar, Eds., 2011, pp. 587–596.

[23] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings
of the 22nd International Conference on World Wide Web, 2013, pp.
1343–1350.

[24] D. A. Bader and K. Madduri, “Gtgraph: A synthetic graph generator
suite,” Atlanta, GA, February, 2006.

[25] D. Bader and K. Madduri, “Design and Implementation of the HPCS
Graph Analysis Benchmark on Symmetric Multiprocessors,” in High
Performance Computing - HiPC 2005, 12th International Conference,
Goa, India, December 18-21, 2005, Proceedings, 2005, pp. 465–476.

11

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:51:03 UTC from IEEE Xplore. Restrictions apply.

