
Fault Tolerance on Large Scale Systems
using Adaptive Process Replication

Cijo George and Sathish Vadhiyar

Abstract—Exascale systems of the future are predicted to have mean time between failures (MTBF) of less than one hour. At such low

MTBFs, employing periodic checkpointing alone will result in low efficiency because of the high number of application failures resulting

in large amount of lost work due to rollbacks. In such scenarios, it is highly necessary to have proactive fault tolerance mechanisms that

can help avoid significant number of failures. In this work, we have developed a mechanism for proactive fault tolerance using partial

replication of a set of application processes. Our fault tolerance framework adaptively changes the set of replicated processes

periodically based on failure predictions to avoid failures. We have developed an MPI prototype implementation, PAREP-MPI that allows

changing the replica set. We have shown that our strategy involving adaptive process replication significantly outperforms existing

mechanisms providing up to 20 percent improvement in application efficiency even for exascale systems.

Index Terms—Fault tolerance, process replication, exascale systems

Ç

1 INTRODUCTION

WITH the development of high performance systems
with massive number of processors [1] and long run-

ning scalable scientific applications that can use large num-
ber of processors for executions, the MTBF of the processors
used for a single application execution has tremendously
decreased [2]. The current petascale systems are reported to
have MTBFs of less than 10 hours to a few days and future
exascale systems are anticipated to have MTBFs of less than
an hour [3], [4]. However, long running scientific simula-
tions including climate modeling and molecular dynamics
can have execution times of the order of weeks to even
months, typically segmented into multiple job executions of
few days execution time each and with checkpointing at the
end of each execution to continue computations. This seg-
mentation is done to enable time sharing of the computa-
tional resources by multiple different jobs on the HPC
systems. It is highly imperative to develop efficient fault tol-
erance strategies to sustain executions of these long-running
real scientific applications on future large scale systems like
exascale systems.

Periodic checkpointing [5], [6] is the most popular and
long-established strategy for fault tolerance in parallel sys-
tems and applications. In periodic checkpointing systems,
the application is periodically made to store its state in
anticipation of failures. Periodic checkpointing allows the
application to rollback to a recently checkpointed state on
the occurrence of failures. With lower platform MTBFs
on systems with large number of processors, the number of

failures increases resulting in a significant increase in the
amount of work lost due to rollbacks. Reduced checkpoint
intervals on systems with low platform MTBF will also lead
to more number of checkpoints contributing to the overall
reduction in application efficiency. Recent studies [7], [8],
[9] have shown that periodic checkpointing with the com-
monly available PFS-based, fully coordinated, application-
agnostic checkpointing approaches results in application
efficiencies of only 20-30 percent on peta and exa scale sys-
tems! Thus, traditional periodic checkpointing is not a via-
ble fault tolerance option for large scale systems. Hence, it is
highly necessary to employ proactive fault tolerance mecha-
nisms that can help avoid significant number of failures.

Process replication is being increasingly considered for
fault tolerance for current and future large scale systems
[10], [11]. In process replication, the state of a process is rep-
licated in another process called replica or shadow process,
such that even if one of them fails, the application can con-
tinue execution without interruption. Process replication is
a highly favorable option for fault tolerance on large scale
systems with large number of failures, since unlike periodic
checkpointing, node failures will result in application fail-
ures only if a replica is not present or if the replica also fails
simultaneously, thus resulting in reduced number of fail-
ures. Replication also leads to increased intervals between
checkpointing, thereby reducing checkpointing overheads.
All these advantages of replication result in significantly
higher application efficiency than periodic checkpointing
for peta and exascale systems.

In spite of these benefits, dual redundancy, in which pro-
cesses in all sockets (or nodes) in a system are replicated1,
can achieve only less than 50 percent application efficiency,
since only half the total number of nodes is used for actual
application execution. This can result in huge amount of
resource wastage on large scale systems. To verify this, we
performed simulation experiments involving execution on

� C. George is with NetApp Advanced Technology Group, Bangalore, India.
E-mail: cijo@netapp.com.

� S. Vadhiyar is with the Supercomputer Education and Research Centre of
Indian Institute of Science, Bangalore, India. E-mail: vss@serc.iisc.in.

Manuscript received 26 Jan. 2013; revised 28 Aug. 2014; accepted 10 Sept.
2014. Date of publication 25 Sept. 2014; date of current version 10 July 2015.
Recommended for acceptance by M. Parashar.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2014.2360536 1. We use process replication and node replication interchangeably.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015 2213

0018-9340� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

200,000 nodes/processors with dual redundancy for one
week with a node MTBF of 25 years and Weibull distribu-
tion of failures. We found that the total number of node fail-
ures before an application failure, due to both a process and
its replica failing, is only between 50 to 400. Thus only a
maximum of 400 of the 200,000 nodes have to be replicated.
However, in anticipation of this very small number of
failures, the dual redundancy scheme replicates 100;000
nodes, thereby utilizing only 100;000 nodes for application
execution! While about 199;600 nodes or more than 99 per-
cent of the total number of nodes could have been used for
application execution, the dual redundancy scheme utilizes
only 50 percent, resulting in large resource wastage. The pri-
mary reason for this “safe” approach of dual redundancy is
due to the lack of knowledge of the specific 400 nodes that
may fail during execution.

In this work, we have developed a mechanism for proac-
tive fault tolerance using partial replication of a set of appli-
cation processes. Our framework starts an application with
a fixed small number of processes replicated. At regular
intervals of time, our framework adaptively changes the
set of replicated processes based on failure predictions such
that all failure prone nodes have healthy replica, thus
attempting to avoid failures. Our adaptive strategy lever-
ages on the advantages of process replication while keeping
the number of replica nodes to a minimum, thereby mini-
mizing resource wastage.

Our fault tolerance framework relies on a cost efficient
mechanism to adaptively change the set of replicated pro-
cesses without having to checkpoint/restart the application.
We have developed an MPI prototype implementation,
PAREP-MPI, that makes this possible by providing the ability
to transparently copy a process state from a process in a local
node to a process in a remote node and modify the remote
process to act as the replica of the local process. Simulations
using synthetic failure traces for exponential and Weibull
distributions have shown that our fault tolerance framework
involving adaptive partial process replication significantly
outperforms existing mechanisms for large and very large
scale systems providing up to 20 percent improvement in
application efficiency even for exascale systems.

2 RELATED WORK

2.1 Checkpointing and Process Migration

Most of the fault tolerance mechanisms in literature are
based on checkpointing [5], [6]. Proactive process migration
[12] is a failure avoidance mechanism in which processes in
failure prone nodes are migrated to healthy spare nodes
periodically to avoid application failures. There are also
frameworks that combine different fault tolerance mecha-
nisms and dynamically select the best strategy at regular
intervals of time [7], [9].

Some efforts use system-level checkpointing to support
fault tolerance for HPC applications. For example, the
Berkeley Lab Checkpoint/Restart (BLCR) [13] is a system-
level checkpoint/restart mechanism for Linux clusters.
BLCR is intended for fault tolerance based on events gen-
erated by system sensors such as rising temperature, and
for batch scheduling. BLCR is implemented as a kernel
module, and MPI implementations can provide fault

tolerance by integrating with BLCR via a callback interface
to cooperate among processes for taking and restoring
from a checkpoint. In this paper, we target application-
level checkpointing and replication. Some efforts have
focused on mitigating the cost of checkpointing. The
Scalable Checkpoint Restart (SCR) library [14] employs
multi-level checkpointing where the state of the entire par-
allel system is stored at the highest level using slow, but
reliable parallel file systems, while node and cross-node
checkpoints are taken at the lowest level using fast, and
less reliable in-system storage. Recent work [15] has used
MRNet tree-based overlay network library [16] for asyn-
chronous transfers of checkpoints to the parallel file sys-
tem to increase the computations-checkpointing overlap.

Bosilca et al. [6] had presented a unified model for evalu-
ating different rollback recovery protocols including coordi-
nated checkpointing, uncoordinated checkpointing using
message logging, and hierarchical checkpointing. They
have used this model to evaluate different protocols and
conclude that with appropriate provision in I/O resources
and technology, periodic checkpointing can outperform
dual redundancy.

2.2 Failure Predictions

To help a runtime system make proactive fault tolerance
decisions like process migration, techniques have been
developed to predict failures. While some prediction mecha-
nisms are based on failure history of the systems [17], one of
the approaches that is relevant to our work on prediction-
based replication is the use of symptom or healthmonitoring
of the system to predict failures [18], [19]. The system attrib-
utes that are monitored for failure prediction include disk
temperature, memory leaks, used swap space, work accom-
plished since last restart, CPU utilization, idle time, network
IO event logs, and hardware sensor measurements such as
environment temperature and power supply voltage.

In a recent work, Gainaru et al. [20] have developed a
hybrid prediction technique embedded into their ELSA
(Event Log Signal Analyzer) toolkit. Their work monitors
various events generated by the system including memory
failure, node crashes, cache errors and node card failures
and uses a hybrid technique that combines signal analysis
and data mining for prediction. The signal analysis compo-
nent characterizes system’s normal behavior and performs
anomaly detection based on the events, while the data min-
ing component performs advanced correlations between
the events and the failures. Results with Bluegene/L system
show that their hybrid prediction approach provides about
46 percent recall and 92 percent precision.

2.3 Replication

Process replication [10], [11], [21], [22], [23] is another fault
tolerance mechanism, which is being considered for future
large scale systems. In process replication, application pro-
cesses are replicated so that even if a process fails, the appli-
cation is not interrupted, due to the presence of a replica.
VolpexMPI [21] is an MPI implementation that replicates
certain processes to provide fault tolerance and proactive
migration for MPI applications executing on volatile sys-
tems, where idle PCs can be used for “guest” MPI processes.
The library follows sender-based message-logging with

2214 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

replication for fault tolerance, while our work considers
checkpointing with replication. VolpexMPI is designed for
applications with minimal communication requirements on
small-scale systems (e.g., institutional LANs), while our
study is for general HPC scientific applications on peta and
exa scale systems.

Ferreira et al. [10] have shown that a process replication
strategy with dual hardware redundancy, in which all pro-
cesses in a system are replicated, can significantly increase
the mean time to interrupt (MTTI) of an application. Their
work has also developed rMPI, a user-level MPI library
that enables replication for MPI applications. They have
shown using simulations with an exponential failure dis-
tribution that replication outperforms traditional periodic
checkpointing for socket counts greater than 20;000 and
is a viable fault tolerance technique for socket counts and
I/O bandwidths anticipated for future exascale systems.
However, with Weibull failure distribution both periodic
checkpointing and dual redundancy were shown to give
low application efficiency. Our adaptive replication strat-
egy provides higher application efficiency than dual
redundancy even for Weibull distributions of failures.

Elliott et al. [11] have developed a fault tolerance strategy
that combines periodic checkpointing with partial redun-
dancy. The study shows the effects of varying degree of
redundancy on application execution time for different
kinds of systems. Their work has built RedMPI, a user-level
MPI library similar to rMPI that enables redundant comput-
ing for MPI applications, with support for both partial and
dual redundancy. They have shown that partial redun-
dancy can be beneficial even for medium scale systems with
4;000 to 25;000 processors with a degree of redundancy
between 1:5 and 2, where a degree of 2 corresponds to dual
redundancy. While this work deals with finding an optimal
degree of replication that gives maximum performance, the
nodes that are replicated are arbitrarily chosen. Our adap-
tive replication strategy dynamically changes the set of rep-
licated processes based on failure predictions to avoid the
nodes that are predicted to fail.

In a recent work [23], RedMPI was extended to use
dual and triple redundancy to detect and correct silent
data corruption (SDC) errors. The error detection happens
at the MPI communication layer where the receiver repli-
cas compare and verify received messages for data cor-
ruption. A receiver replica receives a full message from a
sender replica and a hash of the message from another
sender replica to verify correctness. Stearly et al. [24]
have also recently developed a model for studying job
interrupt times on systems of arbitrary replication degree
and node failure distribution.

There have been efforts using simulations to evaluate
different fault tolerance mechanisms and policies. The
work by Tikotekar et al. [25] built a simulator framework
to compare reactive fault tolerance using checkpointing,
proactive process migration, and a strategy using both
checkpointing and process migration. They have per-
formed simulations using LLNL logs for up to 512 nodes.
They conclude that a fault tolerance policy that combines
proactive migration with reactive checkpointing is prom-
ising for certain systems. Our work evaluates the benefits
of partial replication with checkpointing using failure

predictions. We conduct studies for large-scale systems
including peta and exa scale systems.

3 ADAPTIVE PROCESS REPLICATION FRAMEWORK

We assume the presence of a failure predictor that can esti-
mate the node failures in a system for a given time window.
Specifically, the predictor has to periodically estimate the
list of nodes that are expected to fail in the next time inter-
val. Precision of such a predictor is defined as the ratio of the
number of correct predictions to the total number of predic-
tions made. Recall of the predictor is defined as the ratio of
the number of correct predictions to the total number of fail-
ures. Higher the values of precision and recall, the better the
predictor. A node is considered as failure prone if it is pre-
dicted to fail, and considered as healthy if it is not predicted
to fail, in the next interval.

An application, which is allotted a fixed Ntot number of
nodes, starts its execution on a fixedNcmp number of compute
nodes, using the remaining Nrep (¼ Ntot �Ncmp) number of
nodes as replica nodes. Each application process either
belongs to the compute set or to the replica set. We assume par-
tial replication (Nrep < Ncmp), i.e., not all application processes
will have an associated replica process. A compute-replica map
is used by the processes to find the mapping between com-
pute nodes and replica nodes. This can be a file or a global
data structure accessible by all the processors in the system.

The overall working of our adaptive replication frame-
work is illustrated in Fig. 1. The goal of the framework is to
ensure that at any given point of time, all failure prone
nodes in the system have healthy replica nodes associated
with them. At regular intervals of time, an adaptation man-
ager determines the compute-replica map and selects a set
of nodes for allocation of healthy replica for the next inter-
val, based on the node failure predictions given by the fail-
ure predictor. A node that is predicted to fail is selected for
allocation of a replica if it is a compute node and satisfies
one of the following conditions.

� The node does not have a replica allotted to it.
� The node has a replica allotted to it, but the replica is

also failure prone in the next interval.
For each node in the list of selected nodes for healthy rep-

lica node allocation, the adaptation manager then takes the
following steps.

� Select a randomhealthy replica node, which is not cur-
rently associatedwith a failure prone compute node.

� Modify the compute-replica map, such that the
selected replica node is now mapped to the given
failure prone compute node.

Fig. 1. Adaptive process replication framework.

GEORGE AND VADHIYAR: FAULT TOLERANCE ON LARGE SCALE SYSTEMS USING ADAPTIVE PROCESS REPLICATION 2215

Each of the application processes checks the compute-
replica map regularly. If the map is modified, the processes
take the following steps.

� If the process belongs to the compute set and finds
that it has been allotted a new replica node, it sends
its process image to the new replica node.

� If the process belongs to the replica set and finds that
it has been allotted a new compute node, it receives
the process image of the corresponding compute
node and initiates a process replacement. Once the
process replacement is completed, it acts as the rep-
lica of the newly allotted compute node and contin-
ues execution.

Similar to MR-MPI [22], our framework ensures that the
computational process and its replica are located on differ-
ent nodes to prevent application failure due to a node fail-
ure. Our framework can avoid all the node failures which
are correctly predicted if the number of healthy nodes in the
replica set at any given point of time is at least equal to the
number of nodes predicted to fail in a given interval. While
our framework can avoid a significant number of predicted
node failures by using replication, it tolerates unpredicted
node failures in the system by using periodic checkpointing.
The checkpointing interval is calculated based on the inter-
val between unpredicted failures, and using this interval in
Daly’s higher order checkpoint/restart model [26]. To deter-
mine the time interval between unpredicted failures, recall
of the failure prediction is used. The lower the recall of the
predictor, the higher will be the number of unpredicted fail-
ures. Given the recall, the time interval between such unpre-
dicted failures can be estimated as platform MTBF

1� recall .

4 PAREP-MPI: A PROTOTYPE IMPLEMENTATION

FOR ADAPTIVE PROCESS REPLICATION

4.1 Basic Design

PAREP-MPI is our MPI implementation that supports partial
process replication with adaptive changing of the set of rep-
licated processes for MPI applications. It acts as a profiling
layer between the application and the MPI library and
allows users to specify a replication degree less than or
equal to 2, where a degree of 2 corresponds to dual redun-
dancy. While MPI implementations like VolpexMPI [21]
implements MPI functions from scratch using a specialized
socket library, our PAREP-MPI library adopts the approach
of rMPI [10] and RedMPI [23] libraries by using MPI profil-
ing layer (PMPI) to intercept MPI function calls and wrap
the MPI calls with additional functionalities. While this pro-
filing layer approach results in lesser optimization opportu-
nities when compared to from-the-scratch approach, it has
the advantage of providing portability over different MPI
implementations with different communication protocols
and parallel architectures.

Processes in MPI COMM WORLD are divided into two
groups and corresponding communicators, one for the pro-
cesses in the compute set and the other for the processes in
the replica set. All subsequent MPI library calls made by the
application are intercepted by PAREP-MPI’s profiling layer,
and replica processes are handled transparent to the appli-
cation. For example, redundancy is handled by the PAREP-

MPI layer for a SendðÞ call from the application by posting a
redundant SendðÞ call to the replica process thereby sending
the message to both the compute and the replica processes.
Our current implementation supports the MPI functions
Comm rank ðÞ; Comm size ðÞ; Send ðÞ; Isend ðÞ; Recv ðÞ; Irecv ðÞ;
Reduce ðÞ; Allreduce ðÞ; Alltoall ðÞ; Alltoallv ðÞ and Bcast ðÞ.

4.2 Communication Replication

In PAREP-MPI, the sender process and its replica (if one
exists) sends the message to the receiver process and also its
replica (if one exists). This translates to the following com-
munication patterns for four replication scenarios.

1) If sender process A and receiver process B are not
replicated, then A simply sends the message to B as
shown in Fig. 2a.

2) If sender process A has a replica A’ and receiver pro-
cess B has a replica B’, then both A and A’ sends a
copy of the message to both B and B’, resulting in
both B and B’ having a redundant copy of the mes-
sage. This is shown is Fig. 2b.

3) If sender process A has a replica A’ and receiver pro-
cess B is not replicated, then both A and A’ sends the
message to B, resulting in a redundant copy of the
message at B. This is shown in Fig. 2c.

4) If sender process A is not replicated and receiver
process B has a replica B’, then A sends a copy of the
message to both B and B’ as shown in Fig. 2d.

Message redundancy at the receiver end that occurs in two
of the above scenarios can be potentially used to detect and
correct soft errors in the application by comparing redundant
messages from replica processes. Fiala et al. have recently
studied this and have extended RedMPI to detect and correct
SDC [23]. In our current prototype implementation of PAREP-
MPI, we assume that the message from a sender and its rep-
lica are the same and hence one of the messages is simply dis-
carded and the other is used for computation.

4.3 Adaptive Replica Change

The fault tolerance framework explained in Section 3 relies
on the existence of a reliable, cost efficient mechanism for
adaptively changing the set of replicated processes. PAREP-
MPI uses a strategy which involves replacing process image

Fig. 2. Communication replication in PAREP-MPI.

2216 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

to change processes in the replicated set. A process image is
basically the information in the address space of the process
that includes the state of the process and its data structures.
Process image replacement is used in many process migra-
tion systems [12], [27] in which an entire process image of a
process is migrated to another process or a machine and
continued execution. This complete process image replace-
ment is not applicable in PAREP-MPI since replica processes
are MPI processes and are part of the MPI environment
(communicator) of the parallel application. Processes in an
MPI environment will have their own identities which are
defined by the MPI communicator structures. A process
replacement strategy to change the set of replicated pro-
cesses should make sure that these identities are retained by
the processes, while the state of a replica process and its
data structures should change to reflect that of its newly
allotted compute process. PAREP-MPI performs such partial
process image replacement for MPI applications at the user-
level during application execution, thereby enabling adap-
tive changing of the set of replicated processes.

As mentioned in Section 3, an adaptation manager regu-
larly updates the compute-replica map for the next interval
based on failure predictions. The implementation of adaptive
replica change in PAREP-MPI is independent of the implemen-
tation of the adaptation manager and the failure predictor.
One of the challenges in the implementation of adaptation
manager is developing an efficient data structure for com-
pute-replica map and ensuring its consistency across nodes
when updated. In our prototype implementation, we use a
text file on a shared file system for the purpose. This com-
pute-replica map file contains n entries, one entry per line,
where n is the total number of compute nodes in the system.
Each entry consists of a compute node number and the corre-
sponding replica node number. If a compute node does not
have a replica, its replica node number will be �1. Checking
for updates in this file will have negligible overhead since it
only involves checking the file modification time. Even when
the file is modified, each process has to read only a single line
from the file. A compute or replica process will then read the
line corresponding to its associate compute node number.
This overhead is negligible by itself, and evenmore negligible
in current systems owing to the advanced read caching
policies implemented by most operating systems. In our
experiments, we have observed that the overhead of these
operations related to themapfile is about 30milliseconds.

On completion of every MPI call from the application,
PAREP-MPI checks the compute-replicamapfile formodifica-
tions before the control is returned to the application routine.
Alternatively, the processes can check for updates selectively
based on a time threshold. If the file is modified, the applica-
tion processes first synchronize to determine whether there
are pendingMPI requests in any of the processes. A pending
MPI request refers to non-blocking communication opera-
tions that have not completed. In such a case, the processes
will have to wait for the requests to be completed before pro-
ceeding further. This is to ensure that there are no in-flight
messages when a replica change is triggered. PAREP-MPI
keeps track of MPI request handles in an internal data struc-
ture in each of the processes and posts aWait ðÞ call on exist-
ing handles to complete the requests. This synchronization
also ensures that the first process that notices a change in the

compute-replica map will wait until all the other processes
see the updated map and synchronize. After this step, each
of the processes whose mapping has changed initiates the
send/receive of process image to/from its newly mapped
process, and the receiving process performs process image
replacement, as explained in Section 3.

5 PROCESS IMAGE REPLACEMENT IN PAREP-MPI

The strategy used in PAREP-MPI for replacing the image of a
process with that of another process involves three steps:
replacing the initialized and uninitialized data (henceforth
referred to as data segment), replacing the user data struc-
tures in the heap (henceforth referred to as heap data struc-
tures) and replacing the stack segment. It is also important
that after the image replacement is complete, the new replica
process continues from exactly the same instruction the cor-
responding compute process executes just after sending its
process image. Hence the stack context should also be saved.

5.1 Data Segment

Replacing the data segment is trivial if the start and end
addresses of this segment are known. In Unix/Linux,
the boundary addresses of this segment can be obtained
from =proc=self=maps file while the application is exe-
cuting. Replacing this segment in the destination process
involves replacing the entire data between the start and
the end addresses.

MPI communicator handles in the replica process will
have to be backed up in the stack before initiating a data
segment replacement and should be restored back after
replacing the data segment. This is done so that the process
does not lose access to its communicator structures and
hence retain its identity in the MPI environment, such as the
process rank and other MPI specific information.

Our current proof-of-concept prototype implementation
performs this saving and restoring of MPI communicators.
Our implementation currently does not handle other MPI
objects including MPI data types. In future, we plan to use
the existing migration mechanisms similar to those present
in the BLCR library [13] and the work by Wang et al. [12].

5.2 Heap Data Structures

Many of the MPI related data structures are stored in the
heap space of a process. A complete heap replacement will
result in the replacement of these MPI data structures. Since
we require the process to keep its identity, these data struc-
tures will have to be retained. However, keeping track of
the locations of all the MPI data structures would require
the modification of the standard MPI source code. We adopt
a different strategy where we keep track of only the user
data structures in the heap and selectively replace them in
the destination process. The heap data structures from the
source process are copied to the corresponding locations of
the same data structures in the destination process.

The above strategy to handle heap data structures gives
rise to another problem. The pointers to the heap data struc-
tures reside in the data segment. After the data segment is
replaced, these pointers would be pointing to addresses cor-
responding to the locations of these data structures in the
source process. Since these locations may have changed

GEORGE AND VADHIYAR: FAULT TOLERANCE ON LARGE SCALE SYSTEMS USING ADAPTIVE PROCESS REPLICATION 2217

in the destination process, the pointers will have to be
updated. For this, it is necessary to keep track of the
addresses of these pointers in the data segment along with
keeping track of the data structures itself. For example, sup-
pose a user process allocatesmemory in the heap for an array
of 10 integers using the following C statement.

int � p ¼ ðint �Þ malloc ð10 � sizeof ðintÞÞ:

To implement the selective heap data structure replace-
ment, for each data structure, we should have the informa-
tion about the actual data structure, i.e., its address in the
heap and its total size in both the source and destination
processes. Apart from this, we should also have the address
of the pointer p in the data segment. Data structure informa-
tion can be obtained by using wrappers for malloc ðÞ and
free ðÞ to keep track of memory allotted and freed from the
heap. To enable keeping track of the addresses of the
pointers, we use a script that does text replacement of all
the malloc statements in the application source code with
custom malloc statements that will also pass the address of
the pointer variable along with the size parameter ofmalloc.
For example, the above malloc statement in a C program
will be replaced by the script as follows.

int � p ¼ ðint �Þ myMalloc ð&p; 10 � sizeof ðintÞÞ:

Here, myMalloc ðÞ is the custom malloc implementation
that internally keeps track of the required heap data struc-
ture information in a linked list and calls the real malloc
function for dynamic memory allocation.

5.3 Stack Segment

Saving and restoring the stack context, and replacing the
stack segment are implemented similar to Condor Check-
point/Migration [27] using standard C functions setjmp ðÞ
and longjmp ðÞ, shifting the current execution stack to a
temporary location in the data segment, and using this
location as a temporary stack while the real stack space is
getting replaced.

5.4 Illustration of Process Image Replacement:
A Scenario with Three Nodes and
Three Processes

Consider a system with three nodes and each node has an
application process running on it. Suppose A, B0 and B are
the three processes in the system, such that B0 is the replica
process of B and A does not have a replica. Now, suppose
that at a given point of time, the compute-replica map of the
system is modified and according to the new map, the pro-
cess B0 should be a replica of A and B should not have a
replica, i.e, B0 should be changed to A0. Fig. 3 shows the exe-
cution time line of the three processes starting from the
point where the processes read the compute-replica map
modification, to the point where B0 has changed to A0 and
has resumed execution. Following are the steps taken by the
processes during this time line.

� All processes synchronize to check for pending non-
blocking communication requests in any of the
processes. If there are pending requests, processes
proceed further only after they are completed.

� A calls setjmp ðJMP_BUFÞ in an if condition that
checks for a return value of 0. setjmp returns 0 in A
and hence executes the instructions in the if block (as
follows in the remaining steps until longjmp is called).
A saves the start and end addresses of its stack seg-
ment in a global data structure, stackSegAddr.

� A sends the start address and size of its data segment
to B0. B0 receives them and takes a backup of MPI
communicator handles.

� A sends its entire data segment. B0 receives the data
segment at the previously received start address. It
restores the backed up data to the new data segment.
This completes the data segment replacement.

� A sends the heap data structures one by one to B0.
Heap data structures’ information is stored in a link
list in the heap. B0 uses the information in its own
list to receive the heap data structures at their corre-
sponding locations in the heap. This completes the
replacement of the heap data structures.

� A sends its stack segment to B0. Note that once the
data segment is replaced, B0 has the global data
structure, stackSegAddr containing the start and end
addresses of the stack segment of A. B0 shifts its exe-
cution to a temporary stack in its data segment and
receives the stack segment from A at the stack start
address in stackSegAddr.

� B0 calls longjmp ðJMP_BUF; nÞ, where n is a non-zero
integer. This restores the stack context of A in B0.
Now B0 has become A0, i.e., the replica of A. The pro-
cess resumes at the point where setjmp had returned
when it was first called in A, with the return value n.
The process continues execution from the next
instruction after the if block. This completes the
entire process image replacement.

� All processes synchronize and continues execution.

Fig. 3. Application execution time line during process replacement.

2218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

6 EXPERIMENTS AND RESULTS

We evaluate our adaptive replication framework based on
the efficiency achieved by the application in the presence
of failures. Efficiency is defined as the percentage of work
Wopt that the application completes in the presence of fail-
ures in a given time duration, where Wopt is the work
done by the application in the time duration in a failure
free environment. It is assumed that the application has
linear scalability. Evaluation is done based on simulations
using a failure simulator, which takes as input the failure
trace of a system and accuracy metrics of the failure pre-
dictor. All experiments were done for an application exe-
cution time of one week.

For our experiments, synthetic failure traces are gener-
ated for large scale systems assuming two kinds of node
failure distributions—exponential and Weibull, which are
commonly used to model node failures in large scale sys-
tems [10], [28]. A projection based on failure statistics in the
Jaguar supercomputer of Oak Ridge National Laboratory
with 45;208 processors has shown that the per processor
MTBF in the platform can be estimated as approximately
125 years [29]. For our experiments, we consider a per pro-
cessor MTBF of 25 years. The parameter � for exponential

distribution is calculated as � ¼ 1
MTBF . For Weibull distribu-

tion which is defined by two parameters � and k, k is set as
0:7 based on the study in [28] and � is calculated as

� ¼ MTBF=Gð1þ 1
kÞ, where G denotes the gamma function.

Synthetic failure traces were generated for a period of one
year and for each of the generated traces, the subset of the
trace corresponding to the first week of the sixth month was
taken for our experiments involving the simulation of appli-
cation execution for one week.

Our framework divides the set of nodes allocated for an
application into two mutually exclusive sets, namely, com-
pute set and replica set. In our analysis, we found that the
maximum number of node failures experienced by a system
with number of nodes as high as 200;000 is only less than
400 over a one week period. Based on this analysis, we fix
the number of nodes in the replica set as 1 percent of the
total number of nodes. This assumption would result in
2;000 nodes in the replica set for a 200;000 node system,
which is much higher than the observed number of node
failures. A 1 percent reduction in the number of nodes used
for application execution will only result in a maximum of 1
percent reduction in efficiency.

We have evaluated our framework against periodic
checkpointing and dual redundancy. We have also com-
pared our adaptive replication framework with proactive
live process migration, another approach that uses process
image replacement and failure predictions. For periodic
checkpointing, the optimal checkpoint interval is calculated
using Daly’s higher order checkpoint/restart model [26],
which takes as input, the platform MTBF and the overhead
of checkpointing. Platform MTBF required by this model is
determined as the average observed platform MTBF during
a one month failure trace history before the start of applica-
tion execution. Dual redundancy is implemented as given
in [10].

Evaluations on large scale systems were done for num-
ber of nodes ranging from 10;000 to 200;000. A system

with 100;000 nodes can be considered as representative of
the existing petascale systems [1]. Similarly, a system
with 200;000 nodes can be considered as representative of
a projected exascale system based on exascale computing
studies [4].

For the purpose of our evaluation, we assume the follow-
ing overheads for checkpoint/restart: checkpoint time ¼ 5
minutes, down time ¼ 1minute, recovery time ¼ 5minutes.
These values are in accordance with the values given for the
2011 cost scenario in [8]. We have also performed an experi-
ment with varying checkpoint/recovery overheads. We set
the time interval between failure predictions as 30 minutes.
This selection is based on the results in previous efforts on
failure predictors [17] that report the best accuracy metrics
for a time window between 15minutes to 1 hour depending
on the system. In our experiments, unless otherwise men-
tioned, both precision and recall of the failure predictor are
assumed as 0:7. While we use this failure prediction accu-
racy as a baseline, we show the results on the sensitivity
analysis of our adaptive replication strategy to the accuracy
of failure predictions in Section 6.7.

6.1 Runtime Overhead of PAREP-MPI

6.1.1 Overhead due to Replication

We define replication overhead in terms of the percentage
loss in work (e.g., number of iterations) done by the applica-
tion on the computation nodes. The primary replication
overhead is due to the extra messages sent to the replicated
nodes. We assume a communication pattern in the applica-
tion in which communications happen to all the nodes
including the replicated nodes (e.g., broadcast, scatter, all-
to-all etc.). With this assumption, the overhead due to
partial replication using C computation nodes and PR repli-
cation nodes is x times the overhead due to dual redun-
dancy using C computation nodes and DRð¼ CÞ replicated
nodes, where xð¼ PR=CÞ is the percentage of the nodes rep-
licated. For example, in a 1:5-degree partial replication, the
overhead will be half of the dual redundancy overhead.

Process replication strategies in our prototype implemen-
tation of PAREP-MPI are similar to those used in rMPI [10]
and RedMPI [11]. Evaluations using rMPI have concluded
that with dual redundancy, the overhead due to replication
for a worst-case application, SAGE, on a projected exascale
system is 4.9 percent [10]. Based on this, for our experi-
ments, we use a overhead of 4.9 percent for dual redun-
dancy and a overhead of xð¼ PR=CÞ � 4:9% for partial
replication when both the replication strategies use C com-
putation nodes. We also show results with varying percen-
tages of dual-redundancy and partial replication overheads
in Section 6.4.

6.1.2 Overhead of Adaptive Replica Change

Overhead of adaptive replica change will depend on the
memory footprint of the application. This overhead also
includes the overhead related to reading the compute-rep-
lica mapfile for changes. In adaptive replication, modifica-
tion of the compute-replica map at a given time can result
in the need for multiple replica changes. PAREP-MPI can
handle these multiple process replacements in parallel since
a process replacement involves only the source and the

GEORGE AND VADHIYAR: FAULT TOLERANCE ON LARGE SCALE SYSTEMS USING ADAPTIVE PROCESS REPLICATION 2219

destination processes. Hence the overhead due to single
process replacement is the same as the overhead due to
multiple process replacements.

For the overhead analysis, we have taken four applica-
tions from NAS Parallel Benchmarks (NPB 3.3) [30], namely,
CG, EP, DT and MG and two other scientific applications,
namely, HPCCG (version 0.5) [31] for unstructured implicit
finite element or finite volume computations and LAMMPS
[32] for molecular dynamics simulations. All the NPB appli-
cations were executed with Class C data. HPCCG was exe-
cuted with a problem dimension of 64 � 64 � 64 grid points
and LAMMPS was executed with the Rhodo spin protein
benchmark from the LAMMPS website. The replica change
overheads were analyzed on an IBM Bluegene/L system
running on Linux. The applications were executed on 1;024
processors. An extra 100 processors were used for replica-
tion, making the total number of processors used for execu-
tion as 1;124. The evaluation on 1;024 processors was to
analyze the possible network contentions under large num-
ber of simultaneous process replacements.

Runtime overhead was observed for applications for
increasing number of simultaneous replica changes, ranging
from 1 to 100. Fig. 4 shows the results of the experiments.
Each value in the graph is the average of values obtained
from five runs. It can be observed that for all the applica-
tions, the overhead is a few seconds, with a worst-case of
only less than 3 seconds. This overhead of adaptive replica
change is slightly smaller than the overhead of 1-6.5 seconds
for proactive live-process migration using BLCR library
reported in the work byWang et al. [12]. Though our experi-
ments have shown runtime overheads of only a few seconds
for a single set of parallel replica changes, for all our experi-
ments, we have assumed this overhead to be 1 minute for
worst-case analysis.

6.1.3 Overhead due to False Positives

In a fault tolerant system that relies on failure predictions, it
is important to evaluate the effect of overheads due to false
positives (FPs) [33], since FPs lead to unwanted proactive
action (in our case, unwanted replica changes). Since false
positives affect precision (precision = TP/(TP + FP)), we per-
formed a simulation with a worst-case precision of 10 per-
cent for exascale configuration of 200;000 nodes with
Weibull distribution of failures. We experimentedwith three
different recall values of 25 percent, 50 percent, and 70

percent. In all cases, we found that the overhead or the
wasted time due to adaptive replica change for false posi-
tives is only about 4 percent. False negatives do not lead to
any proactive action and hence do not result in replica
change overhead.

6.2 Performance on Large Scale Systems

Fig. 5 shows the performance of our framework against the
other two techniques for up to 200;000 nodes with both
exponential and Weibull distributions for failures. The
graphs show that adaptive replication significantly outper-
forms the other techniques for both the failure distributions.
Our strategy performs 20 percent better than the best of the
other two techniques for exponential distribution and
16 percent better than the best of the other two techniques
for Weibull distributions even for 200;000 nodes, which is
the projected number of nodes for an exascale system.

It can be observed that the performance of periodic
checkpointing decreases drastically as the number of nodes
increases, which proves again that periodic checkpointing is
not an efficient fault tolerance technique for future systems.
An interesting observation is that dual redundancy consis-
tently gives around 45 percent efficiency for any number of
nodes. This is because in this technique, all nodes have a
replica and the probability of a node and its replica failing
at the same time is very less. In fact, in our analysis, we
have observed that with dual redundancy, the application
experienced at most only a single failure during a 1 week
execution. But, though dual redundancy is extremely effec-
tive in avoiding failures, its disadvantage is that the maxi-
mum possible efficiency is 50 percent, while adaptive
replication can provide much better efficiencies as shown

Fig. 4. Overhead of dynamic replica changes using PAREP-MPI on IBM
Bluegene/L.

Fig. 5. Comparison of adaptive replication with other techniques.

2220 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

by the results. For 200;000 nodes, our strategy makes more
number of replica changes (371) than checkpointing (288),
which asserts that adaptive replication is a promising fault
tolerance solution for future systems like exascale systems.

Though adaptive replication outperforms dual redun-
dancy by a significant margin even for a projected exascale
system with 200;000 nodes, it should also be observed from
Fig. 5 that there is a downward trend in the efficiency
achieved by adaptive replication as we increase the number
of nodes. If this trend continues, it is possible that at some
higher number of nodes, the efficiency of adaptive replica-
tion goes below that of dual redundancy. But, projecting the
graphs for higher number of nodes show that this will hap-
pen only at around 300;000 nodes for Weibull distribution
and at around 1 million nodes for exponential distribution.
Based on current trends and an anticipated node count of
around 200;000 for exascale [4], it is likely to take at least 10
years for the node count in supercomputing systems to
reach these large numbers. Moreover, our adaptive partial
replication will still have advantages over dual redundancy,
since any increase in replication overhead for certain appli-
cations in the future will affect dual redundancy much
more significantly than our adaptive replication.

We also performed simulations for one million nodes
with platform MTBF of 20 minutes. Our simulation results
show that the application efficiency achieved with our
adaptive process replication strategy is 60:71 percent, while
the efficiencies obtained using dual redundancy and peri-
odic checkpointing approach are 47:25 percent and 25:8 per-
cent, respectively. Thus our adaptive replication method
can give higher efficiencies for larger configurations of the
projected exascale systems as well.

Results in Fig. 5 show that a Weibull distribution of fail-
ures provides a much more challenging failure management
scenario than an exponential distribution. Moreover, studies
have shown that real systems experience failures that follow
Weibull distribution [28]. Hence, for the rest of our evalua-
tions, we present results usingWeibull distribution.

6.3 Performance for Different Node MTBFs

Fig. 6 shows the performance of our framework for node
MTBFs ranging from 25 to 200 years for 200;000 nodes with
Weibull failure distribution. As expected, both adaptive
replication and periodic checkpointing shows better perfor-
mance for higher node MTBFs due to the reduced number
of node failures, and dual redundancy remains consistent in

performance. Though adaptive replication outperforms
periodic checkpointing as expected for all cases, it can be
observed that the rate of increase for periodic checkpointing
is higher than that for adaptive replication. Such a trend
could mean that if the reliability of hardware increases, then
some day in the future, periodic checkpointing can again
turn out to be an effective fault tolerance solution.

6.4 Performance with Varying
Replication Overheads

We have made two assumptions related to replication
overheads in our experiments. First, based on the projec-
tions using rMPI in the work by Ferreira et al [10], we
used a overhead of 4.9 percent for dual-redundancy. The
above mentioned work also showed worst-case dual-
redundancy overheads of less than 5 percent to about 20
percent for different applications on current large-scale
systems. MR-MPI [22], which is another MPI process
replication solution reports widely varying replication
overheads which are as low as 0 percent for embarrass-
ingly parallel applications (NAS EP benchmark) and as
high as 70-90 percent for communication intensive appli-
cations (NAS IS and FT benchmarks).

Second, we assumed the partial replication overheadwith
C computation nodes as x times the dual-redundancy over-
head with C computation nodes, where x is the percentage
of replicated notes. This is true for applications in which
communications happen to all nodes including the repli-
cated nodes. In applications that involve near-neighbor com-
munications (e.g., every pair of neighbors communicating),
the partial replication overhead will be the same as the dual-
redundancy overhead. In the experiments with MR-MPI
[22], the partial replication overheadwith 1:5-degree replica-
tion varied between 25-75 percent of the dual-redundancy
overhead. In general, the percentage difference in overheads
between dual and partial replication for a fixed number of
computation nodes, C, depends on both the replication
degree and the communication pattern in the applications.

We also conducted experiments with different dual and
partial replication overheads for our exascale configuration
of 200;000 nodes with 1 percent of the nodes replicated for
Weibull failure distribution. For dual redundancy overhead,
we investigated varying overhead percentages. For partial
replication overheads, we investigated three scenarios, first,
the worst-case overhead, in which the partial replication over-
head is the same as the dual redundancy overhead with
198;000 computation nodes, second, the best-case overhead, in
which the partial replication overhead is x times the dual
redundancy overhead with x being the percentage of repli-
cated nodes, and third, the median overhead in which the par-
tial replication overhead is the median value of the above
two scenarios. Fig. 7 shows the effects of these overheads on
application efficiency. The x-axis denotes the dual-redun-
dancy overhead using 198;000 computational nodes. The
figure also shows the application efficiencies with periodic
checkpointing approach and dual-redundancy strategy
using 100;000 computational nodes.

The figure shows that the application efficiency is almost
constant for partial replication with best-case overhead.
This is because the amount of overhead in this case corre-
sponds to the percentage of replication. Since we use 1

Fig. 6. Effect of varying node MTBF on adaptive replication.

GEORGE AND VADHIYAR: FAULT TOLERANCE ON LARGE SCALE SYSTEMS USING ADAPTIVE PROCESS REPLICATION 2221

percent replication in our experiments, the effect of this
overhead is negligible on application efficiency. We find
that the median overhead, which can be considered as
average case in most of the applications, also gives better
performance than periodic checkpointing and dual-redun-
dancy approaches even for 90 percent overhead. However,
we find that that partial replication with the worst-case
overhead gives lower application efficiencies than dual-
redundancy for overheads greater than 40 percent and than
even periodic checkpointing approach for overheads
greater than 55 percent. This shows that while our adaptive
partial replication strategy can give the best efficiencies in
most cases, the best fault tolerance strategy for a given case
depends on the communication pattern in the application
and the replication overhead.

6.5 Comparison with Proactive Process Migration

Proactive process migration [12] uses a similar strategy
as adaptive process replication, using failure predictions
and spare nodes. In proactive migration, the processes in
failure prone nodes are migrated to healthy spare nodes
at different points of application execution to avoid fail-
ures. Given that the overheads of process migration and
adaptive replica change are comparable, both the strate-
gies appear to be similar and hence it becomes essential
to evaluate the benefits of adaptive replication over pro-
active migration.

A case when replication can lead to better application
efficiencies is when the node to which a process is migrated
in proactive process migration strategy fails, resulting in
application failure. This can happen when the prediction on
that node is a false negative. In replication, the process can
still continue from its replica.

Theoretically, there are few other scenarios when our
adaptive replication strategy can give better efficiencies
than proactive process migration. Out of the four failure
prediction scenarios of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN), our adaptive
replication strategy has the potential to perform better than
proactive migration in three scenarios, namely, TP, FP and
FN, while both the strategies give equivalent performance
in the remaining scenario of TN. The essential condition for
adaptive replication to win in any of the three scenarios is
that that the given node should already have a replica in the
system, thereby avoiding a process image replacement or
an application failure, which cannot be avoided in case of
proactive migration.

One possible way to increase the probability that for the
three potential winning scenarios for adaptive replication,
the failure prone node has an already existing replica is to
increase the replication degree or the percentage of nodes
replicated. One motivation to increase the replication deg-
ree in our adaptive replication framework that uses failure
predictions, is in cases when the recall values of the failure
predictors are low. For low recall values, the number of fail-
ures predicted will be very less. In such a scenario where
we have limited confidence on the ability of the predictor to
predict impending node failures, having a high replication
degree will be beneficial because of the high number of rep-
licated nodes.

Fig. 8 shows the effect of varying the percentage of
nodes replicated on application efficiency for both the
strategies. For proactive migration, the x-axis values rep-
resent the percentages of nodes allocated as spare nodes.
It can be observed that as the percentage of nodes repli-
cated increases, though the overall application efficiency
decreases for both the strategies due to the decrease in
the number of compute nodes, replication outperforms
proactive migration by greater margins as the replication
degree increases. For example, adaptive replication gives
13.5 percent higher efficiency than proactive migration
for 20 percent replication, and about 21 percent higher
efficiency for 30 percent replication.

Our adaptive replication can be considered as combining
the benefits of replication and proactive process migration
strategies, since it uses process replacement (a light-weight
process migration) for adaptive replica change. Thus, adap-
tive replication is expected to perform better than proactive
migration for higher replication degrees and provide simi-
lar application efficiencies as proactive migration for lower
replication degrees.

6.6 Comparison with Advanced Checkpointing
Methods

In our previous results, we primarily compared adaptive
replication with periodic checkpointing. Certain advanced
checkpointing systems including multi-level checkpoint-
ing [14], [34], partial message-logging and in-memory
checkpointing provide very less checkpointing overheads.
One popular technique is multi-level checkpointing that
uses a hierarchy of checkpointing methods including fast
in-memory checkpointing at the lowest level and high-
latency storage to parallel file system at the highest level.

Fig. 7. Effect of varying replication overhead. Fig. 8. Proactive migration versus adaptive replication (varying degree of
replication).

2222 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

One such multi-level checkpointing scheme, FTI [34], pro-
vides less than 10 percent checkpointing overhead. Also,
with anticipated hardware developments including phase
change memories (PCM) and improvement in checkpoint-
ing techniques, checkpointing systems target overheads
of only a few seconds for future large scale applications
and systems.

In order to evaluate the performance of adaptive process
replication with fast checkpointing, we obtained results
with different checkpointing overheads, ranging from five
seconds to twenty minutes, for our exascale configuration
with 200;000 nodes using Weibull failure distribution. Fig. 9
shows the application performance for different checkpoint-
ing overheads. We find that even for small checkpointing
overheads of a few seconds, our adaptive replication meth-
ods gives better results than the periodic checkpointing
scheme. We observe that as the checkpointing time reaches
10 minutes, the application efficiency rapidly falls to 0 per-
cent when using only periodic checkpointing. At this stage,
the application is not able to make progress due to frequent
failures and rollbacks. We also find that for checkpointing
overheads of greater than 10minutes, dual redundancy per-
forms better than adaptive replication. These results empha-
size the need to minimize checkpointing overheads to a few
seconds or minutes for large scale systems, as also observed
by Bouguerra et al. [33].

In a recent work, Bouguerra et al. [33] have developed fast
proactive checkpointing techniques that uses failure predic-
tions in addition to periodic preventive checkpointing in
their multi-level checkpointing scheme. Using analytical
models, they dynamically determine whether to take proac-
tive checkpoint on a failure prediction, and also calculate the
optimum intervals between preventive checkpointing. Their
results showed improvement in computing efficiency of up
to 30 percent when compared to periodic checkpointing.

We compared our adaptive replication with their proac-
tive checkpointing approach by using the same simulation
settings used in their work, namely, exascale configuration
of 100;000 nodes, exponential distribution of failures, system
MTBFs of 30 minutes (exascale pessimistic) and 2 hours
(exascale optimistic), checkpointing overheads of 10minutes
(exascale pessimistic) and 2:5 minutes (exascale optimistic),
down time of 1 minute, restart cost equal to the checkpoint-
ing overhead, and predictions with recall of 50 percent and
precision of 80 percent. Fig. 10 shows the results. The results

for the proactive checkpointing shown in the figure are repli-
cated from the corresponding results in their work. We find
that our adaptive process replication gives slightly better
application efficiency (about 5 percent) than proactive check-
pointing for exascale optimistic configuration. While both
the strategies give equivalent performance for exascale pessi-
mistic configuration, we find that the proactive checkpoint-
ing gives smaller periodic checkpointing overhead due to
careful computation of optimal checkpointing intervals and
our adaptive partial replication gives smaller restart and
downtime due to smaller number of application failures. An
interesting future work will be to develop a hybrid strategy
that combines both these strengths.

6.7 Impact of Errors in Failure Prediction

Although our framework assumes the presence of a failure
predictor, it is agnostic of the specific failure prediction
model used by the predictor. Failure predictors in real world
are not 100 percent accurate. Taking this into account, we
consider a failure predictor as a black box which monitors
the system and generates predictions with some observed
accuracy metrics. One of the components of our failure sim-
ulator is the prediction component which uses the failure
trace and the expected prediction accuracy metrics to simu-
late the behavior of a failure predictor. Failure trace of a sys-
tem gives the time line of node failures in the system.
Accuracy metrics of the failure predictor include precision,
which is defined as the ratio of the number of correct predic-
tions to the total number of predictions made (True Positives
/ (True Positives + False Positives)) and recall, which is
defined as the ratio of the number of correct predictions to
the total number of failures (True Positives / (True Positives
+ False Negatives)). Given the failure trace and the accuracy
metrics, the prediction component generates failure predic-
tions at regular intervals of time with the required ratios of
true positives, false positives, true negatives and false nega-
tives so as to maintain the specified accuracy metrics. Our
method of simulating the behavior of a failure predictor
using accuracy metrics allow us to evaluate the performance
of our framework with varying prediction errors without
assuming any particular prediction model.

The surface plot in Fig. 11 shows the impact of varying
accuracy metrics (precision and recall) of the failure pre-
dictor on the performance of adaptive replication for the
exascale configuration with 200;000 nodes using Weibull

Fig. 9. Effect of varying checkpointing overhead.
Fig. 10. Comparison with proactive checkpointing.

GEORGE AND VADHIYAR: FAULT TOLERANCE ON LARGE SCALE SYSTEMS USING ADAPTIVE PROCESS REPLICATION 2223

failure distribution. The figure shows that efficiency is
more than 60 percent for all precision and recall values
above 0:5. Failure predictors today have observed preci-
sion and recall values in the range of 0:5 to 0:8. Hence,
adaptive replication gives high efficiency for all realistic
values of precision and recall.

We also observe that the efficiency achieved by adaptive
replication depends a lot on the recall of the predictor and
does not depend much on its precision. The efficiency
achieved is more than 75 percent for a recall of 0:9 even
when the precision is only 0:1. But, if the recall is low, then
the efficiency is poor even for a very high precision, as
shown by the 32 percent efficiency observed with a precision
of 0:9 and a recall of 0:1. Note that for a failure predictor, a
high precision means that the number of correct predictions
out of the total number of predictions is high, while a high
recall means that the number of predicted failures out of the
total number of failures is high. Hence application efficiency
for adaptive replication is higher for larger number of cor-
rect failure predictions (true positives, i.e., predictions of
failures that actually happen) and is independent of the
number of wrong failure predictions (false positives, i.e.,
predictions of failures that do not happen). For example,
suppose 10 nodes are actually going to fail in the next inter-
val. Then irrespective of whether the predictor gives 20 or
200 predictions for the next interval, if the 10 correct predic-
tions are included in the set of predictions, adaptive replica-
tion gives high efficiency. The above observation provides
an interesting insight for future works on failure predictors.
Most failure prediction methods today focus on achieving a
high value for both precision and recall. Our analysis shows
that a strategy like adaptive replication can perform well if
the recall is high, even if the precision is very less. This corre-
lates with the findings by Bouguerra et al. [33].

These results on the impact of prediction accuracy corre-
late with the findings by Tikotekar et al. [25] in which they
also find that the prediction accuracy above 60 percent is
necessary to maintain the overheads to below 20 percent,
and thus to obtain about 80 percent application efficiency.
While they evaluate this impact with only precision of the
failure prediction, we also analyze the impacts due to recall
of the prediction.

7 CONCLUSIONS AND FUTURE WORK

Wehave developed a framework that uses partial replication
along with adaptive changing of the set of replicated

processes based on failure predictions, to provide effective
fault tolerance for both medium and large scale systems.
We have also developed an MPI prototype implementation
PAREP-MPI, that supports partial replication and adaptive
replica change for MPI applications with minimal runtime
overhead. Simulations using failure traces of both exponen-
tial and Weibull distributions have shown that our adaptive
replication strategy significantly outperforms periodic
checkpointing and dual redundancy, providing up to 20 per-
cent more efficiency even for a projected exascale system
with 200;000 nodes. In future, we plan to consider applica-
tion malleability to adaptively change the number of
nodes in a replica set alongwith adaptive replica change and
to develop better fault tolerance frameworks based on both
the features.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their very
useful and detailed comments that helped them signifi-
cantly improve the quality of the paper.

REFERENCES

[1] Top 500 Supercomputing Sites. [Online]. Available: http://www.
top500.org/, 2012.

[2] B. Schroeder and G. Gibson,“Understanding Failures in Petascale
Computers,” J. Phys.: Conf. Series, vol. 28, no. 1, pp. 012–022, 2007.

[3] F. Cappello,“Fault tolerance in petascale/exascale systems:
Current knowledge, challenges and research opportunities,”
Int. J. High Perform. Comput. Appl., vol. 23, no. 3, pp. 212–226,
2009.

[4] P. Kogge, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, J. Hiller, S. Keckler, D. Klein, and
R. Lucas, “Exascale computing study: Technology challenges in
achieving exascale systems,” 2008, (P. Kogge, Editor and Study
Lead) DARPA Tech Rep. TR-2008-13.

[5] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent
checkpointing for cluster computations and the desktop,” in Proc.
IEEE Int. Parallel Distributed Process. Symp., 2009, pp. 1–12.

[6] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra,
A. Guermouche, T. H�erault, Y. Robert, F. Vivien, and D. Zaidouni,
“Unified model for assessing checkpointing protocols at extreme-
scale,” INRIA, Tech. Rep. RR-7950, 2012.

[7] C. George and S. Vadhiyar, “An adaptive framework for fault
tolerance on large scale systems using application malleability,”
in Proc. Int. Conf. Comput. Sci., 2012, pp. 166–175.

[8] F. Cappello, H. Casanova, and Y. Robert, “Checkpointing vs.
migration for post-petascale supercomputers,” in Proc. 39th Int.
Conf. Parallel Process., 2010, pp. 168–177.

[9] Z. Lan and Y. Li, “Adaptive fault management of parallel applica-
tions for high-performance computing,” IEEE Trans. Comput.,
vol. 57, no. 12, pp. 1647–1660, Dec. 2008.

[10] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating
the viability of process replication reliability for exascale sys-
tems,” in SC ’11: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis.
New York, NY, USA: ACM, 2011.

[11] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and
C. Engelmann, “Combining partial redundancy and checkpoint-
ing for HPC,” in Proc. 32nd Int. Conf. Distributed Comput. Syst.,
2012, pp. 615–626.

[12] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
process-level live migration in HPC environments,” in SC ’08:
Proc. 2008 ACM/IEEE Conf. Supercomputing, 2008, pp. 1–12.

[13] P. Hargrove and J. Duell, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters,” in Proc. SCIDAC, 2006, p. 494.

[14] A. Moody, G. Bronevetsky, K. Mohror, and B. de Supinski,
“Design, modeling, and evaluation of a scalable multi-level check-
pointing system,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2010, pp. 1–11.

Fig. 11. Impact of errors in failure prediction on adaptive replication.

2224 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

[15] K. Mohror, A. Moody, and B. De Supinski, “Asynchronous check-
point migration with mrnet in the scalable checkpoint/restart
library,” in Proc. IEEE/IFIP 42nd Int. Conf. Depend. Syst. Netw.
Workshops, 2012, pp. 1–6.

[16] P. Roth, D. Arnold, and B. Miller, “MRNet: A software-based mul-
ticast/reduction network for scalable tools,” in Proc. ACM/IEEE
Conf. Supercomputing, 2003, pp. 21–21.

[17] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, “A meta-learning
failure predictor for blue gene/l systems,” in Proc. Int. Conf. Paral-
lel Process., 2007, p. 40.

[18] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure pre-
diction methods,” ACM Comput. Surv., vol. 42, no. 3, pp. 10:1–
10:42, 2010.

[19] G. Hoffmann, K. Trivedi, and M. Malek, “A best practice guide to
resource forecasting for computing systems,” IEEE Trans. Reliabil-
ity, vol. 56, no. 4, pp. 615–628, Dec. 2007.

[20] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault predic-
tion under the microscope: A closer look into HPC systems,” in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2012,
pp. 77:1–77:11.

[21] T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok, “VolpexMPI: An
MPI library for execution of parallel applications on volatile
nodes,” in Proc. EuroPVM/MPI, 2009, pp. 124–133.

[22] C. Engelmann and S. B€ohm, “Redundant execution of HPC appli-
cations with MR-MPI,” in Proc. 10th IASTED Int. Conf. Parallel Dis-
tributed Comput. Netw., 2011, pp. 15–17.

[23] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R.
Brightwell, “Detection and correction of silent data corruption for
large-scale high-performance computing,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., 2012, pp. 1–12.

[24] J. Stearley, K. Ferreira, D. Robinson, J. Laros, K. Pedretti,
D. Arnold, P. Bridges, and R. Riesen, “Does partial replication pay
off?” in Proc. IEEE/IFIP 42nd Int. Conf. Depend. Syst. Netw. Work-
shops, 2012, pp. 1–6.

[25] A. Tikotekar, G. Vallee, T. Naughton, S. Scott, and C. Leangsuk-
sun, “Evaluation of fault-tolerant policies using simulation,”
in Proc. IEEE Int. Conf. Cluster Comput., 2007, pp. 303–311.

[26] J. T. Daly, “A higher order estimate of the optimum checkpoint
interval for restart dumps,” Future Generation Comput. Syst., vol.
22, no. 3, pp. 303–312, 2006.

[27] Checkpoint and migration of unix processes in the condor distrib-
uted processing system. [Online]. Available: http://research.cs.
wisc.edu/condor/doc/ckpt97.pdf/, 2012.

[28] B. Schroeder, and G. Gibson, “A large-scale study of failures in
high-performance computing systems,” in Proc. Int. Conf. Depend-
able Syst. Netw., 2006, pp. 337–350.

[29] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien,
“Checkpointing strategies for parallel jobs,” in SC ’11: Proc. Int.
Conf. High Perform. Comput., Netw., Storage Anal., 2011, pp. 1–11.

[30] NAS parallel benchmarks. [Online]. Available: http://nas.nasa.
gov/publications/npb.html/, 2012.

[31] Sandia national laboratory - mantevo project. [Online]. Available:
https://software.sandia.gov/mantevo/, 2012.

[32] Sandia national laboratory - lammps molecular dynamics simula-
tor. [Online]. Available: https://lammps.sandia.gov/, 2012.

[33] M.-S. Bouguerra, A. Gainaru, L. Bautista-Gomez, F. Cappello,
S. Matsuoka, and N. Maruyama, “Improving the computing effi-
ciency of HPC systems using a combination of proactive and pre-
ventive checkpointing,” in Proc. IEEE 27th Int. Symp. Parallel
Distributed Process., 2013, pp. 501–512.

[34] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Mar-
uyama, and S. Matsuoka, “FTI: High performance fault tolerance
interface for hybrid systems,” in Proc. 2011 Int. Conf. High Perform.
Comput., Netw., Storage Anal., 2011, pp. 32:1–32:32.

Cijo George received the Bachelor’s degree in
computer science and engineering from Cochin
University of Science and Technology, Cochin,
India, in 2009, and the Master’s degree from the
Supercomputer Education and Research Centre
of Indian Institute of Science, Bangalore, India,
in 2013. He is currently with NetApp Advanced
Technology Group, Bangalore, the research
group of NetApp in India. He worked on adaptive
fault tolerance strategies for large-scale systems
as part of his thesis work at Indian Institute of

Science. He was with Nokia Siemens Networks, Bangalore, as a
Software Engineer before joining Indian Institute of Science. His current
work at NetApp is in the domain of Data Science, involving application of
statistical analysis and machine learning techniques for data-driven
management of distributed systems.

Sathish Vadhiyar received the BE degree from
the Department of Computer Science and Engi-
neering at Thiagarajar College of Engineering,
Madurai, India, in 1997, the Master’s degree in
computer science at Clemson University, Clem-
son, SC, in 1999, and the PhD degree from
the Department of Computer Science at the
University of Tennessee, Knoxville, TN, in 2003.
He is currently an Associate Professor in Super-
computer Education and Research Centre,
Indian Institute of Science, Bangalore, India. His

research areas are building application frameworks including runtime
frameworks for irregular applications, hybrid execution strategies, and
programming models for accelerator-based systems, processor alloca-
tion, mapping and remapping strategies for Torus networks for different
application classes including irregular, multi-physics, climate and
weather applications, middleware for production supercomputer sys-
tems and fault tolerance for large-scale systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GEORGE AND VADHIYAR: FAULT TOLERANCE ON LARGE SCALE SYSTEMS USING ADAPTIVE PROCESS REPLICATION 2225

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

