
Self-adapting
numerical
software (SANS)
effort

J. Dongarra
G. Bosilca

Z. Chen
V. Eijkhout
G. E. Fagg
E. Fuentes
J. Langou

P. Luszczek
J. Pjesivac-Grbovic

K. Seymour
H. You

S. S. Vadhiyar

The challenge for the development of next-generation software
is the successful management of the complex computational
environment while delivering to the scientist the full power of
flexible compositions of the available algorithmic alternatives. Self-
adapting numerical software (SANS) systems are intended to meet
this significant challenge. The process of arriving at an efficient
numerical solution of problems in computational science involves
numerous decisions by a numerical expert. Attempts to automate
such decisions distinguish three levels: algorithmic decision,
management of the parallel environment, and processor-specific
tuning of kernels. Additionally, at any of these levels we can decide
to rearrange the user’s data. In this paper we look at a number of
efforts at the University of Tennessee to investigate these areas.

Introduction
The increasing availability of advanced-architecture

computers is having a very significant effect on all spheres

of scientific computation, including algorithm research

and software development. In numerous areas of

computational science—such as aerodynamics (vehicle

design), electrodynamics (semiconductor device design),

magnetohydrodynamics (fusion energy device design),

and porous media (petroleum recovery)—production

runs on expensive, high-end systems can last for hours or

days. A major portion of this execution time is usually

spent inside numerical routines, such as for the solution

of large-scale nonlinear and linear systems that derive

from discretized systems of nonlinear partial differential

equations. Driven by the desire of scientists for ever

higher levels of detail and accuracy in their simulations,

the size and complexity of required computations is

growing at least as fast as improvements in processor

technology. Unfortunately, it is getting more difficult to

achieve the necessary high performance from available

platforms because of the specialized knowledge in

numerical analysis, mathematical software, compilers,

and computer architecture that is required, and because

rapid innovation in hardware and systems software

quickly makes performance-tuning efforts obsolete.

Additionally, an optimal scientific environment would

have to adapt itself dynamically to changes in the

computational platform (e.g., network conditions) and

the developing characteristics of the problem to be solved

(e.g., during a time-evolution simulation).

With good reason, scientists expect their computing

tools to serve them, not the other way around. It is not

uncommon for applications that involve a large amount

of communication or a large number of irregular memory

accesses to run at 10% of peak performance or less. Were

this gap to remain fixed, we could simply wait for

Moore’s law to solve our problems; however, it is

growing. Our goal in the self-adapting numerical software

(SANS) project is to address this widening gap. There are

four challenges to closing it:

� Challenge 1: The complexity of modern machines and

compilers is so great that very few people know

enough, or should be expected to know enough, to

predict the performance of an algorithm expressed in

a high-level language; there are too many layers of

translation from the source code to the hardware.

Seemingly small changes in the source code can

change performance greatly. In particular, where a

particular piece of data resides in a deep memory

hierarchy is both hard to predict and critical to

performance.
� Challenge 2: The speed of innovation in hardware and

compilers is so great that even if one knew enough
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to tune an algorithm for high performance on a

particular machine and with a particular compiler,

that work would soon be obsolete. Also, platform-

specific tuning impedes the portability of the code.
� Challenge 3: The number of algorithms, or even

algorithmic kernels in standard libraries [1], is large

and growing too rapidly for the few experts to keep

up with tuning—or to even know them all.
� Challenge 4: The need for tuning cannot be restricted

to problems that can be solved by libraries in which

all optimization is done at design time, installation

time, or even compile time. In particular, sparse

matrix computations require information about

matrix structure for tuning, while interprocessor

communication routines require information about

machine size and the configuration used for a

particular program run. It may be critical to use

tuning information captured in prior runs to tune

future runs.

In this paper we discuss our efforts to meet these

challenges with the following approaches:

� Generic code optimization: a system for automatically

generating optimized kernels.
� LAPACK for clusters: software that manages

parallelism of dense linear algebra transparently to

the user.
� SALSA (self-adaptive large-scale solver architecture):

a system for picking optimal algorithms based on

statistical analysis of the user problem.
� Fault-tolerant linear algebra: a linear algebra

approach to fault tolerance and error recovery.
� Optimized communication library: optimal

implementations of Message Passing Interface (MPI)

collective primitives that adapt to the network

properties and topology, and the characteristics (such

as message size) of the user data.

Structure of a SANS system
A SANS system has the following large-scale building

blocks: application, analysis modules, intelligent switch

lower-level libraries, numerical components, database,

and modeler. We briefly discuss each and the interfaces

needed. Note that not all of the adaptive systems in this

paper contain all of the above components.

Application

The problem to be solved by a SANS system typically

derives from an application in a field such as physics or

chemistry. This application would normally call a library

routine, picked and parameterized by an application

expert. Absent such an expert, the application calls the

SANS routine that solves the problem.

For maximum ease of use, then, the application

programming interface (API) of the SANS routine should

be largely similar to the library call it replaces. However,

this ignores the issue that we may want the application to

pass its metadata to the SANS system. Other application

questions to be addressed relate to the fact that we may

call the SANS system repeatedly on data that varies only

a little between instances. In such cases, we want to limit

the effort expended by the analysis modules.

Analysis modules

Certain kinds of SANS systems—for instance, the

ones that govern optimized kernels or communication

operations—require little dynamic runtime analysis of

the user data. On the other hand, a SANS system for

numerical algorithms operates largely at runtime. For this

dynamic analysis, we introduce analysis modules into the

general structure of a SANS system.

Analysis modules have a two-level structure of

categories and elements inside the categories. Categories

are mostly intended to be conceptual, but they can also be

dictated by practical considerations. An analysis element

can be computed either exactly or approximately.

Intelligent switch

The intelligent switch determines which algorithm or

library code to apply to the problem. On different levels,

different amounts of intelligence are needed. For instance,

dense kernels, such as in the automatically tuned linear

algebra software (ATLAS) [2], make essentially no

runtime decisions; software for optimized communication

primitives typically chooses among a small number of

schemes based on only a few characteristics of the data.

Systems such as SALSA have a complicated decision-

making process based on dozens of features, some of

which can be relatively expensive to compute.

Numerical components

To make numerical library routines more manageable, we

embed them in a component framework. This introduces

a level of abstraction, as there need not be a one-to-one

relation between library routines and components. In

fact, we define two kinds of components: library

components are uniquely based on library routines, but

they carry a specification in the numerical adaptivity

language that describes their applicability; and numerical

components, which are based on one or more library

routines and have an extended interface that

accommodates passing numerical metadata. This

distinction allows us to create both generic

(preconditioner) components and those that correspond
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to the specific algorithm level (incomplete LU with drop

tolerance).

Database

The database of a SANS system contains information

that couples problem features to method performance.

While problem features can be standardized (this is

numerical metadata), method performance is very much

dependent on the problem area and the actual algorithm.

As an indication of some of the problems in defining

method performance, consider linear system solvers. The

performance of a direct solver can be characterized by the

amount of memory and the time it takes, and one can aim

to optimize for either or both of them. The amount of

memory here is strongly variable among methods and

should perhaps be normalized by the memory needed to

store the problem. For iterative solvers, the amount of

memory is usually limited to a small multiple of the

problem memory and is therefore of less concern.

However, in addition to the time to solution, one could

add a measure such as ‘‘time to a certain accuracy,’’ which

is interesting if the linear solver is used in a nonlinear

solver context.

Modeler

The intelligence in a SANS system resides in two

components: the intelligent switch, which makes the

decisions, and the modeler, which draws up the rules that

the switch applies. The modeler draws on the database of

problem characteristics (as laid down in the metadata) to

make rules.

Empirical code optimization
As processor speeds double every 18 months following

Moore’s law [3], memory speed lags behind. Because of

this increasing gap between the speeds of processors and

memory, new techniques, such as longer pipelines, deeper

memory hierarchy, and hyperthreading, have been

introduced into hardware design to achieve high

performance on modern systems. Meanwhile, compiler

optimization techniques have been developed to

transform programs written in high-level languages to

run efficiently on modern architectures [4, 5]. These

program transformations include loop blocking [6, 7],

loop unrolling [4], loop permutation, fusion, and

distribution [8, 9]. To select optimal parameters such

as block size, unrolling factor, and loop order, most

compilers would compute these values with analytical

models, a process referred to as model-driven optimization.

In contrast, empirical optimization techniques generate a

large number of code variants with different parameter

values for an algorithm—for example, matrix

multiplication. All of these candidates are then run on

the target machine, and the one that gives the best

performance is chosen. With this empirical optimization

approach, ATLAS [2, 10], PHiPAC [11], and Fastest

Fourier Transform in the West (FFTW) [12] successfully

generate highly optimized libraries for dense, sparse

linear algebra kernels and fast Fourier transform (FFT).

It has been shown that empirical optimization is more

effective than model-driven optimization [13].

One requirement of empirical optimization

methodologies is an appropriate search heuristic to

automate the search for the most optimal available

implementation [2, 10]. Theoretically, the search space is

infinite, but in practice it can be limited on the basis of

specific information about the hardware for which the

software is being tuned. For example, ATLAS bounds NB

(blocking size) such that 16 � NB � min (=L1, 80),

where L1 represents the L1 cache size, detected by a

microbenchmark. Usually the bounded search space

is still very large, and it grows exponentially as the

dimension of the search space increases. To find optimal

cases quickly, certain search heuristics must be employed.

The goal of our research is to provide a general search

method that can apply to any empirical optimization

system. The Nelder–Mead simplex method [14] is a well-

known and successful nonderivative direct search method

for optimization. We have applied this method to

ATLAS, replacing the global search of ATLAS with the

simplex method. This section shows experimental results

on four different architectures to compare this search

technique with the original ATLAS search, both in terms

of the performance of the resulting library and the time

required to perform the search.

Modified simplex search algorithm

Empirical optimization requires a search heuristic for

selecting the most highly optimized code from the large

number of code variants generated during the search.

Because there are a number of different tuning

parameters, such as blocking size, unrolling factor, and

computational latency, the resulting search space is

multidimensional. The direct search method, namely the

Nelder–Mead simplex method [14], fits the role perfectly.

The Nelder–Mead simplex method is a direct search

method for minimizing a real-valued function f(x) for

x 2 Rn. It assumes that the function f(x) is continuously

differentiable. We modify the search method according to

the nature of the empirical optimization technique:

� In a multidimensional discrete space, the value of each

vertex coordinate is cast from double precision to

integer.
� The search space is bounded by setting f(x)¼‘, where

x , l, x . u, and l, u, and x 2 Rn. The determination

of the lower and upper bounds is based on hardware

information.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 J. DONGARRA ET AL.

225



� The simplex is initialized along the diagonal of the

search space. The size of the simplex is chosen

randomly.
� According to the user-defined restriction conditions,

if a point violates the condition, we can simply set

f(x) ¼ ‘, which saves search time by skipping code

generation and execution of this code variant.
� A searchable record of previous execution timing is

created at each eligible point. Because execution times

would not be identical at the same search point on a

real machine, it is very important to be able to retrieve

the same function value at the same point. It also

saves search time by not having to rerun the code

variant for this point.
� Because the search can find only the local optimal

performance, multiple runs are conducted. In the

search space of Rn, we start nþ 1 searches. The initial

simplexes are uniformly distributed along the

diagonal of the search space. With the initial simplex

of the nþ 1 result vertices of previous searches, we

conduct the final search with the simplex method.
� After every search with the simplex method, we apply

a local search by comparing performance with

neighbor vertices; if a better one is found, the local

search continues recursively.

Experiments with ATLAS

In this section, we briefly describe the structure of

ATLAS and then compare the effectiveness of its search

technique with that of the simplex search method.

Structure of ATLAS

By running a set of benchmarks, ATLAS detects

hardware information such as L1 cache size, latency

for computation scheduling, number of registers,

and existence of fused floating-point multiply–add

instruction. The search heuristics of ATLAS bound

the global search of optimal parameters with detected

hardware information. For example, NB is one of the

ATLAS optimization parameters. ATLAS sets the NB

upper bound to be the minimum of 80 and the square

root of L1 cache size, and the lower bound as 16, and NB

is a composite of 4. The optimization parameters are

generated and fed into the ATLAS code generator, which

generates matrix multiply source code. The code is then

compiled and executed on the target machine.

Performance data is returned to the search manager

and compared with previous executions.

ATLAS uses an orthogonal search [13]. For an

optimization problem min f (x1, x2, � � �, xn), parameters xi
(where 1 � i � n) are initialized with reference values.

From xl to xn, orthogonal search does a linear one-

dimensional search for the optimal value of xi, and it uses

previously found optimal values for x1, x2, � � �, xn�1.

Applying simplex search to ATLAS

We have replaced the ATLAS global search with the

modified Nelder–Mead simplex search and conducted

experiments on four different architectures: 2.4-GHz Intel

Pentium** 4, 900-MHz Intel Itanium** 2, 1.3-GHz IBM

POWER4*, and 900-MHz Sun Ultra**SPARC**.

Given values for a set of parameters, the ATLAS code

generator generates a code variant of matrix multiply.

The code is executed with randomly generated

1000 3 1000 dense matrices as input. After execution

of the search heuristic, the output is a set of parameters

that gives the best performance for that platform.

Figure 1 compares the total time spent by each of the

search methods on the search itself. The Itanium 2 search

time (for all search techniques) is much longer than

those for the other platforms because we are using the

Intel compiler, which, in our experience, takes longer to

compile the same piece of code than the GNU compiler

collection (GCC) used on the other platforms. Figure 2

shows the comparison of the performance of matrix

multiply on different sizes of matrices using the ATLAS

libraries generated by the simplex search and the original

ATLAS search.

Empirical generic code optimization

Current empirical optimization techniques such as

ATLAS and FFTW can achieve good performance

because the algorithms to be optimized are known ahead

of time. We are addressing this limitation by extending

the techniques used in ATLAS to the optimization of

arbitrary code. Since the algorithm to be optimized is not

known in advance, it requires compiler technology to

analyze the source code and generate the candidate

Figure 1

Results of search time comparison of ATLAS and Simplex meth- 
odologies.
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implementations. The ROSE project [15, 16] from the

Lawrence Livermore National Laboratory provides,

among other benefits, a source-to-source code-

transformation tool that can produce blocked and

unrolled versions of the input code. In combination with

our search heuristic and hardware information, we can

use ROSE to perform empirical code optimization. For

example, on the basis of an automatic characterization

of the hardware, we direct their compiler to perform

automatic loop blocking at varying sizes, which we can

then evaluate to find the best block size for that loop. To

perform the evaluations, we have developed a test

infrastructure that automatically generates a timing

driver for the optimized routine on the basis of a simple

description of the arguments.

The generic code optimization system is structured as a

feedback loop. The code is fed into the loop processor for

optimization and separately fed into the timing driver

generator, which generates the code that actually runs the

optimized code variant to determine its execution time.

The results of the timing are fed back into the search

engine. On the basis of these results, the search engine

may adjust the parameters used to generate the next code

variant. The initial set of parameters can be estimated on

the basis of the characteristics of the hardware (e.g., cache

size).

LAPACK for clusters
The LAPACK for clusters (LFC) software has a serial,

single-process user interface, but delivers the computing

power achievable by an expert user working on the same

problem who optimally utilizes the parallel resources of a

cluster. The basic premise is to design numerical library

software that addresses both computational time and

space complexity issues on the user’s behalf and in a

manner transparent to the user. The details for

parallelizing the user’s problem—such as resource

discovery, selection, and allocation, mapping the data

onto (and off) the working cluster of processors,

executing the user’s application in parallel, freeing the

allocated resources, and returning control to the user’s

process in the serial environment from which the

procedure began—are all handled by the software.

Achieving optimized software in the context described

here is an NP-hard problem (i.e., a nondeterministic

polynomial-time hard problem) [17–23]. Nonetheless,

self-adapting software attempts to tune and

approximately optimize computational procedures given

the pertinent information on the available execution

environment.

Overview

Empirical studies [24] of computing solutions to linear

systems of equations demonstrated the viability of the

LFC method by finding that (on the clusters tested) there

is a problem size that serves as a threshold. For problems

greater in size than this threshold, the time saved by the

self-adaptive method scales with the parallel application,

justifying the approach.

LFC addresses users’ problems that may be stated

in terms of numerical linear algebra. The problems

may otherwise be dealt with by the LAPACK [25],

ScaLAPACK [26], or both routines supported in LFC. In

particular, suppose that the user has a system of m linear

equations with n unknowns, Ax ¼ b. Three common

factorizations (LU, Cholesky-LLT, and QR) apply for

such a system, depending on the properties and

dimensions of A. All three decompositions are currently

supported by LFC.

LFC assumes that only a C compiler, an MPI [27–29]

implementation such as MPICH [30] or LAM MPI [31],

and some variant of the basic linear algebra subprograms

(BLAS), be it ATLAS or a vendor-supplied

implementation, are installed on the target system. Target

systems are intended to be ‘‘Beowulf-like’’ [32].

Algorithm selection processes

The ScaLAPACK Users’ Guide [26] provides the

following equation for predicting the total time T spent in

Figure 2

Double-precision general matrix multiply (DGEMM) performance.
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one of its linear solvers (LLT, LU, or QR) on a matrix of

size n in NP processes [33]:

Tðn;N
P
Þ ¼

C
f
n

3

N
P

t
f
þ

C
v
n

2ffiffiffiffiffiffi
N

P

p t
v
þ
C

m
n

N
B

t
m
; ð1Þ

where NP is the number of processes, NB is the blocking

factor for both computation and communication, tf is the

time per floating-point operation (matrix–matrix

multiplication flops rate is a good starting

approximation), tm is the latency, 1/tv is the bandwidth,

Cf is the number of floating-point operations, and Cv and

Cm are the communication costs; the constants, Cf, Cv,

and Cm should be taken from Table 1.

The hard part in using Equation (1) is obtaining the

system-related parameters tf, tm, and tv independently of

one another and without performing a costly parameter

sweep. At the moment, since we are not aware of any

reliable way of acquiring those parameters, we rely on a

parameter-fitting approach that uses timing information

from previous runs. Furthermore, with respect to runtime

software parameters, the equation includes only the

process count NP and blocking factor NB. However, the

key to good performance is the correct aspect ratio of the

logical process grid: the number of process rows divided

by the number of process columns. In heterogeneous

environments (which are not taken into account by the

equation at all), choosing the right subset of processors is

crucial as well. Also, the decision-making process is

influenced by the following factors that are directly

related to the system policies that define the goal of

the optimal selection: resource utilization (throughput),

time to solution (response time), and per-processor

performance (parallel efficiency).

Trivially, the owner (or manager) of the system is

interested in optimal resource utilization, while the user

expects the shortest time to obtain the solution. Instead

of aiming at the optimization of either the former (by

maximizing memory utilization and sacrificing the total

solution time by minimizing the number of processes

involved) or the latter (by using all of the available

processors), a benchmarking engineer would be interested

in best floating-point performance.

Experimental results

Figure 3 illustrates how the time to solution is influenced

by the aspect ratio of the logical process grid for a range

of process counts. (Each processor was a 1.4-GHz AMD

Athlon** with 2 GB of memory; the interconnect was

Myricom Myrinet** 2000.) It is clear that sometimes

it might be beneficial not to use all of the available

processors for computation (the idle processors might be

used, for example, for fault-tolerance reasons). This is

especially true if the number of processors is a prime

number, which leads to a one-dimensional process grid

and thus very poor performance on many systems. It is

unrealistic to expect that nonexpert users will make the

correct decision in every case. It is a matter of having

either expertise or relevant experimental data to guide

the choice, and our experiences suggest that perhaps a

combination of both is required to make good decisions

consistently. As a side note, the collection of data for

Figure 3 required a number of floating-point operations

that would compute the LU factorization of a square

dense matrix of order almost 300k. Matrices of that size

are usually suitable for supercomputers (the slowest

supercomputer on the TOP500** [34] list that factored

such a matrix was on position 16 in November 2002).

Figure 4 shows the large extent to which the aspect

ratio of the logical process grid influences another facet of

numerical computation: per-processor performance of the

LFC parallel solver. The plots in the figure show data for

various numbers of processors (between 40 and 64) and

consequently do not represent a function, because, for

example, ratio 1 may be obtained with 7 3 7 and 8 3 8

process grids (within the specified range of the number

of processors). The figure shows the performance of

both parallel LU decomposition using the Gaussian

Table 1 Constants for use in Equation (1).

Driver Cf Cv Cm

LU 2/3 3 þ ¼ log2 NP NB(6 þ log2 NP)

LLT 1/3 2 þ ½ log2 NP 4 þ log2 NP

QR 4/3 3 þ log2 NP 2(NB log2 NP þ 1)

Figure 3

Time to solution of a linear system of order 70k with the best and 
worst aspect ratios of the logical process grid.
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elimination algorithm and parallel Cholesky factorization

code. A side note: The data is relevant for only the LFC

parallel linear solvers that are based on the solvers from

ScaLAPACK [26]; it would not be indicative of the

performance of a different solver, such as HPL [35], which

uses different communication patterns and consequently

behaves differently with respect to the process grid aspect

ratio.

SALSA

Algorithm choice, the topic of this section, is an

inherently dynamic activity in which the numerical

content of the user data is of prime importance. Speaking

abstractly, we could say that the need for dynamic

strategies arises here from the fact that any description

of the input space is of a very high dimension. As a

corollary, we cannot hope to search this input space

exhaustively, and we have to resort to some form of

modeling of the parameter space.

We provide a general discussion of the issues in

dynamic algorithm selection and tuning, present our

approach, which uses statistical data modeling, and give

some preliminary results obtained with this approach.

Our context here is the selection of iterative methods for

linear systems in the SALSA system.

Dynamic algorithm determination

In finding the appropriate numerical algorithm for a

problem, we are faced with two issues: First, there are

often several algorithms that, potentially, solve the

problem; second, algorithms often have one or more

parameters of some sort. Thus, given user data, we have

to choose an algorithm and choose a proper parameter

setting for it. Our strategy in determining numerical

algorithms by statistical techniques is globally as follows:

� We solve a large collection of test problems by every

available method, that is, every choice of algorithm,

and a suitable binning (or categorizing) of algorithm

parameters.
� Each problem is assigned to a class corresponding to

the method that gives the fastest solution.
� We draw up a list of characteristics of each problem.
� We then compute a probability density function for

each class.

As a result of this process, we find a function piðxÞ
where i ranges over all classes, that is, all methods, and

x is in the space of the vectors of features of the input

problems. Given a new problem and its feature vector x;

we then decide to solve the problem with the method i for

which piðxÞ is maximized.

We now discuss the details of this statistical analysis

and present some proof-of-concept numerical results

evincing the potential usefulness of this approach.

Statistical analysis

In this section we give a short overview of the way in

which a multivariate Bayesian decision rule can be used

in numerical decision making. We stress that statistical

techniques are merely one of the possible ways of using

non-numerical techniques for algorithm selection and

parameterization, and the technique we describe here

is, in fact, only one among many possible statistical

techniques. We describe here the use of parametric

models, a technique with obvious implicit assumptions

that very likely will not hold overall, but, as we show

in the next section, have surprising applicability.

Feature extraction

The basis of the statistical decision process is the

extraction of features from the application problem and

the characterization of algorithms in terms of these

features. In [36] we have given examples of relevant

features of application problems. In the context of linear

and nonlinear system solving, we can identify at least the

following categories of features: structural features

pertaining to the nonzero structure, simple quantities that

can be computed exactly and cheaply, spectral properties

that have to be approximated, and measures of the

variance of the matrix.

Figure 4

Per-processor performance of the LFC parallel linear LU and 
parallel Cholesky solvers on the Pentium 4 cluster as a function 
of the aspect ratio of the logical process grid. (Matrix size was 
72k and the number of central processing units (CPUs) varied 
between 40 and 64.)
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Training stage

On the basis of the feature set described above, we now

engage in an expensive and time-consuming training

phase in which a large number of problems is solved by

every available method. For linear system solving,

methods can be described as an orthogonal

combination of several choices: the iterative

method, the preconditioner, and preprocessing

steps, such as scaling or permuting the system. Several

of these choices involve numerical parameters, such

as the generalized minimal residual (GMRES) restart

length or the number of incomplete LU factorization

fill levels.

In spite of this multidimensional characterization of

iterative solvers, for the purpose of this exposition, we

consider methods as a singly indexed set. The essential

step in the training process is that each numerical

problem is assigned to a class, where the classes

correspond to the solvers, and the problem is

assigned to the class of the method that gives

the fastest solution. As a result of this, we find

for each method (class) a multivariate density

function:

p
j
ðxÞ ¼ 1

2pj
P
j1=2

e
�ð1=2Þðx�lÞ

P�1ðx�lÞ
;

where x are the features, l the means, and R the

covariance matrix.

Having computed these density functions, we can

compute the a posteriori probability of a class (‘‘given

a sample x; what is the probability that it belongs in

class j’’) as

Pðw
i
jxÞ ¼

pðxjw
j
ÞPðw

j
Þ

pðxÞ :

We then select the numerical method for which this

quantity is maximized.

Numerical test

To study the behavior and performance of the statistical

techniques described in the previous section, we

performed several tests on a number of matrices from

different Matrix Market [37] sets. To collect the data, we

generated matrix statistics by running an exhaustive test

of the different coded methods and preconditioners; for

each of the matrices, we collected statistics for each

possible existing combination of permutation, scaling,

preconditioner, and iterative method.

From this data, we selected those combinations that

converged and had the minimum solving time (those

that did not converge were discarded). Each possible

combination corresponds to a class, but because the

number of these combinations is too large, we reduced

the scope of the analysis and concentrated only on the

behavior of the possible permutation choices. Thus, we

have three classes corresponding to the partitioning types:

Induced—the default PETSc distribution induced by

the matrix ordering and the number of processors;

ParMETIS—using the ParMETIS [38, 39] package;

and Icmk—a heuristic [40] that, without permuting the

system, tries to find meaningful split points based on the

sparsity structure. Our test is to see whether the predicted

class (method) is indeed the one that yields minimum

solving time for each case.

Results

Our results were obtained using the following approach

for both training and testing the classifier: Considering

that Induced and Icmk are the same except for the Block–

Jacobi case, if a given sample is not using Block–Jacobi,

it is classified as both Induced and Icmk; if it is using

Block–Jacobi, the distinction is made, and it is classified

as Induced or Icmk. For the testing set, the verification

is performed with the same criteria. For instance, if a

sample from the class Induced is not using Block–Jacobi

and is classified as Icmk by the classifier, it is still counted

as a correct classification (the same as for the inverse case

of Icmk classified as Induced). However, if a sample from

the Induced class is classified as Induced and is using

Block–Jacobi, it is counted as a misclassification. The

results for the different sets of features tested are shown

in Table 2.

It is important to note that although we have many

possible features from which we can choose, there may

not be enough degrees of freedom (i.e., some of these

features may be correlated), so it is important to continue

experimenting with other sets of features. The

results of these tests may give some lead for further

experimentation and understanding of the application of

statistical methods on numerical data. These tests and

results are a first glance at the behavior of the statistical

methods presented, and there is a large amount of

Table 2 Results for sets of features tested.

Features: nonzeros, bandwidth left and right, splits

number, ellipse axes

Class Parametric (%) Nonparametric (%)

Induced 70 60

ParMETIS 98 73

Icmk 93 82

Features: diagonal, nonzeros, bandwidth left and

right, splits number, ellipse axes and center

Induced 70 80

ParMETIS 95 76

Icmk 90 90
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information that can be extracted and explored in other

experiments and perhaps using other methods.

Fault-tolerant linear algebra
As the number of processors in today’s high-performance

computers continues to grow, the mean time to failure of

these computers is becoming significantly shorter than

the execution time of many current high-performance

applications. Consequently, failures of a node or a

process become events to which numerical software must

adapt, preferably in an automatic way.

Fault-tolerant linear algebra (FT-LA) stands for and

aims at exploring parallel distributed numerical linear

algebra algorithms in the context of volatile resources.

The parent of FT-LA is FT-MPI [41, 42], which enables

an implementer to write fault-tolerant code while

providing maximum freedom to the user. With the use of

this library, it becomes possible to create more and more

fault-tolerant algorithms and software without the need

for specialized hardware, thus providing us with the

ability to explore new areas for implementation and

development.

In this section, we focus only on the solution of sparse

linear systems of equations using iterative methods. (For

the dense case, we refer to [43] and for eigen value

computation, [44].) We assume that a failure of one of the

processors (nodes) results in the loss of all of the data

stored in its memory (local data). After the failure, the

remaining processors are still active, another processor is

added to the communicator to replace the failed one, and

the MPI environment is intact. These assumptions are

true in the FT-MPI context. In the context of iterative

methods, once the MPI environment and the initial data

(matrix, right-hand sides) are recovered, the next issue,

which is our main concern, is to recover the data created

by the iterative method.

Diskless checkpoint-restart technique

To recover the data from any of the processors while

maintaining a low storage overhead, we are using a

checksum approach at checkpoints. Our checkpoints are

diskless, in the sense that the checkpoint is stored in the

memory of a processor and not on a disk. To achieve this,

an additional processor, referred to as the checkpoint

processor, is added to the environment; its role is to store

the checksum. The checkpoint processor can be viewed as

a disk, but with low latency and high bandwidth, because

it is located in the network of processors. For more

information, we refer the reader to [43, 45], which discuss

special interests with respect to simultaneous failures and

the scalability of diskless checkpointing (the first

reference uses PVM—a message passing library that

predates MPI, the second one, FT-MPI).

The information is encoded in the following trivial way:

If there are n processors for each of which we wish to save

the vector xk (for simplicity, we assume that the size of xk
is the same on all of the processors), the checkpoint unit

stores the checksum xnþ1 such that xnþ1 ¼
P

i¼1;���;nxi .

If processor f fails, we can restore xf via

xf ¼ xnþ1

P
i¼1;���;n;i 6¼f xi. The arithmetic used for the

operationsþ and� can be either binary or floating-point

arithmetic.

When the size of the information is large (as in our

case), a pipelined broadcasting algorithm enables the

computation of checksum to have almost perfect scaling

with respect to the number of processors (see [46] for a

theoretical bound). For example, in Table 3 we report

experimental data on two different platforms at the

University of Tennessee: the boba Linux** cluster

composed of 32 dual Intel Xeon** processors at 2.40 GHz

with Intel e1000 interconnect, and the frodo Linux cluster

composed of 65 AMD Opteron** dual processors at

1.40 GHz with Myrinet 2000 interconnect. The time is

(almost) independent of the number of processors in this

case, because the size of the messages is large enough.

These results attest to the good scalability of the

checksum algorithm.

Fault tolerance in iterative methods

In this section, we present different choices and

implementations that we have identified for fault

tolerance in iterative methods (see as well [44]).

c_F strategy: Full checkpointing

In iterative methods such as GMRES, k vectors are

needed to perform the kth iteration. Those vectors are

unchanged after their first initialization. The c_F strategy

checkpoints the vectors when they are created. Because

this is not scalable in storage terms, we apply this idea

only to restarted methods, storing all vectors from a

restart point.

c_R strategy: Checkpointing with rollback

Sometimes the kth iteration can be computed from the

knowledge of only a constant number of vectors. This is

the case in three-term methods, such as a conjugate

Table 3 Time in seconds to compute an 8-MB checksum on

two different platforms for a different number of processors.

No. of processors

4 8 16 32

boba 0.21 0.22 0.22 0.23

frodo 0.71 0.71 0.72 0.73
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gradient algorithm or in restarted GMRES, if we store

the vectors at a restart point. The c_R strategy

checkpoints the vectors of a given iteration only from

times to times. If a failure occurs, we restart the

computation from the last checkpointed version of

those vectors.

l: Lossy strategy

An alternative strategy to checkpoint in the context of

iterative methods is the lossy strategy. Assuming that no

checkpoint of the dynamic variables has been performed

and a failure occurs, the local data of the approximate

solution before failure x(old) is lost on a processor;

however, it is still known on all other processors. Thus,

one could create a new approximate solution from the

data on the other processors. In our example, this is done

by solving the local equation associated with the failed

processor. If Ai,j represents the submatrix with rows

stored on processor i and with column indexes

corresponding to the rows stored on processor j, xj is the

local part of the vector x stored on the processor j, and if

processor f fails, we propose to construct a new

approximate solution x(new) with

x
ðnewÞ
j

¼ x
ðoldÞ
j

for j 6¼ f

and

x
ðnewÞ
f

¼ A
�1

f; f
b
f
�
X
j 6¼f

A
f; f
x
ðoldÞ
j

 !
: ð2Þ

If x(old) was the exact solution of the system, Equation

(2) constructs x
ðnewÞ
f ¼ x

ðoldÞ
f ; the recovery of x is exact. In

general the failure happens when x
ðoldÞ
f is an approximate

solution, in which case x
ðnewÞ
f is not exactly x

ðoldÞ
f : After

this recovery step, the iterative method is restarted from

x
ðnewÞ
f :

The lossy approach is strongly connected to the Block–

Jacobi algorithm. Indeed, a failure step with the lossy

approach is a step of the Block–Jacobi algorithm on the

failed processor. Related work by Engelmann and Geist

[47] proposes to use the Block–Jacobi itself as an

algorithm that is robust under processor failure.

However, the Block–Jacobi step can be performed for

data recovery and embedded in any solver. Thus, the user

is free to use any iterative solver, in particular, Krylov

methods that are known to be more robust than the

Block–Jacobi method.

In this section, we provide a simple example of the

use of these three strategies (c_R, c_F, and lossy) in

the context of GMRES. The results are reported

in Table 4.

For this experiment, we have the following identities:

T
Wall
¼ T

Wall
ðlossyÞ þ T

Chkpt
þ T

Rollback
þ T

Recov

and

T
Recov

¼ T
I
þ T

II
þ T

III
:

TII and TIII are independent of the recovery strategy.

The best strategy here is c_F. In a general case, the best

strategy depends on the methods used. For example, if

the matrix is block diagonal dominant and the size of the

restart is larger, the lossy strategy is in general the best;

for small restart size, c_R is, in general, better. More

experiments, including eigen value computation, can be

found in [44].

FT-LA provides several implementations of fault-

tolerant algorithms for numerical linear algebra

algorithms. This enables the program to survive failures

by adapting itself to the fault and restart from a coherent

state.

Table 4 Comparison of the checkpoint fault-tolerant algorithm and the lossy fault-tolerant algorithm. GMRES with Block–Jacobi

preconditioner with matrix stomach from Matrix Market of size n ¼ 213,360 on 16 processors.

Without failure Failure at step 10

Fault-tolerant strategy lossy

(s)

c_F

(s)

c_R

(s)

lossy

(s)

c_F

(s)

c_R

(s)

Number of iterations 18 18 18 18 18 28

Time to solution (TWall) 7.98 8.43 8.15 14.11 13.65 16.00

Time of checkpoint (TChkpt) 0.52 0.00 0.52 0.00

Time lost in rollback (TRollback) 2.29

Time for recovery (TRecov) 5.50 5.19 5.15

Time for recovering MPI environment (TI) 1.05 1.10 1.11

Time for recovering static data (TII) 3.94 3.94 3.94

Time for recovering dynamic data (TIII) 0.35 0.13 0.01
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Optimized communication
Previous studies of application usage show that the

performance of collective communications is critical to

high-performance computing (HPC). Rabenseifner’s

profiling study [48] showed that some applications spend

more than 80% of the time taken for a transfer in

collective operations. Given this fact, it is essential for

MPI implementations to provide high-performance

collective operations. However, collective operation

performance is often overlooked in comparison to point-

to-point performance. A general algorithm for a given

collective communication operation may not give good

performance on all systems because of the differences in

architectures, network parameters, and the buffering of

the underlying MPI implementation. Hence, collective

communications have to be tuned for the system on

which they will be executed. To determine the optimum

parameters for collective communications on a given

system, they must be modeled effectively at some level,

since exhaustive testing may not produce meaningful

results in a reasonable time as system size increases.

Collective operations, implementations, and tunable

parameters

Collective operations can be classified as either one-to-

many/many-to-one (single producer or consumer) or

many-to-many (every participant is both a producer and

a consumer). These operations can be generalized in

terms of communication via virtual topologies. Our

experiments currently support a number of these virtual

topologies, such as flat-tree/linear, pipeline (single chain),

binomial tree, binary tree, and k-chain tree (k fanout

followed by k chains). Our tests show that given a

collective operation, message size, and number of

processes, each of the topologies can be beneficial for

some combination of input parameters. An additional

parameter that we use is segment size—the size of a

block of contiguous data into which the individual

communications can be broken down. By breaking a

large single message communication into smaller

communications and scheduling many of them in parallel,

it is possible to increase the efficiency of any underlying

communication infrastructure. Thus, for many

operations we need to specify both parameters; the

virtual topology and the segment size. Figure 5 shows

the number of crossover points between different

implementations that can exist for a single collective

operation on a small number of nodes when finding the

optimal (faster) implementation. Note the logarithmic

scale. The number of crossovers demonstrates quite

clearly why limiting the number of methods available per

MPI operation at runtime can, in many instances, lead to

poor performance across the possible usage (parameter)

range. The MPI operations currently supported within

our various frameworks include barrier, broadcast,

reduce, allreduce, gather, alltoall, and scatter

operations.

Exhaustive and directed searching

A simple yet time-consuming method for finding an

optimal implementation of an individual collective

operation is to run an extensive set of tests over a

parameter space for the collective on a dedicated system.

However, running such detailed tests, even on relatively

small clusters, can take a substantial amount of time [49].

Tuning exhaustively for eight MPI collectives on a small

(40-node) IBM SP2* up to message sizes of 1 MB

involved approximately 13,000 individual experiments

and took 50 hours to complete. Even though this had to

occur only once, tuning all of the MPI collectives in a

similar manner would take days for a moderately sized

system or weeks for a larger system.

Finding the optimal implementation of any given

collective can be broken down into a number of stages,

with the first stage being dependent on message size,

number of processors, and MPI collective operation. The

secondary stage is an optimization at these parameters for

the correct method (topology–algorithm pair) and

segmentation size. The time required for running the

actual experiments can be reduced at many levels, for

example by not testing at every point and interpolating

results (e.g., testing 8, 32, and 128 processes rather than

8, 16, 32, 64, 128, etc.). Additionally, instrumented

application runs can be used to build a table of only those

Figure 5

Multiple implementations of the MPI reduce operation on 16 
nodes.
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collective operations that are required (i.e., not tuning

operations that are never called or are called

infrequently). We are currently testing this

instrumentation method via a newly developed profiling

interface known as the scalable application

instrumentation system (SAIS).

Another method used to reduce the search space in an

intelligent manner is the use of traditional optimization

techniques, such as gradient descent with domain

knowledge. Figure 6 shows the performance of four

different methods for implementing an eight-processor

MPI scatter for 128 KB of data on the Sun

UltraSPARC cluster when varying the segmentation size.

From the resulting shape of the performance data, we can

see that the optimal segmentation size occurs for larger

sizes and that tests of very small segmentation sizes are

very expensive. By using various gradient descent

methods to control runtime tests, we can reduce the time

to find the optimal segmentation size from 12,613 seconds

and 600 tests to 40 seconds and just 90 tests [50]. Thus,

simple methods can still allow semi-exhaustive testing in a

reasonable time.

Communication modeling

There are many parallel communication models that

predict the performance of any given collective operation

on the basis of standardizing network and system

parameters. Hockney [51], LogP [52], LogGP [53], and

PLogP [54] models are frequently used to analyze parallel

algorithm performance. Assessing the parameters for

these models within a local area network is relatively

straightforward, and the methods of approximating them

have already been established and are well understood

[54, 55]. Thakur and Gropp [56] and Rabenseifner and

Träff [57] use the Hockney model to analyze the

performance of different collective operation algorithms.

Kielmann et al. [58] use the PLogP model to find the

optimal algorithm and parameters for topology-aware

collective operations incorporated in the MagPIe library.

Bell et al. [59] use extensions of LogP and LogGP models

to evaluate high-performance networks. Bernaschi et al.

[60] analyze the efficiency of the reduce-scatter collective

using the LogGP model. Vadhiyar et al. [49, 50] use a

modified LogP model that takes into account the number

of pending requests that have been queued. Barnett et al.

[61] use the LogP model to evaluate and improve the

performances of a restricted set of collective

communications on a two-dimensional physical mesh

(Intel Paragon**). The most important factor concerning

communication modeling is that the initial collection of

(point-to-point communication) parameters is usually

performed by executing a microbenchmark that takes

seconds to run followed by some computation to

calculate the time per collective operation, and thus is

much faster than exhaustive testing. Once a system has

been parameterized in terms of a communication model,

we can build a mathematical model of a particular

collective operation, as shown in [62].

The complexity of identifying the most suitable

algorithm for a specific collective operation increases

drastically with the number of possible algorithms to

be taken into account. Figure 7 shows the modeled

approximation for two different collective

communications, one with few available algorithms

(barrier) and one with a large number of available

algorithms. Both tests were done using the MPI library

FT-MPI 1.2 [63]. Experiments testing these models on a

32-node cluster for the MPI barrier operation are

shown in Figure 7(a). As can be clearly seen, none of the

models produce perfect results, but they do allow a close

approximation to the gross performance of the actual

implementations. Figure 7(b) shows the normalized error

between the exhaustively found optimal implementation

for a broadcast operation and the time for the optimal

operation as predicted using the LogP/LogGP parameter

models. As can be seen, the models accurately predicted

the time to completion of the broadcast for most message

sizes and node counts, except for larger node counts when

sending smaller messages.

Collective communication status and future work

Current experiments comparing both exhaustively tested

collective operations and modeled operations have shown

that choosing the wrong implementation of a collective

communication can greatly reduce application

Figure 6

Multiple implementations of the MPI scatter operation on 
eight nodes for various segmentation sizes.
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performance, while the correct choice can be orders of

magnitude better. Exhaustive testing is currently the only

sure way to determine the absolute best combination of

parameters to create an optimal implementation. Finding

these values exhaustively for anything other than a very

small system or a very constrained (and repetitive)

application is not practical in terms of time to examine

the complete search space. We have presented several

methods used to reduce or eliminate the search space.

Overall, we have found that targeted exhaustive tuning

and modeling each have their place, depending on the

target applications and systems. Although modeling

provides the fastest solution to deciding which

implementation of a collective operation to use, it can still

produce a very incorrect result for large node counts on

small message sizes, while on larger message sizes it

appears very accurate. This is encouraging, since the large

message sizes are the ones that are impractical to test

exhaustively, whereas the small message sizes can be

intelligently tested in a reasonable time. Thus, a mixture

of methods will still be used until such time as the

collective communication models become more accurate

for a wider range of parameters, such as node count and

data size.

Conclusion

The emergence of scientific simulation as a pillar of

advanced research in many fields is adding new pressure

to the demand for a method of rapidly tuning software

for high performance on a relentlessly changing hardware

base. Driven by the desire of scientists for ever higher

levels of detail and accuracy, the size and complexity

of computations is growing at least as rapidly as

improvements in processor technology, so that

applications must continue to extract near-peak

performance even as the hardware platforms change

underneath them. The problem is that programming these

applications is hard, and optimizing them for high

performance is even harder.

Speed and portability are conflicting objectives in the

design of scientific software. One of the primary obstacles

to the efficient solution of scientific problems is the

problem of tuning software, both to the available

architecture and to the user problem at hand.

A SANS system can dramatically improve the

ability of computational scientists to model complex,

interdisciplinary phenomena with maximum efficiency

and a minimum of extra-domain expertise. SANS

innovations (and their generalizations) will provide to the

scientific and engineering community a dynamic

computational environment in which the most effective

library components are automatically selected on the

basis of problem characteristics, data attributes, and the

state of the grid.

Our efforts, together with those of others in the

community, to obtain tuned high-performance kernels

to make it possible for suitable algorithms to be

automatically chosen hold great promise for evolving

high-performance systems.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Intel
Corporation, Sun Microsystems, Inc., SPARC International, Inc.,

(a) Results of measured compared with modeled MPI barrier 
operation based on recursive doubling. (b) Error (color) between 
the exhaustively measured optimal implementation compared 
with the implementation chosen using values from the 
LogP/LogGP-modeled broadcast operations.
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Advanced Micro Devices, Inc., Myricom, Inc., TOP500.org, or
Linus Torvalds in the United States, other countries, or both.

References
1. C. L. Lawson, R. J. Hanson, F. T. Krogh, and D. R. Kincaid,

‘‘Algorithm 539: Basic Linear Algebra Subprograms for
FORTRAN Usage [F1],’’ ACM Trans. Math. Software 5,
No. 3, 324–325 (1979).

2. R. C. Whaley, A. Petitet, and J. J. Dongarra, ‘‘Automated
Empirical Optimization of Software and the ATLAS Project,’’
Parallel Computing 27, No. 1/2, 3–35 (2001).

3. G. E. Moore, ‘‘Cramming More Components onto Integrated
Circuits,’’ Electronics 38, No. 8, 114–117 (1965).

4. R. Allen and K. Kennedy, Optimizing Compilers for Modern
Architectures, Morgan-Kaufmann Publishing Co., San
Francisco, 2002.

5. D. A. Padua and M. J. Wolfe, ‘‘Advanced Compiler
Optimizations for Supercomputers,’’ Source Commun. ACM
29, No. 12, 1184–1201 (1986).

6. Q. Yi, K. Kennedy, H. You, K. Seymour, and J. Dongarra,
‘‘Automatic Blocking of QR and LU Factorizations for
Locality,’’ Proceedings of the ACM SIGPLAN Workshop on
Memory System Performance, 2004, pp. 12–22.

7. R. Schreiber and J. Dongarra, ‘‘Automatic Blocking of Nested
Loops,’’ Technical Report CS-90-108, Department of
Computer Science, University of Tennessee, Knoxville, TN
37996, 1990.

8. K. S. McKinley, S. Carr, and C.-W. Tseng, ‘‘Improving Data
Locality with Loop Transformations,’’ ACM Trans. Program.
Lang. & Syst. 18, No. 4, 424–453 (1996).

9. U. Banerjee, ‘‘A Theory of Loop Permutations,’’ Selected
Papers of the 2nd Workshop on Languages and Compilers for
Parallel Computing, Pitman Publishing Ltd., London, 1990,
pp. 54–74.

10. J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet,
R. Vuduc, R. C. Whaley, and K. Yelick, ‘‘Self-Adapting
Linear Algebra Algorithms and Software,’’ Proc. IEEE 93,
No. 2, 293–312 (2005).

11. J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel,
‘‘Optimizing Matrix Multiply Using PHiPAC: A Portable,
High-Performance, ANSI C Coding Methodology,’’
Proceedings of the International Conference on
Supercomputing, 1997, pp. 340–347.

12. M. Frigo and S. G. Johnson, ‘‘FFTW: An Adaptive Software
Architecture for the FFT,’’ Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal
Processing, 1998, pp. 1381–1384.

13. K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M.
Garzaran, D. Padua, K. Pingali, P. Stodghill, and P. Wu, ‘‘A
Comparison of Empirical and Model-Driven Optimization,’’
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2003,
pp. 63–76.

14. J. A. Nelder and R. Mead, ‘‘A Simplex Method for Function
Minimization,’’ The Computer J. 7, No. 4, 308–313 (1965).

15. Q. Yi and D. Quinlan, ‘‘Applying Loop Optimizations to
Object-Oriented Abstractions Through General Classification
of Array Semantics,’’ Proceedings of the 17th International
Workshop on Languages and Compilers for Parallel Computing,
2004; see http://www.cs.utsa.edu/;qingyi/papers/LCPC04.pdf.

16. D. Quinlan, M. Schordan, Q. Yi, and A. Saebjornsen,
‘‘Classification and Utilization of Abstractions for
Optimization,’’ Proceedings of the 1st International Symposium
on Leveraging Applications of Formal Methods, 2004, pp. 2–9.

17. E. Amaldi and V. Kann, ‘‘On the Approximability of
Minimizing Nonzero Variables or Unsatisfied Relations in
Linear Systems,’’ Theoret. Computer Sci. 209, 237–260 (1998).

18. P. Crescenzi and V. Kann, Eds., A Compendium of NP
Optimization Problems, 2005; see http://www.nada.kth.se/
theory/problemlist.html.

19. M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman &
Co., New York, 1979.

20. J. Gergov, ‘‘Approximation Algorithms for Dynamic Storage
Allocation,’’ Proceedings of the 4th Annual European
Symposium on Algorithms, 1996, pp. 52–61.

21. D. S. Hochbaum and D. B. Shmoys, ‘‘A Polynomial
Approximation Scheme for Machine Scheduling on Uniform
Processors: Using the Dual Approach,’’ SIAM J. Computing
17, No. 3, 539–551 (1988).

22. V. Kann, ‘‘Strong Lower Bounds on the Approximability of
Some NPO PB-Complete Maximization Problems,’’
Proceedings of the 20th International Symposium on
Mathematical Foundations of Computer Science, 1995,
pp. 227–236.

23. J. Lenstra, D. Shmoys, and E. Tardos, ‘‘Approximation
Algorithms for Scheduling Unrelated Parallel Machines,’’
Math. Program. 46, No. 3, 259–271 (1990).

24. K. J. Roche and J. J. Dongarra, ‘‘Deploying Parallel
Numerical Library Routines to Cluster Computing in a Self-
Adapting Fashion,’’ Parallel Computing: Advances and Current
Issues, Imperial College Press, London, 2002.

25. E. Anderson, Z. Bai, C. Bischof, S. L. Blackford, J. W.
Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, and D. C. Sorensen, LAPACK
User’s Guide, Third Edition, Society for Industrial and
Applied Mathematics, Philadelphia, 1999.

26. L. S. Blackford, J. Choi, A. Cleary, E. F. D’Azevedo, J. W.
Demmel, I. S. Dhillon, J. J. Dongarra, S. Hammarling, G.
Henry, A. Petitet, K. Stanley, D. W. Walker, and R. C.
Whaley, ScaLAPACK Users’ Guide, Society for Industrial and
Applied Mathematics, Philadelphia, 1997.

27. Message Passing Interface Forum,‘‘MPI: A Message-Passing
Interface Standard,’’ Intl. J. Supercomputer Appl. & High
Perform. Computing 8, No. 3/4, 159–416 (1994).

28. Message Passing Interface Forum, MPI: A Message-Passing
Interface Standard Version 1.1, 1995; see http://www.
mpi-forum.org/docs/docs.html.

29. Message Passing Interface Forum, MPI-2: Extensions to the
Message-Passing Interface, 1997; see http://www.mpi-forum.org/
docs/mpi2-report.pdf.

30. MPICH; see http://www.mcs.anl.gov/mpi/mpich/.
31. LAM/MPI Parallel Computing; see http://www.lam-mpi.org/.
32. T. Sterling, Beowulf Cluster Computing with Linux, MIT Press,

Cambridge, MA, October 2001.
33. J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W.

Walker, and R. C. Whaley, ‘‘Design and Implementation of
the ScaLAPACK LU, QR, and Cholesky Factorization
Routines,’’ Sci. Program. 5, No. 3, 173–184 (1996).

34. TOP500 Supercomputer Sites; see http://www.top500.org and
http://www.netlib.org/benchmark/top500.html.

35. J. J. Dongarra, P. Luszczek, and A. Petitet, ‘‘The LINPACK
Benchmark: Past, Present, and Future,’’ Concurrency &
Computation: Pract. & Exper. 15, No. 9, 803–820 (2003).

36. V. Eijkhout and E. Fuentes, ‘‘A Proposed Standard for
Numerical Metadata,’’ Technical Report ICL-UT-03–02,
Innovative Computing Laboratory, University of Tennessee,
Knoxville, TN 37996, 2003.

37. Matrix Market; see http://math.nist.gov/MatrixMarket.
38. K. Schloegel, G. Karypis, and V. Kumar, ‘‘Parallel Multilevel

Algorithms for Multi-Constraint Graph Partitioning,’’
Proceedings of the 6th International Euro-Par Conference,
2000, pp. 296–310.

39. The ParMETIS/METIS package; see http://glaros.dtc.umn.edu/
gkhome/views/metis/.

40. V. Eijkhout, ‘‘Automatic Determination of Matrix Blocks,’’
Technical Report UT-CS-01-458, Department of Computer
Science, University of Tennessee, Knoxville, TN 37996, 2001.

41. G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J.
Pjesivac-Grbovic, K. London, and J. J. Dongarra, ‘‘Extending
the MPI Specification for Process Fault Tolerance on High

J. DONGARRA ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

236



Performance Computing Systems,’’ Proceedings of the
International Supercomputer Conference, 2004.

42. E. Gabriel, G. E. Fagg, A. Bukovsky, T. Angskun, and J. J.
Dongarra, ‘‘A Fault-Tolerant Communication Library for
Grid Environments,’’ Proceedings of the 17th Annual ACM
International Conference on Supercomputing (ICS’03),
International Workshop on Grid Computing, 2003; see http://
icl.cs.utk.edu/news_pub/submissions/FTMPI-SF-gabriel.pdf.

43. J. S. Plank, Y. Kim, and J. J. Dongarra, ‘‘Fault-Tolerant
Matrix Operations for Networks of Workstations Using
Diskless Checkpointing,’’ J. Parallel & Distr. Computing 43,
No. 2, 125–138 (1997).

44. G. Bosilca, Z. Chen, J. Dongarra, and J. Langou, ‘‘Recovery
Patterns for Iterative Methods in a Parallel Unstable
Environment,’’ Technical Report UT-CS-04-538, Computer
Science Department, University of Tennessee, Knoxville, TN
37996, 2004.

45. Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun, G.
Bosilca, and J. Dongarra, ‘‘Building Fault Survivable MPI
Programs with FT-MPI Using Diskless Checkpointing,’’
Proceedings of the ACM SIG-PLAN Symposium on Principles
and Practice of Parallel Programming, 2005, pp. 213–223.

46. P. Sanders and J. F. Sibeyn, ‘‘A Bandwidth Latency Tradeoff
for Broadcast and Reduction,’’ Info. Process. Lett. 86, No. 1,
33–38 (2003).

47. C. Engelmann and G. A. Geist, ‘‘Development of Naturally
Fault Tolerant Algorithms for Computing on 100,000
Processors,’’ see http://www.csm.ornl.gov/;geist/
Lyon2002-geist.pdf.

48. R. Rabenseifner, ‘‘Automatic MPI Counter Profiling of All
Users: First Results on a CRAY T3E 900-512,’’ Proceedings of
the Message Passing Interface Developer’s and User’s
Conference, 1999, pp. 77–85.

49. S. S. Vadhiyar, G. E. Fagg, and J. Dongarra, ‘‘Automatically
Tuned Collective Communications,’’ Proceedings of the ACM/
IEEE Conference on Supercomputing, 2000, p. 3.

50. S. S. Vadhiyar, G. E. Fagg, and J. J. Dongarra, ‘‘Towards an
Accurate Model for Collective Communications,’’ Intl. J. High
Perform. Computing Appl. 18, No. 1, 159–167 (2004).

51. R. W. Hockney, ‘‘The Communication Challenge for MPP:
Intel Paragon and Meiko CS-2,’’ Parallel Computing 20, No. 3,
389–398 (March 1994).

52. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E.
Santos, R. Subramonian, and T. von Eicken, ‘‘LogP: Towards
a Realistic Model of Parallel Computation,’’ Proceedings of
the 4th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 1993, pp. 1–12.

53. A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. J.
Scheiman, ‘‘LogGP: Incorporating Long Messages into the
LogP Model—One Step Closer Towards a Realistic Model for
Parallel Computation,’’ Proceedings of the 7th Annual ACM
Symposium on Parallel Algorithms and Architectures, 1995,
pp. 95–105.

54. T. Kielmann, H. E. Bal, and K. Verstoep, ‘‘Fast Measurement
of LogP Parameters for Message Passing Platforms,’’
Proceedings of the 15th IPDPS Workshops on Parallel and
Distributed Processing, 2000, pp. 1176–1183.

55. D. E. Culler, L. T. Liu, R. P. Martin, and C. O. Yoshikawa,
‘‘Assessing Fast Network Interfaces,’’ IEEE Micro 16, No. 1,
35–43 (1996).

56. R. Thakur and W. Gropp, ‘‘Improving the Performance of
Collective Operations in MPICH,’’ Proceedings of the 10th
European PVM/MPI User’s GroupMeeting, 2003, pp. 257–267.

57. R. Rabenseifner and J. L. Träff, ‘‘More Efficient Reduction
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