
Original Article

The International Journal of High
Performance Computing Applications
2015, Vol. 29(2) 135–153
� The Author(s) 2014
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342014545546
hpc.sagepub.com

Adaptive executions of hyperbolic
block-structured AMR applications
on GPU systems

Hari K Raghavan and Sathish S Vadhiyar

Abstract
A block-structured adaptive mesh refinement (AMR) technique has been used to obtain numerical solutions for many
scientific applications. Some block-structured AMR approaches have focused on forming patches of non-uniform sizes
where the size of a patch can be tuned to the geometry of a region of interest. In this paper, we develop strategies for
adaptive execution of block-structured AMR applications on GPUs, for hyperbolic directionally split solvers. While effec-
tive hybrid execution strategies exist for applications with uniform patches, our work considers efficient execution of
non-uniform patches with different workloads. Our techniques include bin-packing work units to load balance GPU
computations, adaptive asynchronism between CPU and GPU executions using a knapsack formulation, and scheduling
communications for multi-GPU executions. Our experiments with synthetic and real data, for single-GPU and multi-
GPU executions, on Tesla S1070 and Fermi C2070 clusters, show that our strategies result in up to a 3.23 speedup in
performance over existing strategies.

Keywords
Adaptive mesh refinement, GPU executions, dynamic load balancing, asynchronous executions of CPUs and GPUs,
coalesced access

1 Introduction

The numerical solutions for many science and engineer-
ing applications are obtained by discretizing the partial
differential equations used to model the problem. The
computational domain is covered by a set of meshes
(also referred to as patches) over which finite difference
or other discretization schemes can be applied. The
adaptive mesh refinement (AMR) (Berger and Oliger,
1984) technique dynamically varies the spatio-temporal
resolution of mesh regions based on the local errors in
the regions. Some AMR approaches use patches of uni-
form sizes over regions of interest (Fryxell et al., 2000;
MacNeice et al., 2000; Ziegler, 2008) while other efforts
including SAMRAI (Wissink et al., 2001), Enzo (Wang
et al., 2010), and Uintah (Humphrey et al., 2012) cover
the regions of interest with patches of non-uniform
sizes. The uniform and non-uniform patches are illu-
strated in Figure 1.

In this work, we have developed strategies for adap-
tive execution of AMR applications with non-uniform
patches on GPU systems. We primarily deal with direc-
tionally split hyperbolic solvers for hydrodynamics
applications in which explicit timestepping is used for

following solution features. The AMR approach we
consider is the block-structured AMR developed by
Berger and Oliger (1984). Our work considers uniform
timestepping in which all the patches of the AMR hier-
archy are advanced using the same timestep size. In
these applications, the computational domain is
approximated into a discrete set of cells. The cells are
organized into units called meshes (or patches). The sets
of cells along a given dimension that are solved are
referred to as columns. The concept of patches, cells and
columns is illustrated in Figure 2. The domain is ini-
tially covered by a set of low-resolution patches which
form the base level of the hierarchy. The simulation
proceeds in discrete units called timesteps. Every appli-
cation of the numerical method to a patch advances the

Supercomputer Education and Research Centre, Indian Institute of

Science, Bangalore, India

Corresponding author:

Sathish S Vadhiyar, Supercomputer Education and Research Centre,

Indian Institute of Science, Bangalore-560012, India.

Email: vss@serc.iisc.in

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


simulation time by an amount. In a timestep, the solu-
tion values are advanced for all the levels in the hierar-
chy starting from the coarsest level. A fix-up operation,
in which the solutions of the finer mesh cells are used to
adjust the values of the coarser mesh cells, is performed
after advancing all the levels. As the computations pro-
ceed, regions of interest with large local errors are
marked for refinement. The refinement process involves
overlaying these regions with a finer mesh having a
higher resolution, resulting in the formation of patches.
The pseudo code for the hyperbolic block-structured
AMR algorithm can be represented as follows:

Advance (level lv)

do

Numerical_Integration (lv)

Advance (lv+1)

fix-up (lv\– lv+1)

Refine (lv)

done

General purpose graphics processing units
(GPGPUs) (NVIDIA, 2010), with their support for
fine-grained parallelism, offer an attractive option for
obtaining high performance for AMR applications.
The most computationally intensive component of
AMR is the numerical integration step which invokes a

stencil-based solver on all the patches. Stencil-based
computations involve large amounts of fine-grained
and data parallelism, and hence can be parallelized on
GPUs for high efficiency. The computations are
mapped to the GPU using a CUDA kernel involving a
number of thread blocks and threads, with each thread
block solving a patch where the constituent threads co-
operate and handle the sub-regions in a patch. While
the GPU is in charge of the computational part, the
host CPU handles the AMR control functions includ-
ing making refinement decisions and managing the
patch data structure, and providing inputs for the
GPU. Hence, some recent efforts have focused on par-
allelization of AMR applications on GPUs, including
GAMER (Schive et al., 2010), Enzo (Wang et al.,
2010), Carpet (Blazewicz et al., 2012), and Uintah
(Humphrey et al., 2012). However, these efforts do not
adequately deal with non-uniform patches. For exam-
ple, GAMER (Schive et al., 2010) provides solutions
for efficient heterogeneous execution of AMR applica-
tions with only uniform patches on GPUs. Enzo
(Wang et al., 2010) considers non-uniform patches, but
does not exploit the opportunity for asynchronous
executions between the CPU and GPU.

Efficient execution of AMR applications with non-
uniform patches involves certain unique challenges.
Due to the variation in the sizes of the patches, the com-
putational loads in processing the patches using the
GPU cores vary. The load imbalance among the GPU
cores can in turn lead to high GPU execution times.
Another challenge is related to efficient asynchronous
executions between the CPU and GPU to maximize
performance. This typically involves breaking down the
execution into multiple batches so that while one batch
is executed on the GPU, the next batch is processed or
prepared and kept ready by the CPU. For AMR appli-
cations with non-uniform patches, the GPU execution
time of a batch varies across diffierent batches. Hence
the CPU must dynamically select the next subset or
batch with appropriate computational load for prepara-
tion based on the time required for execution of the pre-
vious batch by the GPU. Finally, executions on multi-
GPU systems involve communicating boundary data
between processes at the end of each timestep. This is
an overhead that must be reduced to achieve scalability.
Thus the executions of AMR applications with non-
uniform patches involves challenges across multiple lev-
els: within the GPU, between the GPU and the host
CPU, and across multiple CPU–GPU systems.

Our work has developed strategies including
dynamic scheduling of non-uniform patches for asyn-
chronous execution on CPUs and GPUs, and load-
balancing computations on GPU cores. We formulate
the problem of assigning patches to thread blocks of
GPUs for load-balanced executions by the GPU cores
as a 3D bin-packing problem, and use an efficient

Figure 1. Uniform and non-uniform patches.

Figure 2. Illustration of patches, cells and columns.

136 The International Journal of High Performance Computing Applications 29(2)

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


heuristic to solve the problem. We have also built a per-
formance model that estimates the time for execution
of a batch of patches by the GPU, and for preparation
by the GPU. Using these estimates, we dynamically
select a subset of patches for preparation by the CPU
while the GPU executes the previous subset. We formu-
late this problem of selection of patches that can be
prepared within a certain amount of time as a knap-
sack problem, and use a heuristic algorithm for the
solution. Finally, we propose strategies for reordering
computations and overlapping computations with
inter-CPU communications for high performance and
scalability on multi-GPU clusters. Our other optimiza-
tions include determining the geometry of patches
based on GPU memory configuration, improved coa-
lesced access of data by the GPU threads, and avoiding
synchronization between the threads.

We conducted experiments with a hydrodynamics
application with sets of synthetic inputs as well as
inputs from real applications. Our experiments with sin-
gle-GPU and multi-GPU executions, on Tesla S1070
and Fermi C2070 clusters, show that our strategies
result in up to a 3.23 speedup in performance over exist-
ing strategies. Our bin-packing-based load-balancing
gives performance gains of up to 39%, kernel optimiza-
tions give an improvement of up to 20%, and our stra-
tegies for adaptive asynchronism between CPU–GPU
executions give performance improvements of up to
17% over default static asynchronous executions. In
the future, we would like to explore making the bin
sizes adaptive and introduce more dynamic schemes for
assigning thread blocks to workloads.

Section 2 provides background on AMR application
executions on GPUs, and the steps involved in the
hydrodynamics application. Section 3 describes our
strategies on load-balancing computational units
among GPU cores, adaptive asynchronism for simulta-
neous use of CPU and GPU cores, multi-GPU execu-
tions, and other optimizations. In Section 4, we
describe our experiments and results on single- and
multi-GPU systems with synthetic and real applications
on two systems. Section 5 gives related work. Finally,
Section 6 summarizes the work and gives scope for
future work.

2 Background

2.1 AMR and GPU executions

The set of patches advanced simultaneously per GPU
kernel launch is termed a workgroup. Advancing a set
of patches on a GPU system involves three steps:

1. Preparation: the array containing input data for
the GPU solver is filled from the patch data struc-
ture. The boundary data of the patches is supplied
by copying data from neighboring patches or by

interpolating from their parent from the coarser
level. The prepare step is performed on the CPU.

2. Solve: the input array containing the prepared
workgroup is solved asynchronously on the GPU
by invoking the kernel for the numerical method.
The solution is stored in the output array and cop-
ied back to the CPU.

3. Closing: the solved values from the output array
are stored in the corresponding patch data struc-
ture. This step also stores the computed flux values
along the coarse–fine boundaries. This step is per-
formed on the CPU.

2.2 Asynchronous executions

The solve step on the GPU can be asynchronously exe-
cuted with the preparation and the closing steps on the
CPU. GAMER (Schive et al., 2010) adopts this asyn-
chronous execution model. Specifically, the CPU sends
the i th workgroup to the GPU for solving, and while
the kernel executes, it closes the (i2 1)th workgroup (if
there was a solve phase previously) and prepares the
(i+1)th workgroup (if any workgroups are left in the
level) asynchronously. For fixed-size patches, the work-
group size can be fixed. In our scheme with non-
uniform patches, each patch has a different preparation
and closing cost on the CPU and solve cost on the
GPU. In order to overlap prepares and solves, we need
to select a suitable subset of work items that can be
prepared while the GPU solves its current workload.

2.3 Application

In this work, we consider a hydrodynamics application
which is modeled using Euler equations. We explore
two second-order directionally split hyperbolic schemes
(LeVeque, 2002) to solve the equation, namely, the
relaxing total variation diminishing (RTVD) scheme
(Trac and Pen, 2003) modified from the GAMER
implementation (Schive et al., 2010), and the total var-
iation diminishing (TVD) scheme implemented in Enzo
(Wang et al., 2010). Both these schemes reduce solving
the 3D equations to a 1D problem by performing three
sweeps, for each dimension.

For each sweep, GAMER’s RTVD scheme pro-
cesses all the data columns along the sweeping dimen-
sions individually. For example, for a patch having
dimensions W 3 H 3 D (including the ghost cells), a
sweep along the Y-dimension involves sweeping the
W 3 D Y-columns, each having H cells. Each sweep
consists of a number of substeps including calculating
inter-cell flux values and updating half step solutions.
The RTVD stencil uses a seven-point constant coeffi-
cient stencil with one cell per dimension for calculating
midpoint values. It requires two more cells per dimen-
sion to evaluate the full step values. Thus, the scheme

Raghavan and Vadhiyar 137

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


requires a total of three ghost cells on each side. On the
GPU, the column-sweeps along the X-dimension take
less time than those for the Y- and Z-dimensions, since
the memory accesses are coalesced.

Enzo implements a second-order TVD scheme which
regards the patch as one large 1D column (read along
the direction of the sweep). This 1D column is tiled
using multiple thread blocks and solved. The advantage
of this approach is that it functions for arbitrary dimen-
sions and achieves good load balance and minimal
idling. In contrast to the RTVD scheme, the primary
input is not updated until all the three sweeps are com-
pleted. This implementation also requires that each
sweep is invoked as a separate kernel to ensure that all
thread blocks have computed the data necessary for the
next sweep.

3 Methodology

In GAMER, a set or a batch of patches is solved on a
GPU using a single kernel invocation. A thread block
acts on one or more patches. For each patch, the thread
block reads a data column into shared memory, finishes
the sweep for the column including all the substeps, and
writes the final results back into global memory. The
scheme is illustrated in Figure 3 in which all the three
dimensions of the patch are equal.

For non-uniform patches with unequal dimensions,
the grid and the thread block configuration of a CUDA
kernel will have to be carefully chosen. Specifically, the
number of thread blocks, and organization of a thread

block in terms of the number of threads in each dimen-
sion, are important parameters that determine perfor-
mance. We bear in mind that CUDA allocates threads
only in fixed granularities of 32 threads (referred to as
warps). Requesting for 100 threads would be inefficient
since 128 threads are allotted anyway and the last 28
are kept idle.

For our application, a naive option is to launch
thread blocks with the maximum number of active
threads possible and fix the organization of the thread
blocks statically based on the maximum patch dimen-
sion across all the patches in the current workload. A
given thread block will use the same configuration in
terms of the number of registers and shared memory
usage for all the three sweeps, and the same structure is
used in all the thread blocks. The maximum number of
active threads, defined as the number of resident
threads currently utilizing the GPU’s resources, is
determined by hardware constraints as well as by limits
on the amount of resources requested by a kernel. As
an example, if the maximum number of active threads
possible is 128 and the maximum dimension observed
in the current workload is 42, this approach tries to
launch all thread blocks organized as 42 3 3 units, that
is, 42 rows and three columns of threads. Thus, the 126
threads in a thread block load and sweep three columns
at a time, before loading the next set of three columns.
While this model is an effective mechanism for uniform
patches with equal dimensions, this leads to severe per-
formance degradations for non-uniform patches.

First, within a thread block, thread divergence and
idling will occur due to variation in dimensions of a
patch. Additional conditional statements will have to
be added in the kernel to disable threads with thread
ids that are beyond the data column width. This has a
heavy performance penalty in the CUDA model
depending on the number of idle threads, since clock
cycles are wasted with no useful work being done. This
is illustrated with a simple hypothetical example for a
2D problem considering a patch of dimensions
22 3 16. A thread block of organization 42 3 3
threads acting on this patch will cause idling of 60
threads during the X-sweeps and 78 threads during the
Y-sweeps as illustrated in Figure 4(a).

Another scheme is a dynamic scheme in which each
thread block tiles as many columns completely per
iteration. In this scheme, each thread block is logically
organized individually depending on the patches it acts
upon. While this seemingly is a better strategy than the
static scheme, it is still incapable of avoiding thread
idling in a satisfactory manner, and can also result in
reduced occupancy due to the number of active threads
less than the maximum number of 128 active threads.
For the 2D problem with a 22 3 16 patch, the thread
block can organize itself at most as a 22 3 5 tile since
the RTVD kernel requires each column to beFigure 3. Sweeping the columns of a patch by a thread block.

138 The International Journal of High Performance Computing Applications 29(2)

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


completely processed. This leads to 18 (1282 110)
threads being inactive during each sweep. This is illu-
strated in Figure 4(b).

Second, across thread blocks, load imbalances can
occur since the patches handled by different thread
blocks can be different in size and each thread block
can possess different workloads. This results in load
imbalances between the Streaming Multiprocessors
(SMs) of the GPU which would lead to longer a execu-
tion time per kernel launch. Thus, it is necessary to
implement a strategy to allocate the patches into equal
chunks of work and a scheme to distribute the thread
blocks efficiently among these chunks. It is also impor-
tant to asynchronously utilize the CPU for useful com-
putations while the GPU solves a batch of patches. We
also need to optimize for latency-hiding by ensuring
adequate occupancy, and minimize communication

overheads for multi-GPU executions. We describe our
optimizations related to intra-GPU load-balancing,
asynchronous executions, and other optimizations in
the following subsections.

3.1 Intra-GPU load-balancing

The basic idea in our load-balancing scheme is to com-
bine or fuse multiple non-uniform patches into fixed
uniformly sized patch groups, and make a thread block
act on multiple patches of a group. We illustrate our
load-balancing scheme using the same 2D example
involving a patch of dimensions 22 3 16 and employ-
ing thread blocks of 128 threads. This patch can be
joined with a 10 3 16 patch if one is present.
Processing the patches individually by the thread block
will result in 18 (1282 110) and 8 (1282 120) threads
being inactive, respectively, during their X-sweeps.
When combined to form a patch group of dimensions
32 3 16, they can then be optimally tiled by 32 3 4
threads in a thread block with no idling. This is illu-
strated in Figure 5. A thread block thus acts on parts
of both the patches, and all the threads of the two
thread blocks are kept busy during both the X- and Y-
sweeps. Thus, by forming uniformly sized patch groups
or bins from non-uniform patches, and having a fixed
number of thread blocks acting on a patch group, we
ensure both minimal thread idling within a thread
block and maximum load-balancing across thread
blocks.

We extend this idea for realistic 3D problems, where
the goal would be to pack together multiple patches
within 3D bins with minimal wastage of space. All the
bins are cubic (the three dimensions of the bins are
equal) and are of equal sizes, thus ensuring that all
thread blocks are approximately work-balanced during
all 3D sweeps. This also implicitly reduces thread diver-
gence, resulting in an increased amount of productive
work performed per clock cycle.

The RTVD kernel is an arithmetically intense
scheme with heavy register (approximately 50) and
shared memory (80 bytes per thread) requirements. On

Figure 5. Illustration of patch groups.

Figure 4. Thread idling in non-uniform patches.

Raghavan and Vadhiyar 139

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


devices with compute capability 1.3 (Tesla S1070, etc.),
this achieves at most 192 active threads per SM. In our
scheme, we organize these 192 threads as three thread
blocks of 64 threads each, thus employing three active
thread blocks per SM. This ensures that we have suffi-
cient thread blocks to cover synchronization latencies.
The total number of thread blocks launched per kernel
is thus three times the number of SMs. The number of
bins processed by a GPU kernel in our scheme varies
for different batches, and is typically greater than the
number of thread blocks. A bin is processed by all the
thread blocks before the next bin is processed. The
advantages of this model are twofold. This implicitly
ensures that all thread blocks have equal loads.
Secondly, the model where each bin is exclusively pro-
cessed by a thread block becomes inefficient when the
number of bins in the batch is not a multiple of the
number of active thread blocks. Thus, we employ the
strategy where all the active threads of all active thread
blocks co-operate to solve a bin.

The problem of assigning 3D patches into fixed-size
cubic bins to achieve maximum utilization of the bin
capacity, and thereby achieve load-balancing, reduces
to a 3D geometric bin-packing problem. The maximum
utilization objective is to pack as many available
patches as possible and reduce the number of kernel
invocations. Besides, the objective also minimizes
thread idling and divergence as mentioned earlier.
When using the single-timestepping mode, the patches
across different levels can be packed together into bins
since all levels are advanced for the same number of
times per timestep. For multi-timestepping, the patches
have to be processed level by level.

3D bin-packing is an NP-hard problem (Garey and
Johnson, 1979) for which we use an approximation
algorithm designed by Crainic et al. (2008). This uses
the best-fit heuristic using the concept of extreme
points. The algorithm first sorts the set of patches
according to their volume with ties broken by the
height. Given a set of objects already packed in a bin,
the algorithm heuristically places the next object at a
location in the bin which is designed to minimize
wastage of space. When an object of dimensions w 3 h
3 d is placed in a bin at the co-ordinates x, y, z, its co-
ordinates (x+w, y, z), (x, y+ h, z), and (x, y, z+ d)
are projected on other items of the bin and the bin
walls. The intersection of these projections and the sur-
faces of the patches defines the extreme points. When
an object is considered for placing in a bin, only the set
of extreme points is considered for placement. It is
observed that an object can generate at most six
extreme points and hence the search space is limited to
6 3 n points where n is the number of items packed.
Also, extreme points keep the fragmentation to a mini-
mum and thus generate the best packing. The best-fit
strategy is a heuristic which looks at all the extreme

points in every open bin and accommodates the object
at the optimal extreme point. The best extreme point to
fit a bin is one such that the residual volume around
the point is reduced to the maximum by accommodat-
ing the object. If no such location is found, a new bin is
opened for the object in question. The bins are then
processed by the thread blocks. We implemented the
algorithm and integrated it into our codebase.

In our application, the bin width impacts the shared
memory usage since it is the minimum unit that is read
and processed by the threads. Since the amount of
shared memory usage by a thread block determines the
number of active thread blocks, the bin width affects
the GPU occupancy. The efficiency of the bin-packing
algorithm is also dependent on the bin width as well as
on the dimensions of the patches. Thus, the width of
the bin has to be chosen for optimal GPU occupancy
and high efficiency of the bin-packing algorithm. We
determined experimentally that the best dimensions for
the bins for high performance is 64 3 64 3 64. This
gave the best occupancy as well as the best packing
ratio. The bin width being a multiple of the warp size
(32) also ensures that there are no underpopulated
warps.

3.2 Adaptive asynchronism

The CPU invokes a kernel on the GPU with a set of
bins containing the patches. We refer to this set as a
batch. The kernel executes the numerical integration
step involving stencil-based computations on the
patches. All the bins and patches are executed on the
GPU by multiple kernel invocations by the CPU with
multiple batches. While a batch is executed on the
GPU, the CPU can asynchronously prepare the next
batch corresponding to another set of bins. The pre-
paration involves filling an input array for the GPU
solver with data corresponding to the patches in the
bins, copying boundary or ghost zone data for the
patches from their neighbors, and interpolating from
the coarse-level patches.

The next batch for preparation by the CPU will have
to be carefully chosen for efficient asynchronism of
CPU and GPU execution. A simple method of imple-
menting asynchronism would be to choose some k fixed
number of subsequent bins as the next batch for pre-
paration. However, this strategy is inefficient for non-
uniform patches, since the GPU execution and CPU
preparation times can vary for different patches and
different bins. Since bin-packing does not result in per-
fect or complete packing of bins due to different patch
dimensions, the workloads of the different bins can
vary, resulting in different GPU execution and CPU
preparation times for different bins. Moreover, the
dimensions of a patch determine the time taken to inter-
polate or fetch its ghost (boundary) cells during

140 The International Journal of High Performance Computing Applications 29(2)

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


preparation by the CPU. The total cost to prepare a bin
is the net sum of computing the ghost data and copying
the data for all the constituent patches. Thus, choosing
a fixed number of subsequent bins can result in a large
difference between the GPU execution and CPU pre-
paration times, leading to idling of either the CPU (if
GPU execution is greater) or the GPU (if CPU prepara-
tion is greater), depending on the workload of the bins.

Hence, the CPU must dynamically select the next
batch for preparation based on the time required for its
preparation and the time needed for execution of the
previous batch by the GPU. We implement a strategy
which estimates the time taken by the GPU to complete
its current workload. Using this cost plus a tolerance
limit as the maximum time available, we pick a subset
which can be prepared without exceeding this cost. We
formulate this problem of selection of patches that can
be prepared within a certain amount of time as a knap-
sack problem (Martello and Toth, 1990). We also con-
sider the problem of efficiently distributing the work
among the CPU cores employing OpenMP parallelism.
We formulate the knapsack problem with P queues,
where P is the number of CPU threads. The capacity of
each queue is the estimated time available for the GPU
to complete its current workload. Thus, we aim to max-
imize the number of bins we can prepare while ensuring
that the CPU threads are equally balanced. We solve
the knapsack problem heuristically by first sorting the
available bins in non-increasing order of volume to pre-
pare cost ratios of the bins. The bins are then consid-
ered in this order for selection. This heuristic thus gives
priority to bins of large volumes and lower prepare
costs, thus maximizing the number of bins prepared at
a time. The constituent patches of a selected bin are
then distributed to the queues such that the patch under
consideration is assigned to the least loaded queue.
Finally, each OpenMP thread prepares the patches
present in its queue.

Our asynchronous execution strategy needs estimates
of CPU preparation and GPU execution of bins. The
execution time of a bin depends on the total work done
in all three sweeps and is represented as follows:

tbin
exec =C1 � Nx +C2 � Ny +C3 � Nz ð1Þ

Here Nx, Ny, and Nz are the total number of col-
umns in the X-, Y-, and Z-sweeps respectively. C1, C2,
and C3 are constant costs associated with each sweep
direction. We estimate these by performing each sweep
individually with one thread block. We then normalize
the total cost, assuming that all the active thread blocks
solve the bin. The efficiency of the estimator is illu-
strated in Table 1 for a set of patches. The actual times
shown in the table are the average values obtained with
10 different runs. It can be seen that the estimated times
are within 8% of the actual values.

The net solve time is then determined by the sum of
the execution times of the bins plus the effective time to
transfer the bins to the GPU. By using CUDA streams,
the net transfer time can be limited to the time taken to
send the first bin downstream and transfer back the last
bin upstream. Hence, the time taken by the GPU for
the ith batch is represented as

ti
solve = ttrans � Size0 +

Xn

j= 1

t j
exec + ttrans � Sizen ð2Þ

where t j
exec represents the solve time of bin j of the batch

and ttrans is the time taken to transfer a byte of data.
This is set based on the available bandwidth of the
CPU–GPU interconnection. Size0 and Sizen are the
sizes in bytes of the first and last batches. We add these
costs since they do not have any asynchronous activity
to hide them.

For estimating the CPU preparation time of a bin,
we need to estimate the time required to acquire the
ghost zones and copy the cells into the input array for
the GPU. The RTVD kernel requires three ghost zones
which are either copied from neighbors or interpolated
from the coarser patches. In the worst case, all 26 sur-
faces of the patches will have to be interpolated. The pre-
pare cost of a patch can then be represented as follows:

tbin
prep =

Xn

i= 1

K1 � Si +
Xm

j= 1

K2 � Sj +K2 � V ð3Þ

In this expression, K1 and K2 represent the cost of
interpolation and copying, respectively, and Si is the
total number of cells interpolated for the ith surface.

Table 1. Estimation of solve times.

Patch dimension Actual time (ms) Predicted time (ms) Relative difference predicted�actual
actual

� �
(%)

24,20,20 1.011 1.036 2.47
44,36,16 2.517 2.717 7.94
40,32,36 5.880 5.504 26.40
16,44,20 1.486 1.574 5.92
24,16,36 1.367 1.440 5.34
20,44,28 2.739 2.832 3.39

Raghavan and Vadhiyar 141

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


The first term sums up the cost to interpolate the n sur-
faces which do not have neighbors. The second term
represents the cost of copying the data into the m sur-
faces from sibling patches. The third term is the net cost
of copying V interior cells into the array. The costs, K1

and K2, were obtained using profiling runs. The actual
and predicted prepare times for a set of patches of dif-
ferent sizes are tabulated in Table 2. The actual times
were obtained by performing 10 different runs and cal-
culating the averages of the times. It can be seen that
the estimation function produces predictions that are
within 10% of the actual values.

To compute C1, C2, and C3 the patches were solved
one at a time in the GPU and along one direction at a
time. For example, to compute C1, each patch was
swept only along the X-direction and this execution
time was divided by the number of columns of the X-
sweep to obtain an estimate of C1. The C1-value used in
the estimator function is the average value obtained
over all patches. A similar process was done for C2 and
C3. The overall solve time would be the sum of the X-,
Y-, and Z-sweep times. Similarly, for K1 and K2, the
copy and interpolation times were timed separately and
were averaged. The patches were prepared one at a time
without any OpenMP acceleration. The time taken to
interpolate a surface is divided by the number of cells
to obtain K1. The time taken to copy the patch cells to
the GPU array is timed and this is divided by the num-
ber of cells to obtain K2. We performed around 10 to
15 runs, and each constant was obtained by averaging
over hundreds of patches. We also performed multiple
runs over the same set of patches, and found very little
or no variation in the constant values obtained across
runs.

3.3 Multi-GPU optimization

The application is executed on multiple GPU systems
by decomposing the domain into different subdomains
and assigning a subdomain for an MPI process on a
CPU–GPU system. One MPI process runs per node
(CPU–GPU system) and integrates the patches in its
subdomain by performing GPU kernel invocations.
OpenMP threads perform the prepare and close

operations of the patches in the subdomain on the CPU
cores of a node, while MPI is used for inter-node com-
munications. The patches of the boundary regions of
the subdomains are needed by the neighboring MPI
processes, and hence the processes communicate the
boundary patches at the end of every timestep. In order
to hide the overhead due to communication costs
between different CPU–GPU systems, we re-order the
sequence of computations such that the results of the
boundary patches are obtained with high priority. The
communication of the boundary data is then over-
lapped with the computation of bins with interior
patches. Thus the MPI processes incur smaller idling
times waiting for the boundary patches. The costs due
to communication grow with the size of the problem
and the scale of the cluster. This optimization ensures
that computation costs always dominate the overall
execution time and high scalability is obtained.

3.4 Other optimizations

We identified and addressed other potential bottlenecks
in the kernel implementation. We optimize to improve
the number of coalesced accesses. We implement a
method which uses the final output array as a buffer
for re-ordered writes after each sweep. Sweeping in the
X-direction involves reading and writing in a coalesced
manner since the data is in row-major order. The data
from the sweep is written into the output array. During
the Y-sweep, the data is read from the output array and
the updated data is written in a transposed manner into
the array for coalesced reading during the Z-sweep.
After the Z-sweep, the data is written back to the out-
put array in a coalesced manner. If the final output is
in a transposed format, the CPU performs the task of
writing the data back in the appropriate manner into
the patch structure during the closing phase. To mini-
mize the traffic to global memory as much as possible,
we use the fast, read-only constant memory to supply
the indices and dimensions of the bins.

When the width of the patch swept is 32, we dynami-
cally organize the thread block as multiple units of 32
threads. The advantage of this design is that each col-
umn is acted exclusively by one warp. Thus, there is no

Table 2. Estimation of prepare times.

Patch dimension Predicted copy
time (ms)

Actual copy
time (ms)

Predicted interpolation
time (ms)

Actual interpolation
time (ms)

Overall relative difference
ðpredicted�actual

actual Þ (%)

50,62,50 1.719 1.591 2.094 2.027 5.39
51,55,51 1.586 1.449 1.969 1.860 7.43
35,58,44 0.990 0.865 1.429 1.375 7.98
54,27,43 0.695 0.617 1.127 1.050 9.30
48,49,49 1.278 1.115 1.684 1.597 9.20
31,35,33 0.397 0.345 0.713 0.697 6.54
31,43,29 0.429 0.368 0.765 0.747 7.02

142 The International Journal of High Performance Computing Applications 29(2)

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


need to call synchthreads after reading from or writing
to the shared memory, since the warps execute in lock
step. If, on the contrary, each warp is made to execute
only parts of the columns, then the threads have to per-
iodically synchronize in order to ensure that their nec-
essary neighboring data in the columns are loaded into
shared memory by the other threads acting on the same
columns. This would involve threads waiting for other
threads in the block doing unrelated operations. Our
optimization ensures that the number of active warps is
high throughout the computation. This is illustrated in
Figure 6(a) and (b).

The prepare cost of a patch is an overhead that must
be minimized. We fix the minimum dimensions of a
patch to ensure that the prepare time of the patch is less
than its solve time. We fix the maximum dimensional
size of the patch such that it fits in shared memory,
while allowing for a good load balance. The range of
patch sizes also affects the bin-packing efficiency. We
experimentally set the minimum and maximum sizes of
a patch (including the ghost cells) along any dimension
as 16 cells and 64 cells respectively. Table 3 illustrates
the efficiency of bin-packing for a set of patches, and
the times taken for bin-packing. The efficiency of pack-
ing is the ratio of the total volume used for packing and
the total volume of the bins used. The times shown in
the last column of the table were obtained by perform-
ing five runs and obtaining averages across the runs.
For the chosen dimensions, we find that the packing
efficiency is at least 84%. We note that this procedure
needs to be invoked only when the refinement occurs
and the hierarchy changes. Thus, the cost of bin-
packing is amortized over a number of timesteps.

The inputs for our benchmarking experiments, for
example, to estimate the prepare and solve times, and
to judge the efficiency of the bin-packing procedure,
consist of sets of randomly generated patches. The
input sets are of two classes: stand-alone patches hav-
ing dimensions chosen from uniform distribution, and
patches from randomly generated complete AMR hier-
archies. The experiments show similar results for both

classes of inputs. To generate the random AMR hierar-
chy, the procedure starts with a base grid consisting of
uniform patches (level 0). The patches from higher
levels are formed by choosing an existing patch at ran-
dom and then ‘refining’ it by adding a patch, which
fits within the selected patch, as its child. This proce-
dure is also used to generate the synthetic inputs for
our runtime experiments and is explained in detail in
Section 4.1.

Figure 7 shows the distributions of the patch sizes
along the X-dimensions for all the levels of the AMR
hierarchy with a total of 600 patches across all levels,
having patches of size 323 in the base level. This corre-
sponds to the last row of Table 3. The sizes along the
Y- and Z-dimensions, and for the other number of
patches, show similar distributions.

3.5 Putting it all together

The overall flow of the application execution on CPUs
and GPUs with the specified optimizations are shown
in Figure 8.

4 Experiments and results

4.1 Experimental setup

The tests were run on a Tesla cluster with each node of
the cluster containing one Tesla S1070 GPU and 16
AMD Opteron 8378 cores, and a Fermi cluster with
each node containing one Tesla C2070 GPU and four
Intel Xeon W3550 cores. The prepares and closing
steps on CPUs were parallelized using OpenMP.
Experiments on both platforms were conducted with
four CPU cores and four OpenMP threads per node.
We performed both single-GPU and multi-GPU runs.
Multi-GPU runs on Tesla were performed by using a
single node with four GPUs. Multi-GPU nodes on
Fermi were performed by using four nodes with a sin-
gle GPU per node. We implemented our optimizations
related to the GPU kernel, namely, load-balancing with

Figure 6. Mapping columns to warps.

Raghavan and Vadhiyar 143

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


27 28 29 30 31 32 33 34 35 36
0

10

20

30

40

50

60

70

Histogram of patch lengths along
X−dimension for level 0

length(cells)

Fr
eq

ue
nc

y

(a) Level 0

10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

Histogram of patch lengths along
X−dimension for level 1

length(cells)

Fr
eq

ue
nc

y

(b) Level 1

10 20 30 40 50 60
0

2

4

6

8

10

12

14

Histogram of patch lengths along
X−dimension for level 2

length(cells)

Fr
eq

ue
nc

y

(c) Level 2

10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

Histogram of patch lengths along
X−dimension for level 3

length(cells)

Fr
eq

ue
nc

y

(d) Level 3

10 20 30 40 50 60
0

5

10

15

20

25

Histogram of patch lengths along
X−dimension for level 4

length(cells)

Fr
eq

ue
nc

y

(e) Level 4

10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20

Histogram of patch lengths along
X−dimension for level 5

length(cells)

Fr
eq

ue
nc

y

(f) Level 5

Figure 7. Distributions of patch sizes along the X-dimensions for all levels of AMR hierarchy for 600 patches.

144 The International Journal of High Performance Computing Applications 29(2)

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


bin-packing and kernel optimizations, with two ver-
sions of solvers, namely, RTVD and TVD solvers.
‘Kernel optimizations’ refers to the optimizations
described in Section 3.4, namely, our methods for
improving memory coalescing and avoiding warp syn-
chronization. In our results, we denote the results
obtained with load-balancing as LB and those obtained
with the kernel optimizations as K-Opt. We compared
our method that dynamically selects the number and
set of patches in a batch for kernel execution with a
default scheme in which the total number of patches
advanced in GPU per batch (kernel execution), nfixed, is
equal to the order of the number of SMs (product of
number of streams and number of SMs). The number,
nfixed, is 120 for Tesla and 56 for Fermi systems. The
default scheme employs one thread block per patch,

resulting in load imbalance among threads, while our
scheme performs load-balancing using bin-packing of
patches. The default scheme also employs four streams
to overlap memory transfer with kernel execution. The
CPU–GPU asynchronism is achieved by simultane-
ously preparing and solving consecutive sets of fixed
nfixed patches. We denote this asynchronism as a ‘static
asynchronism’. In our scheme, the asynchronism is
dynamic and adaptive since the batch of patches cho-
sen for preparation on the CPU depends on the esti-
mated time of the previous batch asynchronously
executed on the GPU.

For a given input set, we apply the default scheme
followed by an incremental application of each optimi-
zation. In order to comprehensively test the efficiency
of our methodology, we tested our scheme using both
sets of randomly generated synthetic patches, and real
application domains. For synthetic patches, we devel-
oped a program that randomly generated N (N. 64)
patches. Our program generated an initial domain
(level 0) of 64 patches of size 32 3 32 3 32. We consid-
ered the domain size for the synthetic experiments as
128 3 128 3 128 cells covered with 64 patches orga-
nized as a 4 3 4 3 4 grid, with each patch consisting
of 32 3 32 3 32 cells. Thus the base region is regularly
gridded and all the base patches are uniform. The pro-
gram then performed N2 64 iterations, generating a
random refined patch in each iteration. In each itera-
tion, an existing patch is randomly chosen for refine-
ment. The refinement process involves randomly
generating a patch having dimensions that would fit
within the selected patch. Simultaneously, it is also
ensured that the patch dimensions lie within the mini-
mum and maximum values of 16 and 64 respectively
along any direction. The dimensions are generated with
uniform distribution. The newly generated patch is also
checked to ensure that it does not overlap with any
other existing ones. The program finally outputs the
hierarchy consisting of the patch dimensions, level
details, and the parent–child relationships. This is read
by the AMR code as input. In our experiments, we
show results for six different numbers of patches,
namely, 120, 180, 240, 300, 360, and 420. For each
number of patches, we ran our above-mentioned pro-
gram five times to generate five different datasets. We
show the average values obtained across these five runs
for each number of patches. We show results for differ-
ent numbers of patches, since the volume of computa-
tions in our AMR applications increases with the
increase in the number of patches.

For real application data, we considered the patches
generated for the Euler application suite found in
SAMRAI (Wissink et al., 2001) with the same domain
size. For obtaining these traces from SAMRAI, we exe-
cuted SAMRAI and printed the hierarchy information
consisting of the generated patch dimensions to a file.

Figure 8. Execution flow.

Table 3. Bin-packing efficiency for the chosen bin width and
patch sizes.

Number of
patches

Number
of bins

Efficiency
of packing

Time
taken (ms)

120 41 0.8441 2.459
240 67 0.8689 8.668
360 101 0.8574 11.01
480 142 0.8656 17.21
600 178 0.8516 29.61

Raghavan and Vadhiyar 145

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


This was used in our experiments to generate a similar
hierarchy initialized to random data. The purpose
was to check our performance for realistic patch sizes
and count distributions. We generated three traces by
running a 3D sphere problem for 20 timesteps with a
constant maximum of six refinement levels. We use
pressure gradient and shock as refinement criteria
and the Berger–Rigoutsos algorithm for clustering.
The interpolation scheme used is linear and the mesh
is cell-centered. The three real traces, RT I, RT II,
and RT III, consist of 525, 383, and 635 patches
respectively.

The following subsections show the results for vari-
ous experiments with single- and multi-GPU systems
using synthetic traces and real applications.

4.2 Speedup over CPU-only implementation

We first show the speedups obtained with our GPU
implementation over a CPU-only version. For the lat-
ter, the patches are advanced on the CPU cores using
OpenMP parallelization. Table 4 shows the times per
timestep and the speedups obtained for the Euler appli-
cation for varying input sizes on the Tesla cluster. The
CPU-only version was executed on eight cores. We find
that our optimized GPU implementation gives an aver-
age speedup of about 3 10 over the CPU-only imple-
mentation, thus demonstrating the benefits of GPUs
for these AMR applications.

4.3 Comparison with uniform patch models

Figure 9 shows the performance difference in AMR
models using uniform and non-uniform patches. The
results shown correspond to five execution runs of the
Euler application for varying inputs and domain sizes
on the Fermi system. For each experiment, the first bar
illustrates the result obtained with a fixed patch size of
163, while the second bar shows the execution times for
a scheme with varying patch sizes. We observe that
using non-uniform patches results in 1.21 to 1.88 times
less execution time than when using uniform patches.
This can be attributed to the additional work due to
over-refinement.

4.4 Single-GPU experiments for RTVD solver with
synthetic traces

Figure 10 illustrates the average performance improve-
ments observed in the RTVD solver (GPU kernel) tim-
ing on a single-GPU Tesla system with synthetic inputs
for varying numbers of patches. Each result is an aver-
age for five random traces. In the figure, LB refers to
the load-balancing optimization, and K-Opt, to kernel
optimization. The results show that we obtain average
speedup of about 1.47 due to our load-balancing strat-
egy. This high improvement over the default scheme
shows the efficiency of our load-balancing with bin-
packing and the importance of load-balanced execu-
tions when considering AMR with non-uniform
patches. The results also show an average overall
speedup of about 1.85 for the GPU solver with both the
load-balancing and kernel optimizations. In general, we
obtain 1.27 to 1.64 speedup with load-balancing and
1.41 to 2.22 speedup considering both load-balancing
and kernel optimizations. The average performance
improvement shows little variation with increasing
numbers of patches, thus demonstrating the scalability
of our solver optimizations.

Figure 11 shows the improvement in the overall exe-
cution time for a timestep, due to the solver optimiza-
tions and with the adaptive asynchronism between
CPU and GPU executions. The timestep involves the

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Experiment

Ti
m

e(
se

c)

Execution Times Uniform Vs. Non−uniform Patches

0.82

1.79

0.39

2.56

1.72

0.68

0.95

0.29

1.46 1.41

Uniform Patch Model
Non−uniform Patch Model

Figure 9. Execution times with uniform and non-uniform
patches for the Euler application on a single-GPU Fermi C2070.

Table 4. Speedups over CPU-only version for Euler application
on a single-GPU Tesla S1070.

Patches CPU with
OpenMP (s)

GPU
optimized (s)

Speedup

120 2.6413 0.2958 8.93
180 3.7107 0.3865 9.60
240 6.3279 0.5490 11.52
300 8.2655 0.6787 12.18
360 9.7024 0.7936 12.22
420 11.6559 1.1006 10.59

146 The International Journal of High Performance Computing Applications 29(2)

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


numerical integrations, preparation, fix-ups, and clos-
ing steps. We do not consider mesh refinement since

our work focuses on irregular workloads in the integra-
tion and preparation steps. In the figure, SA refers to
the static default asynchronism and AA refers to adap-
tive asynchronism. With the static scheme of asynchron-
ism, our method with the optimized solver shows an
average speedup of only 1.79 over the default scheme,
which is less than the performance improvement due to
only the optimized solver shown earlier. This shows that
not performing careful asynchronous executions can
diminish the performance benefits due to GPU execu-
tions. The results also show an average speedup of about
1.85 in the overall execution time due to adaptive asyn-
chronism. In general, we obtain 1.51 to 2.22 speedup
with our overall method for the overall application. The
gains from adaptive asynchronism are due to two rea-
sons. Mainly, it ensures that the maximum amount of
work on the CPU and GPU overlaps thereby hiding the
cost of operation. Secondly, it provides as much work as
possible to the GPU, reducing the number of kernel
invocations and utilizing the memory bandwidth. The
average performance improvement shows little variation
with increasing numbers of patches, thus demonstrating
the scalability of our overall method as well.

Figures 12 and 13 show the results with synthetic
traces for the single-GPU Fermi system. The results
show that we obtain average speedup of about 1.47 due
to our load-balancing strategy and an average overall
speedup of about 1.67 for the GPU solver with both the

120 180 240 300 360 420
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Patch Count

Ti
m

e(
se

c)
Solver Optimizations for Synthetic Inputs Tesla

0.49

0.84

0.97

1.25

1.46

1.80

0.33

0.56

0.66

0.90
0.96

1.18

0.29

0.43
0.52

0.74
0.81

0.92

Default Scheme
LB
LB+K−OPT

Figure 10. Performance gains in the RTVD solver for synthetic
inputs on a single-GPU Tesla S1070.

140 210 280 350 420 490
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Patch Count

Ti
m

e(
se

c)

Solver Optimizations for Synthetic Inputs Fermi

0.20

0.28

0.39

0.52

0.59

0.68

0.13

0.19

0.27

0.35

0.41
0.45

0.11

0.17

0.22

0.31

0.37

0.41

Default Scheme
LB
LB+K−OPT

Figure 12. Performance gains in the solver for synthetic inputs
on a single-GPU Fermi C2070.

120 180 240 300 360 420
0

0.5

1

1.5

2

2.5

Patch Count

Ti
m

e(
se

c)

Adaptive Asynch results for Synthetic Inputs Tesla

0.55

0.94

1.10

1.41

1.65

2.00

0.35

0.51
0.61

0.85
0.94

1.04

0.33

0.48
0.59

0.79
0.87

0.96

Default Scheme
Opt. Solver with SA
Opt. Solver with AA

Figure 11. Overall performance gains for synthetic inputs on a
single-GPU Tesla S1070.

Raghavan and Vadhiyar 147

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


load-balancing and kernel optimizations. In general, we
obtain 1.37 to 1.59 speedup with load-balancing and
1.47 to 1.92 speedup considering both load-balancing
and kernel optimizations. The overall improvement in
solver timings is lower than what is observed for the
Tesla system. The gains due to load-balancing are
almost the same, while the net improvement with the
kernel optimizations is lower. This could probably be
attributed to the improved memory system of Fermi
with its cache as well as the facility to execute concur-
rent kernels from different streams. We observe a simi-
lar overall speedup in the range of 2.22 compared to the
gains obtained on the Tesla system.

4.5 Single-GPU experiments with real applications

Table 5 gives the performance results on Tesla when
our methodology is applied to patches formed in the

execution of the three real applications. The table
shows both the solve times corresponding to GPU ker-
nel executions, and the overall times for the entire
application that include both the solve times on the
GPU and the times for preparation and closing of
patches on the CPU. We observe gains similar to the
results with synthetic inputs. We obtain speedup of at
least 1.46 in the performance of the GPU solver with
our load-balancing and kernel optimizations, and
speedup of at least 1.67 in the performance of the over-
all applications with our overall method.

Table 6 gives the performance results on Fermi for
real traces. We obtain speedup of at least 1.41 in the
performance of the GPU solver with our load-
balancing and kernel optimizations, and speedup of at
least 1.48 in the performance of the overall applications
with our overall method. We observe that the overall
execution times of both the default and the optimized
schemes are lower when compared to the values
observed for Tesla. We also observe a lower perfor-
mance gain in the solver stage compared with that
noted for synthetic inputs. These are due to the
improved memory system of the Fermi system.

Thus our methods show high performance improve-
ments over the default scheme with both synthetic and
real traces on the single-GPU system of both Tesla and
Fermi clusters.

4.6 Multi-GPU experiments

Figure 14 shows the execution time results for our
multi-GPU experiments with the four-node, four-GPU
(one GPU each) Fermi for the RTVD scheme on real
traces, with and without our multi-GPU optimization
of communication–computation overlap, described in
Section 3.3, along with the execution times of the
default scheme. The figure also shows the speedups
obtained by multi-GPU executions with respect to the
results for single-GPU executions shown in Table 6.
We find that multi-GPU executions without
communication–computation overlap show about a
1.47 speedup over the default scheme for four GPUs.
Applying our optimization of communication–
computation overlap results in up to 1.16 additional
speedup. We also observe speedups of 3.4 without

140 210 280 350 420 490
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Patch Count

Ti
m

e(
se

c)

Adaptive Asynch results for Synthetic Inputs Fermi

0.22

0.31

0.44

0.57

0.66

0.76

0.12

0.19

0.24

0.34

0.40

0.46

0.11

0.18

0.23

0.30

0.37

0.42

Default Scheme
Opt. Solver with SA
Opt. Solver with AA

Figure 13. Overall performance gains for synthetic inputs on a
single-GPU Fermi C2070.

Table 5. Improvements in RTVD solver time with load-balancing and kernel optimizations, and overall improvements on Tesla
S1070 for real traces.

Trace Default scheme (s) Scheme with optimized solver (s) Speedups

GPU solver time Overall time GPU solver time Overall time

(I) (II) (III) with
LB (IV)

with LB +
K-Opt (V)

with
SA (VI)

with
AA (VII)

(VIII = (V/II)) (IX = VII/III)

RT I 3.5298 3.8517 2.6092 2.4164 2.6080 2.3023 1.46 1.67
RT II 1.0875 1.1647 0.8148 0.6212 0.6912 0.5798 1.75 2.00
RT III 3.3184 3.6824 2.5821 1.8230 1.9633 1.9446 1.82 1.89

148 The International Journal of High Performance Computing Applications 29(2)

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


communication–computation overlap, and 3.8 with our
optimization of communication–computation overlap
for four GPUs, over single-GPU executions. The trends
in the figure also show that multi-GPU executions with
our communication–computation overlap optimization
show better scalability than the other two schemes. We
observe that we get a speedup of 3.8 and 3.6 for the
first and second traces respectively while we obtain
only around 2.8 for the third trace. It is also seen for
the third trace that there is not any significant increase
in speedup while going from three to four GPUs. This
is because currently we follow a simple domain decom-
position technique to distribute patches, without any
load-balancing strategy to balance the work among the
MPI processes. However, we note that even in this case
we obtain up to 1.56 speedup over the default scheme.

4.7 Comparison with weighted average flux scheme

The weighted average flux (WAF) (Toro, 1992) solver
is another directionally split scheme with similar sweep-
ing patterns and a column update model like the
RTVD scheme. Thus, our proposed optimizations are
also applicable for this scheme. Figure 15 illustrates the
performance benefits obtained with the WAF scheme
for non-uniform patches on the Tesla system. We
observe speedups in the range 1.28–1.41 in the solver
times, and up to 1.23 speedup due to load-balancing.

4.8 Comparison with Enzo

Enzo (Wang et al., 2010) is an existing method for
AMR applications with non-uniform patches. It imple-
ments the TVD scheme for the GPU solver. For com-
parison with Enzo, we applied our optimizations of
bin-packing-based load-balancing and kernel optimiza-
tions to the Enzo TVD solver, and used adaptive asyn-
chronism of CPU–GPU executions. We show results
for only the Fermi system since we obtained similar
results on the Tesla system.

Figure 16 illustrates the average performance
improvements observed in the TVD solver timings on
the Fermi system for synthetic inputs. The results show

that we obtain average speedup of about 1.06 due to
our load-balancing strategy and an average overall
speedup of about 1.39 for the GPU solver with both
the load-balancing and kernel optimizations. Unlike
the RTVD case, the load-balancing scheme gives con-
siderably lower performance benefits. We observe that
the TVD scheme is by default well load-balanced with
thread idling constrained only to the last block. The
TVD kernel, however, solves only one patch at a time
and thus potentially incurs overheads due to multiple
kernel launches, poor utilization when the total number
of cells in the patch is lower, and also suboptimal use
of the CPU–GPU memory bandwidth. Our 3D bin-
packing scheme packs together multiple patches and
ensures that the size of the patch being solved substan-
tially utilizes the GPU cores. In terms of kernel optimi-
zations, we note that the default Enzo scheme does not
utilize streams to overlap its memory transfers with
kernel executions. We implement the same in our
model and observe that the major bulk of the gains is
due to this optimization.

The Enzo scheme does not overlap operations on
the CPU like interpolating ghost zones with the GPU
computations. Thus, the default scheme does not have
any CPU–GPU asynchronism. Figure 17 illustrates the
gains observed due to our adaptive asynchronism
scheme on the Fermi system for the Enzo solver for the
overall executions. We obtain up to 1.92 speedup for
the advance phase.

For real traces, we observe speedup of at least 1.50
in solver times on Fermi for the TVD scheme, as shown
in Table 7. In this case, the load-balancing scheme also
does considerably better than what was observed for
synthetic inputs. We see a speedup of about 1.14 for the
second case due to the load-balancing alone. Table 8
shows the overall improvement in execution time when
our adaptive asynchronism scheme is applied with the
solver optimizations to the real traces on Fermi. We
observe that our methods result in speedup of at least
1.98.

We also performed comparisons of multi-GPU
executions with Enzo. Figure 18 shows the improve-
ments in multi-GPU executions with four nodes for real

Table 6. Improvements in RTVD solver time with load-balancing and kernel optimizations, and overall improvements on Fermi
C2070 for real traces.

Trace Default scheme (s) Scheme with optimized solver (s) Speedups

GPU solver time Overall time GPU solver time Overall time

(I) (II) (III) with
LB (IV)

with LB +
K-Opt (V)

with
SA (VI)

with
AA (VII)

(VIII = (V/II)) (IX = VII/III)

RT I 1.2277 1.3250 0.9070 0.7900 0.8816 0.7486 1.55 1.77
RT II 0.2983 0.3283 0.2362 0.2106 0.2257 0.2223 1.42 1.48
RT III 1.0950 1.1757 0.7862 0.7397 0.8084 0.6941 1.48 1.69

Raghavan and Vadhiyar 149

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


traces on the Fermi system. We find that our multi-
GPU optimizations obtain an overall speedup of at
least 2.04 over Enzo multi-GPU executions. The opti-
mized scheme with communication–computation over-
lap achieves up to a 3.34 speedup while the optimized

(a) Real trace 1

(b) Real trace 2

(c) Real trace 3

Figure 14. Multi-GPU performance improvement for the
RTVD scheme on Fermi C2070 for real traces with four nodes.

120 180 240 300 360 420
0

0.5

1

1.5

2

2.5

3

3.5

4

Patch Count

Ti
m

e(
se

c)

WAF Optimizations for Synthetic Inputs Tesla

0.81

1.34

1.75

2.36

2.88

3.44

0.67

1.21

1.52

1.97

2.62

2.86

0.61

0.93

1.32

1.78

2.15

2.54

Default WAF Scheme
LB
LB+K−OPT

Figure 15. Performance gains for WAF solver on single-GPU
Tesla S1070.

140 210 280 350 420 490
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Patch Count

Ti
m

e(
se

c)

Solver Optimizations for Synthetic Inputs Fermi

0.10

0.14

0.19

0.24

0.30

0.36

0.09

0.13

0.17

0.23

0.28

0.34

0.08

0.11

0.14

0.18

0.22

0.26

Enzo Solver
LB
LB+K−OPT

Figure 16. Performance gains in the TVD solver for synthetic
inputs on single-GPU Fermi C2070.

150 The International Journal of High Performance Computing Applications 29(2)

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


version without the overlap method obtains only 2.92.
We see a similar degradation in performance for the third
trace as observed for the RTVD scheme, since the same
data distribution strategy is followed in both cases.

5 Related work

While there have been many works dealing with AMR
for single- and multi-CPU environments (MacNeice

et al., 2000; Wissink et al., 2001; Deiterding, 2005), the
works dealing exclusively with block-structured AMR
for GPGPUs are limited, to the best of our knowledge.
The typical CPU-based optimization techniques cannot
be trivially extended for efficient execution on GPUs.
Most efforts on load-balancing for the CPU focus on

(a) Real trace 1

(b) Real trace 2

(c) Real trace 3

Figure 18. Multi-GPU performance improvement for the TVD
scheme on Fermi C2050 for real traces with four nodes.

140 210 280 350 420 490
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Patch Count

Ti
m

e(
se

c)
Adaptive Asynch results for Synthetic Inputs Fermi

0.14

0.21

0.26

0.34

0.41

0.45

0.11

0.16

0.19

0.27

0.32
0.34

0.08

0.12
0.14

0.19

0.23
0.24

Enzo
Opt. Solver with No Asynch
Opt. Solver with AA

Figure 17. Overall performance gains for synthetic inputs on
single-GPU Fermi C2070.

Table 8. Overall improvements for TVD scheme on single-
GPU Fermi C2050 for real traces.

Trace Enzo
(s)

Opt. solver with
no asynchronism (s)

Opt. solver
with AA (s)

Speedup

RT I 0.9662 0.6913 0.4880 1.98
RT II 0.4455 0.1998 0.1392 3.2
RT III 0.8996 0.6176 0.4248 2.12

Table 7. Improvements in TVD solver time with load-balancing
and kernel optimizations on Fermi C2050 for real traces.

Trace Enzo solver (s) LB (s) LB + K-Opt (s) Speedup

RT I 0.7063 0.6348 0.4716 1.50
RT II 0.3242 0.2828 0.1358 2.39
RT III 0.6460 0.5449 0.4159 1.55

Raghavan and Vadhiyar 151

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


dividing the workload among various distributed pro-
cessors while keeping the communication volume mini-
mal (Aluru and Sevilgen, 1997).

While dealing with GPU systems, the priority is to
use the architectural aspects for efficient execution.
GAMER (Schive et al., 2010) is a GPU astrophysics
codebase which implements a hydrodynamics-based
AMR scheme. GAMER avoids the problem of load-
balancing by fixing all patches to be of the same size.
Uniform patches can lead to over-refinement of
regions, and hence result in increased computational
costs. Enzo (Wang et al., 2010) deals with a similar
large-scale application which implements GPU solvers
which can deal with arbitrary patch sizes. While Enzo
deals with arbitrary patches, it fails to exploit concur-
rency between the CPU and GPU, and involves a large
number of GPU kernel invocations. Our experiments
have shown that our adaptive and asynchronous strate-
gies show large improvements over the Enzo model.

Uintah (Humphrey et al., 2012) is an object-oriented
framework for solving fluid–structure interaction prob-
lems which recently proposed a CPU–GPU version that
uses a task-graph-based approach for scheduling com-
putations. The runtime system handles the details of
asynchronous memory copies to and from the GPU.
Carpet (Blazewicz et al., 2012) is another such compu-
tational framework for massively data parallel codes
based on the Cactus codebase. In our work, we consider
directionally split hydrodynamics solvers to optimize,
which require a different methodology from Uintah’s
and Carpet’s applications. For these solvers, Uintah
and Carpet do not address issues such as thread idling
due to irregular workloads. When Uintah uses the tiled
algorithm for refinement, the patches generated are reg-
ular which could potentially lead to over-refinement.

6 Conclusions and future work

In this work, we propose optimizations for the efficient
execution of block-structured AMR applications with
arbitrary patch sizes, on GPGPUs. We proposed a
novel solution based on 3D bin-packing that serves as
a load-balancing technique while simultaneously reduc-
ing thread idling. We designed a scheme for exploiting
the asynchronism between the CPU and the GPU by
adaptively selecting the workload at each phase. Our
optimizations for multi-GPU platforms include re-
ordering the computations to compute the boundary
patches first for overlapping its communication with
the computation of the interior patches. Our experi-
ments with synthetic and real data, for single-GPU and
multi-GPU executions, on Tesla S1070 and Fermi
C2070 clusters, show that our strategies result in up to
3.23 speedup in performance over existing strategies.
Our bin-packing-based load-balancing gives perfor-
mance gains of up to 39%, kernel optimizations give

an improvement of up to 20%, and our strategies for
adaptive asynchronism between CPU–GPU executions
give performance improvements of up to 17% over
default static asynchronous executions. In the future,
we would like to explore making the bin sizes adaptive
and introduce more dynamic schemes for assigning
thread blocks to workloads.

Acknowledgements

We would like to thank Dr. Bobby Philip of Oak Ridge
National Laboratory for his significant contributions and
very useful comments on improving the quality of the paper.

Funding

This research was partly supported by the NVIDIA CUDA
Research Center (CRC) award and by the Centre for
Development of Advanced Computing research project
(Award number: CDAC/ESE/STV/0016).

References

Aluru S and Sevilgen F (1997) Parallel domain decomposition

and load balancing using space-filling curves. In: Proceed-

ings of the fourth international conference on high-

performance computing, pp. 230–235.
Berger M and Oliger J (1984) Adaptive mesh refinement for

hyperbolic partial differential equations. Journal of Com-

putational Physics 53(3): 484–512.
Blazewicz M, Brandt S, Diener P, et al. (2012) A massive data

parallel computational framework for petascale/exascale

hybrid computer systems. In: De Bosschere K, et al. (eds)

Applications, Tools and Techniques on the Road to Exascale

Computing (Advances in Parallel Computing, vol. 22). Clif-

ton, VA: IOS Press.
Crainic T, Perboli G and Tadei R (2008) Extreme point-based

heuristics for three-dimensional bin packing. INFORMS

Journal on Computing 20(3): 368–384.
Deiterding R (2005) Detonation structure simulation with

AMROC. In: Proceedings of high performance computing

and communications international conference, HPCC 2005,

pp. 916–927.
Fryxell B, Olson K, Ricker P, et al. (2000) FLASH: An adap-

tive mesh hydrodynamics code for modeling astrophysical

thermonuclear flashes. The Astrophysical Journal Supple-

ment Series 131(1): 273.
Garey M and Johnson D (1979) Computers and Intractability:

A Guide to the Theory of NP-Completeness. New York,

USA: W. H. Freeman & Co. ISBN: 0716710447.
Humphrey A, Meng Q, Berzins M, et al. (2012) Radiation

modeling using the Uintah heterogeneous CPU/GPU run-

time system. In: Proceedings of the first conference of the

extreme science and engineering discovery environment

(XSEDE‘12).
LeVeque RJ (2002) Finite Volume Methods for Hyperbolic

Problems (Cambridge Texts in Applied Mathematics).

Cambridge: Cambridge University Press.
MacNeice P, Olson K, Mobarry C, et al. (2000) PARA-

MESH: A parallel adaptive mesh refinement community

toolkit. Computer Physics Communications 126: 330–354.

152 The International Journal of High Performance Computing Applications 29(2)

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


Martello S and Toth P (1990) Knapsack Problems: Algorithms

and Computer Implementations. New York, NY: John

Wiley & Sons.
NVIDIA (2014) C Programming Guide Version 6.0. Avail-

able at: http://docs.nvidia.com/cuda/pdf/CUDA_C_

Programming_Guide.pdf.
Schive HY, Tsai YC and Chiueh T (2010) GAMER: A GPU-

accelerated adaptive mesh refinement code for astrophy-

sics. Astrophysical Journal Supplement Series 186: 457.
Toro E (1992) The weighted average flux method applied to

the Euler equations. Philosophical Transactions of the

Royal Society of London Series A: Physical and Engineer-

ing Sciences 341(1662): 499–530.
Trac H and Pen U (2003) A primer on Eulerian computa-

tional fluid dynamics for astrophysics. Publications of the

Astronomical Society of the Pacific 115(805): 303–321.
Wang P, Abel T and Kaehler R (2010) Adaptive mesh fluid

simulations on GPU. New Astronomy 15(7): 581–589.
Wissink A, Hornung R, Kohn S, et al. (2001) Large scale par-

allel structured AMR calculations using the SAMRAI

framework. In: Proceedings of the 2001 ACM/IEEE con-

ference on supercomputing (CDROM).
Ziegler U (2008) The NIRVANA code: Parallel computa-

tional MHD with adaptive mesh refinement. Computer

Physics Communications 179(4): 227–244.

Author biographies

Hari K Raghavan obtained his MSc(Engg) degree from
the Supercomputer Education and Research Centre,
Indian Institute of Science, in 2013. He received his
BTech degree in Computer Science and Engineering from
the National Institute of Technology, Tiruchirapalli. He
is currently employed at MathWorks India.

Sathish Vadhiyar is an Associate Professor in the
Supercomputer Education and Research Centre,
Indian Institute of Science. He obtained his B.E. degree
in the Department of Computer Science and
Engineering at Thiagarajar College of Engineering,
India, in 1997 and received his Masters degree in
Computer Science at Clemson University, USA, in
1999. He graduated with a PhD from the Computer
Science Department of the University of Tennessee,
USA, in 2003. His research areas are in building appli-
cation frameworks including runtime frameworks for
irregular applications, hybrid execution strategies, and
programming models for accelerator-based systems,
processor allocation, mapping and remapping strate-
gies for Torus networks for different application classes
including irregular, multi-physics, climate and weather
applications, middleware for production supercompu-
ter systems, and fault-tolerance for large-scale systems.
Vadhiyar is a member of the IEEE and has published
papers in peer-reviewed journals including JPDC,
CPE, and IJHPCA, and at conferences including SC,
IPDPS, ICS, HPDC, ICPP, HiPC, and CCGrid. He is
an Associate Editor of IEEE Transactions on Parallel
and Distributed Systems (TPDS). He was a tutorial
chair in eScience 2007, and session chair in eScience
2007 and ICS 2013, and has served on the program
committees of conferences related to parallel and grid
computing including IPDPS, ICPP, CCGrid, eScience,
and HiPC. He has won awards including the NVIDIA
Innovation Award in 2013, the Yahoo! Faculty
Research Award in 2011, the Indian National
Academy of Engineering (INAE) Young Engineer
Award in 2009, and a University of Tennessee citation
for Extraordinary Professional Promise in 2003.

Raghavan and Vadhiyar 153

 by guest on April 27, 2015hpc.sagepub.comDownloaded from 

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://hpc.sagepub.com/

