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• Asynchronous execution between CPU and GPU is improved.
• Redundant computations found in the default scheme are eliminated.
• The order of computations is changed to get the high priority result first.
• Visualization of the high priority data is overlapped with the computation of the remaining portions.
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a b s t r a c t

Adaptive Mesh Refinement is a method which dynamically varies the spatio-temporal resolution of
localized mesh regions in numerical simulations, based on the strength of the solution features. In-
situ visualization plays an important role for analyzing the time evolving characteristics of the domain
structures. Continuous visualization of the output data for various timesteps results in a better study of
the underlying domain and themodel used for simulating the domain. In this paper, we develop strategies
for continuous online visualization of time evolving data for AMR applications executed on GPUs. We
reorder the meshes for computations on the GPU based on the users input related to the subdomain that
he wants to visualize. This makes the data available for visualization at a faster rate. We then perform
asynchronous executions of the visualization steps and fix-up operations on the CPUs while the GPU
advances the solution. By performing experiments on Tesla S1070 and Fermi C2070 clusters, we found
that our strategies result in 60% improvement in response time and 16% improvement in the rate of
visualization of frames over the existing strategy of performing fix-ups and visualization at the end of
the timesteps.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The numerical solutions for many science and engineering
applications are obtained by discretizing the partial differential
equations used to model the problem. The computational domain
is covered by a set of meshes (also referred to as grids or patches)
over which numerical methods are applied. The accuracy of the
numericalmethoddepends on the granularity of themesh. Inmany
applications, features of interest are found in localized portions
of the domain. Adaptive Mesh Refinement (AMR) [1] is a method
which dynamically varies the spatio-temporal resolution of mesh
regions based on the strength of the solution feature in the region.

There exist many variants of the AMR implementation based
on factors such as mesh characteristics (structured [17,11] and

∗ Corresponding author.
E-mail addresses: hari.k.raghavan@gmail.com, hari@ssl.serc.iisc.in

(H.K. Raghavan), vss@serc.iisc.ernet.in (S.S. Vadhiyar).

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.03.002
unstructured [13,7]) and models of refinement (block based
[17,11,12] and cell based [5]). Some block structured AMR libraries
like PARAMESH [11] and FLASH [4] use uniform patches in which
all patches have the same number of cells, while others including
SAMRAI [17], Enzo [16], etc., cover the regions of interests with
patches of non-uniform sizes, where the patch configuration can
vary arbitrarily. Several works have dealt with parallelization
of AMR for distributed multi-CPU and shared memory systems
[3,2,17,7]. The basic parallelization strategy involves decomposing
the hierarchy of meshes and distributing the work among the
worker units (cores or nodes of the cluster). Each unit computes
the solution for the subdomain allotted to it while periodically
synchronizing with other nodes to obtain boundary data [8].

There are very few works dealing with AMR on general
purpose graphics processing units (GPGPUs) [15,16,6]. GAMER
(GPUaccelerated Adaptive MEsh Refinement code) [15] is one of
the first implementations of AMR astrophysics codes for GPUs.
GAMER follows a block-structured octree model of refinement
in which every level is composed of a set of mesh units called
patches. GAMER provides CUDA based kernel implementations
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Fig. 1. AMR patch hierarchy with three levels of refinement. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

of 3D hydrodynamics and Poisson solvers. The GPU kernel
advances the solutions while the CPU handles the AMR control
functions and provides the input for the GPU solver. The GAMER
execution scheme involves preparing patch data for the GPU
solver, asynchronously solving the data on the GPU and storing
the resulting data back in the CPU data structure. The stored
solution is used to correct coarser patches by fix-up operations
and to decide whether a level needs to be refined further. GAMER
utilizes a hybrid OpenMP–CUDA parallelism strategy for efficient
heterogeneous executions of AMR applications. It also uses CUDA
streams to overlap memory transfers to the GPU with kernel
executions.

In-situ visualization plays an important role for analyzing the
time evolving characteristics of the domain structures. Continuous
visualization of the output data for various timesteps results in
a better study of the underlying domain and the model used for
simulating the domain. While GAMER provides for asynchronous
executions of phases of AMR on CPUs and GPUs, it performs
fix-up operations after all the patches are solved by the GPUs.
Consequently, it supports visualization only at the end of the
timesteps. In this paper, we develop strategies for continuous
visualization of time evolving data for AMR applications. We first
reorder the computations for meshes on the GPU based on the
user’s input related to the subdomain that he wants to visualize
thereby solving the subdomain required for visualization with
high priority. We accommodate the fix-up operations and the
visualization steps during the times CPU cores are idle rather than
waiting for the timestep to complete. By performing experiments
on Tesla S1070 and Fermi C2070 clusters, we found that our
strategies result in up to 60% improvement in response time and
16% improvement in the rate of visualization of frames over the
strategy of performing fix-ups and visualization at the end of the
timesteps.

Section 2 describes the fundamental AMR and GAMER opera-
tions and defines the terminologies used. Section 3 presents our
strategies to overcome the performance bottlenecks for fast on-
line visualization. Section 4 describes the experimental setup and
the various modes of operation and presents the results, along
with salient observations. Section 8 presents conclusions and fu-
ture work.

2. Background

The AMR approach considered in this work is the block-
structured AMR developed by Berger and Oliger [1]. Fig. 1 shows a
2D AMR hierarchy with three levels of refinement. The red borders
indicate the coarse–fine boundaries. A brief summary of the block-
structured AMR algorithm is as follows [12].

The simulation proceeds in discrete units called timesteps. Every
application of the numerical method on a mesh advances the
simulation time by an amount. Starting from the coarsest level,
the solution values are advanced in time using the numerical
difference method. Once all the levels have been advanced, an
operation referred to as fix-up is done. The fix-upoperation consists
of two sub-operations:

1. Restrict: Themore accurate solution values from the finer mesh
cells are injected into the underlying coarse mesh cells. The fix-
up operation replaces the value of the coarse mesh cell by the
average of the overlying fine mesh cells.

2. Flux correction: The finer level fluxes are used to adjust the
solution values of coarse cells at the coarse–fine boundaries.

The pseudo code for the algorithm can be represented as follows:

Advance (level lv)
do

Numerical_Integration (lv )
Advance (lv+1 )
fix-up (lv <- lv+1 )
Refine (lv )

done

GAMER follows the octree model of refinement and restricts
every patch to have the same number of cells (set at 83). This
restriction avoids synchronization overheads since all patches
have the same workload. Since patches are always formed in
groups of 8, every patch belongs to a patch group which consists
of itself and its 7 siblings. The advance step for a level in GAMER
consists of 3 phases:

1. Preparation: the array containing input data for the GPU solver
is filled from the patch data structure. The number of patch
groups advanced simultaneously is termed as the work group.
The prepare step is performed on the CPU.

2. Solve: the input array containing the prepared work group is
solved asynchronously on the GPU and the solution is stored in
the output array and copied back to the CPU.

3. Closing: the solved values from the output array are stored in
the corresponding patch data structure. This step also stores
the computed flux values along the coarse–fine boundaries. This
step is performed on the CPU.

GAMER takes advantage of the asynchronous nature of the GPU
kernel to overlap the solve step of a particular work group on
the GPU along with the preparation of the next work group and
the closing of the previous work group from the output array.
This is illustrated in Fig. 2(a). GAMER provides scripts for enabling
the visualization of the solution output using standard tools like
Gnuplot and VisIt [10], a popular and efficient software used for
scientific visualization. We assume that a set of subdomains are
specified a priori for visualization (target regions). The user can
select various 2D slices from the target region for visualization. The
data from the leaf patches overlaying the target regions are output
at the end of every timestep and are sent to a visualization server
for processing.

3. Methodology

To our knowledge, GAMER is an established software for AMR
execution on GPUs involving asynchronous operations on CPU
and GPU cores. However, the execution flow in GAMER results in
performance bottlenecks for fast online visualization.

1. Application execution with GAMER on a GPU system results in
large idling times on CPUs. The time taken for the solve step on
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(a) Default scheme. (b) With asynchronous fix-ups and visualization.

Fig. 2. Workflow between the CPU and GPU.
the GPU is up to 1.7 times the combined total of preparation
and closing step. This leads to the CPU being idle while the GPU
is executing. We refer to this CPU idle time as gap. This is a
potential source of asynchronism.

2. The fix-up operation is donewhen all levels have been advanced
in a timestep. This results in the serialization between the level
advances and fix-ups. We explore to see if it is possible to
overlap some fix-up operations alongwith the computations on
the GPU.

3. The restrict operation completely replaces the contents of a
patch using the data from the child patch group. We observe
that the patch needs to be computed only if it is adjacent
to a coarser patch, in order to correct the flux values of the
neighboring coarse patch.

4. In the default scheme, the visualization is done after the entire
hierarchy is advanced for the timestep, even if the targeted
regions for visualization correspond to only a subset of all the
patches. Visualization can be performed at a faster rate if the
fix-up and visualization steps are performed in the gaps.

We propose the following optimizations:
1. Asynchronous fix-up operations are carried out in the CPU–GPU

gap. This is done by identifying patches that can be used to fix
their parent patches once they are solved and closed.

2. Patch groups whose values will be completely overwritten
during the fix-up phase are identified and are skipped from
being solved. These patch groups are directly updated during
their fix-ups.

3. The computations of the patches are reordered so that the
patches corresponding to the region of the problem domain
targeted for visualization (as specified in the user input) are
computed at the earliest so that visualization of these patches
can commence as early as possible.
4. Visualization of the patches are also accommodated in the
CPU–GPU gaps, instead of at the end of the timesteps, to
increase the throughput for visualization.

The default and the optimized schemes are illustrated in Fig. 2(a)
and (b) respectively.

3.1. Asynchronous fix-ups

The fix-up operation proceeds from the finest level to the
coarsest to ensure that the most accurate value is used to correct
the coarser patch. We observe that unrefined patches which are
not part of coarse–fine boundaries are ready to fix-up their parent
patch for the timestep immediately after they are solved and
closed. By definition, these patches do not have children and do
not have neighbor patches of finer levels. Hence, these patches do
not have to be fixed by the restrict operation or the coarse–fine
flux correction operation. We term these as clean patches. These
patches represent a subset of the leaves of the AMR octree, i.e., leaf
patches that do not border finer patches. We note that the entire
set of patches in the finest level are eligible for asynchronous fix-
up. Once a patch group is closed, the constituting patcheswhich are
clean can fix their parent patch. If the entire patch group is clean
(as in the case of the finest level), this leads to a complete fix-up.
Otherwise, it would result in a partial fix-up with the rest of the
fix-up of the parent patch hierarchy at the end of the timestep or
when the remaining children of the patch become clean.

We estimate the maximum number of fix-ups that can be
accommodated in a gap bymeasuring the time taken for the fix-up
operations and determining the approximate gap available. While
the GPU solves a work group, an appropriate number of clean
patches are selected based on the determined estimates and these
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Fig. 3. Dependencies for completely refined patch groups.

patches are fixed.We found using experiments that the total gap in
a timestep is sufficient to accommodate the fix-ups for all the clean
patches. The concurrent fix-up operation also leads to previously
unclean patches to become clean after their fix-up. Such patches
are also considered to fix-up their parent patches during the gaps.

3.2. Pruning patch groups for reducing computations

Since the basic unit of execution on the GPU is a patch group,we
identify patch groups which can be pruned from the computation
list. A patch group which is completely refined (i.e., all 8 patches
of the patch group are refined) will have its values completely
replaced by the average of child patch group values during the
restrict operation. The computation of such a patch group becomes
necessary only when it is part of a coarse–fine boundary, in which
case the flux values from its solution are needed to correct the
adjoining coarse patch. Otherwise, such patch groups need not be
computed and can have their values updated straightaway during
their fix-ups. We term these as avoidable patch groups.

The aforementioned dependency issue is illustrated in Fig. 3.
Patch b is an unrefined patch belonging to level l − 1. Patch a is
a neighboring patch of refinement level l. Thus, patch b is a part of
a coarse–fine boundary. Patch a is completely refined and its chil-
dren are patches w, x, y, z of refinement level l + 1. Patch b must
be corrected by the flux values computed by patch a through the
coarse–fine boundary fix-up operation. Due to this, patch amust be
computed even though its values will be overwritten by w, x, y, z
by the restrict operation. For AMR implementations where the re-
finement procedure ensures that neighboring patches do not dif-
fer bymore than one level, this dependency does not arise. GAMER
imposes this constraint and thus all the completely refined patch
groups are avoidable.
For a given patch hierarchy, we build an index list of the patch
groups that need to be solved at every refinement level. When
a level is advanced, the patch groups from the list are solved,
omitting the avoidable patch groups. The fix-up operations are
done for all the patch groups, by which the values of the avoidable
patch groups are updated. In the hydrodynamics application, the
amount of avoidable patch groups is significant. The pruning of
such patch groups results in at least 10% improvement in the
overall execution time.

3.3. Reordered execution for visualization

Based on the a priori specification of the region targeted
for visualization, the sub-hierarchy of patches encompassing the
target regions is identified. Every patch stores the information
about its coordinates in the computational domain. The patches
of all levels whose ranges overlap with the targeted regions
are identified and added to a computation list. Thus, the patch
hierarchyH is decomposed into 2 segments: T corresponding to the
target regions and H–T which corresponds to the rest of the patch
hierarchy. The partitioning procedure needs to be done every time
refinements occur and the hierarchy changes.

In our application, we consider the second order accurate
total variation diminishing (RTVD) hydrodynamics solver of
GAMER [14]. The governing 3D equations are solved by first apply-
ing a forward sweep in the order xyz, and subsequently a backward
sweep in the order zyx. The solutions from the forward sweep are
required for the backward sweep. In the default scheme, the hierar-
chyH is solved once by forward sweep and then again by backward
sweep. In the proposed method, H is solved in forward sweep like
in the normal scheme. For the backward sweep, sub-hierarchy T is
solved first, followed by H–T. Once T has been solved and the data
from theGPUhas been transferred to CPU, the visualization process
can commence since the required data has been made available.
The target region data is output to disk and is formatted for visual-
ization concurrently whileH–T is being advanced. The gaps during
the execution of H–T are utilized for visualization along with its
fix-ups operations. This is illustrated in Fig. 4.

One issue that arises from the partitioning approach is the
problem of fragmentation in GPU execution. The GPU processes
patch groups in batches and when the number of patch groups
being solved is less than one work group, it leads to the GPU
threads being idle. This ends up slowing the overall execution. For
example, let the optimal GPU workload be W and suppose the
target hierarchy has n levels, eachwithworkloadsw0, w1, . . . , wn,
each of which are lesser than W . Executing the hierarchy purely
on a level by level approach would not be optimal since the GPU is
not utilized appropriately at any level. We note that in the shared
timestep mode, the patches of various levels can be advanced in
any order. This is because the hierarchy stays constant throughout
the timestep. Hence, the problem of fragmentation is handled by
pooling all the patch groups in the increasing order of their levels
and selecting the ideal number of patch groups to be solved (240
(a) Default scheme. (b) Optimized scheme.

Fig. 4. Schemes for continuous visualization in GAMER.
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Table 1
Split up of the execution time (seconds) for target volume of 288 patches.

Forward sweep (tf ) Backward sweep (tb) Fixup (tfix) Output (tout) Format (tformat) Visualization (tvis) Communication (tcomm)

4.180 4.85 0.819 0.31 0.12 0.62 0.234
for Tesla and 112 for Fermi). The ideal numbers are determined
such that all the GPU thread blocks are utilized in a work-efficient
manner. At every phase, one work group is selected from the pool
(possibly consisting of patch groups from multiple levels) and the
constituent patch groups are prepared accordingly based on their
level. The selected work group is solved and the patch groups are
closed appropriately.

3.4. Visualization steps

As mentioned above, visualization for the target region is per-
formed asynchronously on the CPUwhile the other regions are ad-
vanced on theGPU cores. The primary steps related to visualization
are as follows:
1. Data output: the data from the leaf patches corresponding to the

target region is output in a binary file format. The time taken for
the output is denoted as tout.

2. Formatting: the binary file data is converted into a standard
data format known as SILO [9], which is used to store 2D and
3D mesh data. The time corresponding to this step is denoted
as tformat.

3. Communication: if the visualization server is remotely located,
the formatted data must be transferred over a network. The
corresponding time is denoted as tcomm.

4. Visualization: the formatted data is visualized using VisIt [10].
The visualization time is denoted as tvis.

Thus, the total time for steps of the visualization is the summation,
tout + tcomm + tformat + tvis.

4. Experiments and results

4.1. Experiment setup

We ran the GAMER hydrodynamics code on a Tesla cluster,
containing one Tesla S1070 GPU and 8 AMD Opteron 8378 cores
with 8 OpenMP threads, and a Fermi cluster, containing one Tesla
C2070 GPU and 4 Intel XeonW3550 cores with 4 OpenMP threads,
in the shared timestep mode. In this mode, every level is advanced
by the same timestep value. We first show the results on the
Tesla cluster. Let t f0, t

b
0 represent the default forward and backward

sweep times and t f1, t
b
1 represent the forward and backward sweep

times after the proposed optimizations are applied. tv represents
the visualization time. The following metrics are adopted to study
the effectiveness of the proposed scheme:
1. Improvement in response time: response time is defined as

the time elapsed since the start of the timestep till the point
when the data is visualized. Original response time = t f0(H) +

tb0(H) + tv .
Optimized response time = t f1(H) + tb1(T) + tv .

2. Utilization of the gaps: this denotes the percentage utilization
of the gaps in the CPU and hence gives a measure of amount
of asynchronous computations on the CPU and GPU. We
consider only operations that utilize the CPU cores and hence
exclude network communication time even though it proceeds
in parallel. We use asynchronous MPI calls, and hence the
communication proceeds independent of the CPU activity.

3. Frequency of visualization update: this measures the time
between two successive visualizations corresponding to two
consecutive timesteps.
We apply the above metrics to two visualization modes: visualiz-
ing the entire hierarchy corresponding to the regions targeted and
visualizing only the base level data of the targeted regions.

We explored the visualization process in different settings: on-
site and remote-site visualization. For remote-site visualization,
data has to be transferred over a network to the remote visualiza-
tion server. We simulated different network configurations with
bandwidths of 1 Gbps, 80Mbps, and 700 kbps. We refer to these as
intra-department, intra-country and cross-continent configurations,
respectively. The distributed architecture of VisIt provides an ef-
ficient model for remote visualization where the data from the
local site need not be completely transferred to the visualization
server. In our application, we enable the visualization of various
2D slices from the targeted region, where only the data required by
the query is transferred to the remote server. In our experiments,
we deal with transactions up to a maximum of 30 MB per query.

The experiments compare the performance of the optimized
version with that of the default scheme for the same patch hierar-
chy. The results are averaged over four timesteps during which the
hierarchy remains the same. The input for visualization involves
specifying subdomains of varying volumes. The experiments were
conducted for the Kelvin–Helmholtz Instability test suite. For this
application, we have chosen two domain sizes in which the base
level consists of 512 patches (arranged as a 16 × 16 × 2 grid) and
1024 patches (arranged as a 16×16×4 grid). These correspond to
patch hierarchy datasets of approximately 190 MB and 400MB re-
spectively. For our experiments, we consider subdomains of 5 dif-
ferent sizes: 2×2×2, 4×4×2, 8×8×2, 12×12×2, 16×16×2
corresponding to volumes of 8, 32, 128, 288 and 512 patches re-
spectively. For a given size, 20 different random regions spanning
the entire domain were selected for visualization.

The effectiveness of the proposed optimization depends on the
fact that the computation time dominates the overall execution
time so that the visualization cost can be hidden. This is indeed the
case when visualization is done onsite or when the visualization
server is accessible by a high bandwidth network. The times for
different sub components are shown in Table 1. As shown in the
table, the total cost of intra-department remote visualization is a
fraction of the computation time.

4.2. Response times
Fig. 5(a) compares the response times of the optimized scheme

and the default scheme for visualizing the base level and the entire
hierarchy when the target volume is 288 patches and the domain
size is 512 patches. The improvement in response time is 18.7% in
the case of visualizing the base level. In the case when the entire
target hierarchy is visualized, the improvement in response time
is 11.7%. The improvement is relatively lesser when compared to
the base level visualization, due to the increase in the amount of
data that is output and processed. AMR applications typically have
small regions of interests that scientists visualize. The performance
gain obtained from the optimizations aremuchmore significant for
smaller target volumes. Fig. 5(b) shows the gain in response times
obtained for visualizing the base level and the entire hierarchy
when the target volume is 32 patches and domain size is 512
patches. The gain obtained is 44.1% for base level visualization and
41.6% for visualizing the entire hierarchy. For smaller volumes the
data from the target region is available quickly which provides an
adequate amount of gaps for asynchronous visualization. Also, the
time required to output, format and visualize the data for small
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(a) Target volume of 288 patches. (b) Target volume of 32 patches.

Fig. 5. Response times for the domain size of 512 patches.
(a) Target volume of 288 patches. (b) Target volume of 32 patches.

Fig. 6. Response times for the domain size of 1024 patches.
volumes is less. For the target volume of 32 patches, the entire
visualization is completed asynchronously.

Fig. 6(a) and (b) illustrate the improvement in response times
for the test volumes of 288 and 32 patches, when the domain size
is 1024 patches. For the test volume of 288 patches, the observed
improvements for base level and entire target visualization are
57% and 55% respectively. For the test volume of 32 patches, the
corresponding improvements are 60% and 59% respectively. In
both cases, the observed improvements are higherwhen compared
to the domain size of 512 patches. This is along expected lines,
since we have doubled the domain size without varying the two
test volumes which leads to a higher fraction of the hierarchy H–T
available for asynchronism.

4.3. CPU gap utilization

Fig. 7 shows the CPU gap utilization for target volumes of 32 and
288, for the domain size of 512 patches. For each test volume, the
figure shows a stacked bar graph for the gap usage for visualizing
the base level and the entire target hierarchy. For the two volumes,
the percentage of CPU idle time or gap utilized for fix-up and vi-
sualization varies from 38.5% to 39.3% for the base level and from
50.7% to 64.3% for the entire target hierarchy. As the size of target
hierarchy T increases, the size ofH–T decreases consequently lead-
ing to a decrease in the amount of gap available for visualization.
Reduction in the gaps available results in a decrease in the amount
of visualization operations that can be overlapped with computa-
tions. The amount of gap used for fix-up operations remains al-
most constant for all cases. This is because the number of the clean
patches asynchronously fixed is constant for all the test cases.
Fig. 7. CPU gap usage for domain size of 512 patches.

Fig. 8 shows a similar gap utilization graph for the domain size
of 1024 patches. In this case, the percentage of gaps utilized ranges
from 37.4% to 38.3% for base level visualization and from 39.3% to
42.8% for entire target visualization. Similar to the previous case,
we observe a decrease in utilization between the test volume sizes
of 32 and 288 patches. We also notice that the utilization obtained
for this case are lesser when compared to the previous one. This
is due to the fact that we are doing the same amount of work
for visualization, while the amount of gap available has increased
proportionately corresponding to the increase in domain size.
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Fig. 8. CPU gap usage for domain size of 1024 patches.

4.4. Frequency of visualization

The improvement in the frequency of visualization can be
represented by means of a heart-beat graph which linearly plots
the points in time when visualization updates occur. The distance
between two successive points represents the time elapsed
between two visualizations. Thus, the graph enables one to judge
the frequency of visualization based on the density of points on the
line. Fig. 9(a) compares the heartbeat graphs for the default scheme
and the optimized scheme when the base level is visualized on-
site for the target volume of 128 patches. Fig. 9(b) compares
the heartbeat graphs for the default scheme and the optimized
scheme when the entire hierarchy is visualized on-site for the
same target volume and domain size. The graphs show that the
frequency of visualization in the optimized scheme is higher than
that in the default scheme. The average interval of visualization in
the optimized scheme is greater for visualizing the entire target
hierarchy than for the base level. We observe that points on
the heart-beat graph for the optimized scheme in 9(a) are more
clustered than the points on the heart-beat graph for the optimized
scheme in 9(b). This indicates that the gain obtained is more for
the former case when compared to the latter. Fig. 10(a) and (b)
show the corresponding heartbeat graphs for the domain size of
1024 patches. We observe similar improvements in refreshment
frequency for both domain sizes. The observed gain ranges from
12% to 15.4% for base level visualization and from 7% to 15.9% for
entire target hierarchy.

4.5. Remote visualization
Fig. 11(a)–(c) show the results for response times, average

visualization interval and the gap utilization for the remote
visualization of the entire target for the domain size of 512 patches.
The size of the region visualized corresponds to the target volume
of 128 patches. For the entire target hierarchy visualizations, the
network speed plays an important role in response times. As
shown in Fig. 11(a), the gain in response time is maximum for
the intra-department setting at 47% and minimum for the cross-
continent setting at 3.1%. This is because the data transfer time
is much higher than the execution time for the cross-continent
setting, which results in negligible benefits from the execution
optimizations. The intra-department setting has the least data
transfer time and hence obtains the best performance. A similar
trend in performance is observed for the average visualization
interval metric as observed in Fig. 11(b). The gain in frequency of
visualization ranges from 1% to 13%. We observe in Fig. 11(c) that
the amount of gap usage is almost constant for all three remote
visualization settings. The three cases differ only in the network
transfer timewhich does not play a part in gap utilization, since the
network transfer for remote visualization does not utilize the CPU
during the gap time. Fig. 12(a)–(c) show the results for response
(a) For base level visualization. (b) For entire target hierarchy.

Fig. 9. Comparison of heart-beat graphs for continuous visualization for the domain size of 512 patches.
(a) For base level visualization. (b) For entire target hierarchy.

Fig. 10. Comparison of heart-beat graphs for continuous visualization for the domain size of 1024 patches.
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(a) Comparison of response times. (b) Comparison of visualization intervals. (c) Comparison of CPU gap usage.

Fig. 11. Performance results for remote visualization of entire target hierarchy for the domain size of 512 patches.
(a) Comparison of response times. (b) Comparison of visualization intervals. (c) Comparison of CPU gap usage.

Fig. 12. Performance results for remote visualization of entire target hierarchy for the domain size of 1024 patches.
Table 2
Improvement in performance for visualizing the entire hierarchy on Fermi for the
domain size of 512 patches.

Visualization
scheme

% improvement
in response time

% of gaps
utilized

% improvement in
frequency of
visualization

On-site 44.4 51.6 20.7
Intra-department 43.4 39.3 18.5
Intra-country 32.1 39.3 16.4
Cross-continent 2.3 39.2 1.5

times, average visualization interval and the gap utilization for the
remote visualization of 128 patches for the domain size of 1024
patches. Similar to the previous experiments, we obtain better
gains when compared to the domain size of 512 patches.

4.6. Fermi results

We also performed experiments on the Fermi C2070 cluster.
The results for visualizing the entire target hierarchy for the
volume set at 128 patches are shown in Table 2.When compared to
the results obtained on the Tesla S1070 cluster, the results on the
Fermi cluster show considerable improvement in the frequency of
visualization updates. Though the gap time is lesser for the Fermi
when compared to Tesla due to a fasterGPU, this is compensated by
the fast Xeon W3550 core CPU on the Fermi system. The response
times on both systems show similar trends.

5. Our optimizations applied to advanced AMRmodels

5.1. Self gravity

Along with pure hydrodynamic solvers, we also investigate
astrophysical simulations. In this mode, the gravitational potential
of all patches are advanced by solving the Poisson equations. For
the shared timesteppingmode, the fluid variables are advanced for
the forward sweep, then the gravitational potentials are updated.
After the variables are updated by self gravity, the backsweep
is performed. For this model, we study the applicability of our
proposed optimizations.

The Poisson solver requires the updated solution data of the
coarse patches to provide the boundary data for finer patches by
interpolation. In the hydrodynamics scheme, the input for the finer
level patches are the values obtained from the coarse level result-
ing from the previous advance. This implies that the coarse and fine
patches can be advanced independently before synchronizing. In
contrast, the input for the finer patches in the self gravity module
depends on the updated values of the coarse patches, which leads
to inter-level dependencies. All coarse patches need to be updated,
and thus, we cannot prune any computations in the self gravity
module. Also, the gaps arising in this mode cannot be used for fix-
ups. This is because the self gravity module requires all patches to
be fixed after the forward sweep before it can commence. How-
ever, our reordering and asynchronous visualization optimizations
can still be applied. In order to accelerate obtaining the data from
target regions, we consider the self gravity module as an exten-
sion of the forward sweep. Thus, we complete the forward sweep
and gravity update for the complete region, H, and then perform
backward sweep in two phases: for the target region, T, and for the
other regions, H–T. We perform asynchronous visualization of T
while the backward sweep is performed forH–T. The gravity mod-
ule takes almost as much time as the hydrodynamic advance. For
a target volume of 128 patches and domain size of 512, Fig. 13 il-
lustrates the response times for the onsite and various remote net-
work configurations. We see that the overall improvement in re-
sponse time for visualizing the entire hierarchy is 24%. Thus ap-
plying only our reordering and asynchronous visualization opti-
mizations can still provide significant benefits for the self gravity
module.

5.2. Individual timestepping

In the individual timestep mode, the integration of a level ad-
vances its solution by half the timestep value of its previous level.
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Fig. 13. Response times with self gravity enabled for a target size of 128 patches.

Thus, a level has to be advanced twice before it can synchronize
with the previous level. Hence, level lmust be advanced 2l times to
synchronize with level 0. For the pure hydrodynamics scheme, we
see that the optimizations of asynchronous fixups and patch group
pruning are directly applicable. For a domain size of 512 patches,
we obtain around 11% reduction in execution time due to these
optimizations. It is observed that the time taken to solve the finest
level takes up to 85% of the total time. Since pruning of computa-
tions happen for levels below the finest and since fixups contribute
to only about 5% of the total time, the gains obtained are limited to
these values.

Our reordering scheme cannot be applied in our current
implementation due to the complex order in which the levels and
patches need to be advanced. In this scheme, the first advance
does a forward sweep while the subsequent advance performs a
backsweep. Unlike the shared timestep scheme, the levels have
to be advanced in order and have to synchronize periodically.
Also, refinement of levels happen within a timestep and hence the
hierarchy is modified during the execution of the timestep. Thus,
interleaved nature of the forward and backward schemes prevents
us from applying our partitioning technique directly.

However, we see that even for this scheme, it is possible to
obtain the data for visualization faster than the default scheme by
adopting the following methodology: along with the target patch
groups, we also identify patch groups which form the boundaries
around the target patch groups. A patch group belongs to a k-
layer boundary if it is separated by a distance of k from the
target region. Our proposed solution involves first applying the
advances on the target patches and specific layers of boundary
patch groups for each level. We illustrate the technique for level
one and then generalize it for all levels. Level 1 requires four
applications of advances which consist of alternating forward and
backward sweeps. For the first advance, we forward sweep the
target patches of level 1 along with 4 layers of boundary patch
groups. For the next advance, we backward sweep the target patch
groups with 3 boundary layers. The fourth layer’s solutions are
used to update the layer 3 patch groups. For each substep, we skip
a layer and for the final backsweep we solve only the target patch
groups. This technique ensures that the target patch groups are
solved using the accurate values.

This solution can be generalized for all levels. Specifically, level
lv requires 2(lv+1) boundary patch groups since it requires as
many substeps. This results in choosing 2 layers of boundary patch
groups on the coarsest level. These base level patch groups when
refined would consist of the required layers of boundaries.
The implementation of this methodology requires a complex
book keeping mechanism to track the state of the solutions for
each patch. This is because this method leaves different patches
belonging to the same level at different states. The implementation
of this methodology and performance estimates and evaluations
will be considered in the future.

6. Discussion

We see that when 4 or more high end CPU cores (like Xeon)
and OpenMP threads are utilized, the idling always occurs on
the CPU, and hence our optimizations can be applied to obtain
performance benefits. Since our strategy is to overlap as much
CPU operations as possible, we resort to using at least 8 cores so
that we have the capability to perform visualizations as well. Thus
our demonstration with 8 cores is close to the minimal number of
cores required for obtaining performance benefits over the default
scheme. In this setup, the performance ratio of the solve step on the
GPU and the (prepare+close) steps on the CPU is 1.4 and is close to
the threshold value for obtaining better performance. With more
high-end CPUs, this ratio will increase, resulting in more idling
times on CPU. This would improve the scope to perform more
compute intensive visualization operations asynchronously.

For the lesser number of cores, the prepares and closing opera-
tions become bottlenecks and hence there are no CPU gaps avail-
able to exploit. We note that our optimizations about removing
redundant computations will always be feasible. When the CPU is
slower than the GPU, the net execution time is the sum of all the
prepares and closes performed. The pruning optimization removes
patch groups whose computations are redundant, from being con-
sidered and thus avoids some of the potentially expensive prepare
operation.

7. Related work

The typical CPU based optimization techniques cannot be
trivially extended for an efficient execution on the GPU. While
dealing with GPU systems, the priority is to use the architectural
aspects for efficient execution. Enzo [16] is an AMR codebase
for large scale cosmological simulations which implements GPU
solvers which can deal with arbitrary patch sizes. However, Enzo
does not exploit concurrency between the CPU and GPU or
between the various independent GPU operations. Uintah [6] is
an object oriented framework which provides an environment
for solving fluid–structure interaction problems with support for
ray tracing radiation transport models, on structured adaptive
grids. It uses a task-based approachwith automated load balancing
and its runtime system handles the details of asynchronous
memory copies to and from the GPU. The work does not discuss
optimizations to improve the rate of online visualization.

8. Conclusion and future work

This work presented optimization strategies for performing
continuous visualization of a GPUbasedAMRhydrodynamics code.
We reorder the computations to obtain the data for visualization
at a faster rate. We accommodate the fix-ups and visualization
steps in the CPU idling times and prune unnecessary computation
of patches. We proposed response time, average visualization
interval andCPUgapusage asmetrics to evaluate the performances
of the default and optimized scheme. We performed experiments
on two datasets to show the scalability of the proposed solutions.
We observe a 60% improvement in response time and 16%
improvement in frequency of visualization on Tesla S1070. We
observe up to a 21% improvement in frequency of visualization on
the Fermi C2070 cluster.
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In the future, we plan to extend the scheme for the individual
timestepping mode. We also plan on building generic runtime
frameworks for efficient executions of AMR applications on GPUs.
Our runtime framework should be capable of estimating the
average gap available and the relative costs of the various CPU
and GPU operations for various hardware configurations and
target volumes. Since GAMER uses fixed size patches, the costs
of the various operations can be estimated a priori. Our runtime
framework will perform quick profiling runs when the application
begins execution to obtain the various estimates and then judge
the applicability of asynchronous CPU execution. We also plan on
implementing optimization strategies for auto-reorganization of
data layout to improve the number of coalesced access, based on
the memory access patterns in the solver kernel. Our optimization
schemes have been integrated in the GAMER codebase. We plan to
release our optimizations as a patch for GAMER users.
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