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Study of the evolution of species or organisms is essential for various biological applications. Evolution
is typically studied at the molecular level by analyzing the mutations of DNA sequences of organisms.
Techniques have been developed for building phylogenetic or evolutionary trees for a set of sequences.
Though phylogenetic trees capture the overall evolutionary relationships among the sequences, they
do not reveal fine-level details of the evolution. In this work, we attempt to resolve various fine-
level sequence transformation details associated with a phylogenetic tree using cellular automata. In
particular, our work tries to determine the cellular automata rules for neighbor-dependent mutations
of segments of DNA sequences. We also determine the number of time steps needed for evolution of a
Biology and genetics progeny from an ancestor and the unknown segments of the intermediate sequences in the phylogenetic
Grid computing tree. Due to the existence of vast number of cellular automata rules, we have developed a grid system
Grids that performs parallel guided explorations of the rules on grid resources. We demonstrate our techniques
Grid applications by conducting experiments on a grid comprising machines in three countries and obtaining potentially
Distributed systems useful statistics regarding evolutions in three HIV sequences. In particular, our work is able to verify
Client/Server the phenomenon of neighbor-dependent mutations and find that certain combinations of neighbor-
Distributed applications dependent mutations, defined by a cellular automata rule, occur with greater than 90% probability. We
also find the average number of time steps for mutations for some branches of phylogenetic tree over a
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large number of possible transformations with standard deviations less than 2.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Study of the evolution of different species or organisms is
important to biologists since it has practical applications including
drug discovery, population monitoring and management [26].
Availability of DNA sequence databases [21] in the last few decades
has enabled the study of evolutions at the molecular level. In terms
of molecular biology, evolution can be viewed as a mutation event
in which a particular DNA segment of an organism undergoes
change. During evolution, a DNA segment consisting of a sequence
of purines and pyrimidines (also called base-pairs) changes to a
different sequence of base-pairs.

Evolution is visualized with the help of phylogenetic trees
corresponding to a set of organisms. Phylogenetic trees give
a picture of relatedness between various organisms. A branch
in a rooted phylogenetic tree connecting ancestor and progeny
indicates that one sequence (progeny) has evolved from the
other (ancestor). While phylogenetic trees constructed out of
existing packages [18] give an overall picture of the relationships,
they do not give fine-level details of the way evolution might
have progressed. In particular, the trees do not convey the

* Corresponding author.
E-mail address: vss@serc.iisc.ernet.in (S. Vadhiyar).

0743-7315/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2008.06.012

possible effects of neighboring base-pairs on mutations of a
base-pair in a DNA sequence. The trees also do not contain
information about the number of time steps required for an
ancestor-progeny transformation. The intermediate nodes of the
trees have hypothetical DNA sequences in which the base-pairs of
some segments are not known.

Some of the studies on the evolutions of species using DNA
sequences have found that the mutation of a particular DNA
segment is affected by its neighboring segments [2,3,11,16,
23]. While the effects of some neighboring base-pairs on the
evolution of a DNA segment is known, there has been very little
work [4,24] that comprehensively analyzes the effects of different
neighborhoods on the evolution. Cellular automata can be used
to comprehensively model and analyze these neighbor-dependent
mutations. Cellular automata have been used to model physical,
economical, and sociological systems [9]. They are also increasingly
used for a variety of applications in bioinformatics such as
predicting protein sub-cellular location and protein secondary
structure [10,14,28,30]. Cellular automata have replaced partial
differential equations in the area of system modeling fairly
successfully. Since partial differential equations have been used
for modeling evolution [20], cellular automata can also be used
for successfully modeling evolution and analyzing DNA mutations.
Cellular automata evolve over time through various rules which
express the change in state of a cell in terms of its neighboring cells.
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Rules found by modeling DNA mutations using cellular automata
can give useful insights into the effects of neighboring base pairs
on the mutations of DNA segments.

In this work, we attempt to give fine-level details of a
phylogenetic tree using cellular automata. Our work is primarily
intended for analyzing the cellular automata rules that may have
been used for neighbor-dependent mutations of DNA sequences
in the individual steps of transformation from an ancestor to a
progeny in the phylogenetic tree. In addition, we also resolve the
number of time steps needed for the transformation and the base
pairs in some segments of the DNA sequences corresponding to the
intermediate nodes.

Modeling DNA sequence mutations or transformations using
cellular automata where each cell can assume one of 4 possible
states requires exploration of a huge search space and needs a
large number of computing cycles. Grid computing has been used
for conducting large parameter search studies [5,15,22]. We have
developed a grid system to conduct parallel guided explorations of
cellular automata rules for sequence transformation. Qur system
includes techniques for load-balancing and fault-tolerance, a
database for storage and retrieval of sequence transformation
details, and a suite of statistics collection programs for deriving
various statistics related to transformations. We demonstrate
our techniques by conducting experiments on a grid comprising
machines in three countries and obtaining potentially useful
statistics for three HIV genomic segments corresponding to gag,
gagpol and env.

Following are the primary contributions of work:

(1) Modeling DNA sequence mutations using cellular automata
to determine the possible rules for neighbor-dependent
mutations for a particular phylogenetic tree on computational
grids. We also resolve other uncertainties related to the
phylogenetic tree, namely, the number of time steps for
evolution of a progeny from an ancestor and unknown base-
pairs in intermediate sequences.

(2) Building a grid system for parallel exploration of vast number
of cellular automata rules for transformations.
Using the system to collect potentially useful statistics for three
HIV sequences. In particular, we verified the phenomenon
of neighbor-based mutations for some steps of evolution,
found that some combinations of neighbor-based mutations
corresponding to a rule occur with more than 90% probability,
determined the average number of time steps for mutations
from ancestor to progeny sequences of a phylogenetic tree
with less than 2 standard deviations, and resolved certain
segments of incomplete intermediate sequences.

(4) Finally, showing the benefits of grid computing for the
sequence transformation application.

—~
w
~

Section 2 gives necessary background for our work including
cellular automata and phylogenetic trees. In Section 3, we compare
and contrast our work with the other efforts on evolution
studies. In Section 4, we detail our rule development and analysis
strategies, and our assumptions regarding the rates of evolution.
Section 5 explains the techniques used for searching parameters
related to sequence transformations on grid platforms. Section 6
enumerates the statistics regarding transformations that we
collected using a set of collection programs. Section 7 gives some
of the promising results obtained for the gag HIV sequence on
a prototype grid framework. Section 8 discusses various possible
extensions to our work, Section 9 summarizes our work, and
Section 10 gives future directions.

2. Background

In this section, we give a brief background on cellular automata,
the relationship between cellular automata and DNA evolution,
and phylogenetic trees.

Time steps Cells
0 o101 ]0]01]0O0
| 1 1 0 1 1 0 0
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Fig. 1. Evolution of Cellular Automata through time steps.
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Fig. 2. Rule that governs the evolution of cellular automata shown in Fig. 1.

2.1. Cellular Automata

A cellular automaton is a regular array of identical finite state
automata where the next state of an array element is determined
solely by its current state and the state of its neighbors. The change
of state of the array element is defined by a cellular automata
rule [29]. As an example, the evolution of one dimensional cellular
automata is shown in Fig. 1. Each cell can have one of the two
possible states — 0 or 1. In this example, the neighborhood size is 1,
i.e. the state of each cell at the next time step is dependent on the
state of that cell, the state of its single left neighbor and the state
of its single right neighbor. The rule that governs this evolution is
depicted in Fig. 2." As can be seen, the cellular automata consists
of eight transitions corresponding to eight possible left hand side
states. The number of rules possible for this particular cellular
automaton is thus 28 = 256. In general, one dimensional cellular
automata with two states and with neighborhood size n consists of

2:n+1 . . e
227" rules with each rule consisting of 22"+ transitions.

2.2. DNA and Cellular Automata

DNA is a nucleic acid that contains the genetic instructions for
the development and function of living things. The building blocks
of the DNA polymer are nucleotides, which in turn consist of a
phosphate group, a sugar ring, and either a purine or a pyrimidine
base group. The purines are guanine (G) and adenine (A) and the
pyrimidines are thymine (T) and cytosine (C). A sequence of these
bases forms a strand or a sequence. We can view a DNA strand as
a line of cells with each cell having one of the four values (A,G,C or
T). This strand is copied exactly to produce another identical strand
in the process of DNA replication. Sometimes, mutation occurs
during replication giving rise to a DNA strand that is different from
the original strand. These mutations are the basic mechanisms of
evolution.

There are strong indications that mutations of DNA base-
pairs are affected by neighboring base-pairs [2,3,11,16,23]. The
exact effect of the neighboring base-pairs on the mutation of an
individual base-pair is still unknown. We make an attempt to find
out this relationship by modeling DNA as cellular automata in

1In our work, we use cellular automata with wrap-around, i.e. the left neighbor
of the first cell is the last cell and the right neighbor of the last cell is the first cell.
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Table 1
Left-hand sides of 64 transitions of cellular automata with neighborhood size of 1
S.No. LHS S.No. LHS S.No. LHS S.No. LHS
1 AAA 17 AAC 33 AAG 49 AAT
2 CAA 18 CAC 34 CAG 50 CAT
3 GAA 19 GAC 35 GAG 51 GAT
4 TAA 20 TAC 36 TAG 52 TAT
5 ACA 21 ACC 37 ACG 53 ACT
6 CCA 22 CCC 38 CCG 54 CCT
7 GCA 23 GCC 39 GCG 55 GCT
8 TCA 24 TCC 40 TCG 56 TCT
9 AGA 25 AGC 41 AGG 57 AGT
10 CGA 26 CGC 42 CGG 58 CGT
11 GGA 27 GGC 43 GGG 59 GGT
12 TGA 28 TGC 44 TGG 60 TGT
13 ATA 29 ATC 45 ATG 61 ATT
14 CTA 30 CTC 46 CTG 62 CTT
15 GTA 31 GTC 47 GTG 63 GTT
16 TTA 32 TTC 48 TTG 64 TTT

which DNA mutations are governed by the cellular automata rules.
The DNA molecule can be viewed as a one-dimensional cellular
automaton, with four states per cell, corresponding to each of the
base-pairs. Thus, the base of this cellular automata is 4. The number
of transitions in a given rule is 4°™! where n is the number of
left/right neighbors. The total number of rules that govern DNA

mutations is thus 44" . Thus, finding rules that could have been
followed during evolutions requires exploration of huge search
space.

In this work, we consider only those rules with neighborhood
size of one, i.e. the transition of a base-pair in a DNA sequence
during evolution depends on the base-pair and its left and right
neighboring base-pairs. The 64 left-hand sides of the transitions
corresponding to the neighborhood size of 1 are depicted in
Table 1. The right-hand side of each transition can be one of
4 base-pairs, giving rise to a total of 4% rules. We assume
that during one evolution step, a single rule is applied for the
entire sequence, i.e. if a base pair X appears in two different
positions of the current sequence and is flanked by the same left
and right neighbors in both the positions, then this base pair X
transitions to Y in both positions during the next mutation step.
The transition X to Y is governed by the rule applied at the mutation
step. Although these assumptions do not encapsulate the myriad
mechanisms that could have been followed during evolution, the
assumptions are reasonable since there is evidence that a base-
pair is impacted more by its immediate neighbors than its farthest
neighbors [2,11].

2.3. Phylogenetics

In biology, phylogenetics is the study of evolutionary relatedness
among various groups of organisms. A phylogenetic tree, also
called an evolutionary tree or a tree of life, is a tree showing the
evolutionary interrelationships among various species or other
entities that are believed to have a common ancestor. The leaves
of the tree represent various organisms, species, or genomic
sequences. An internal node of the tree represents an abstract
organism (species, sequence) whose existence is presumed and
whose evolution led to the organisms at the leaves. A rooted
phylogenetic tree has a root that corresponds to the most recent
common ancestor to all the sequences under consideration.

Various efforts have been made to construct phylogenetic trees
for a given set of DNA sequences [17,25]. However, there are
certain uncertainties associated with these phylogenetic trees. The
reconstruction of the sequences corresponding to intermediate
nodes are not complete in the phylogenetic trees. There are
several positions in the intermediate sequences where the exact
base-pairs are not known. The number of time steps required

for the mutations to occur is also not known explicitly. Finally,
these trees do not provide any indication of neighbor-dependent
mutations that may have been followed during the evolution of
different sequences in a given tree. Our work tries to resolve these
uncertainties.

3. Related work

There have been number of studies on the evolution of DNA
sequences [2,3,11,13,16,23-25]. The work by Korber et al. [13]
studies the evolution of HIV sequences using the molecular clock
assumption; this hypothesis postulates that molecular change
is a linear function of time and that substitutions accumulate
according to a Poisson distribution.

There are a number of studies that analyze the impact of
neighboring bases on the mutation of a particular base. The work
by Bulmer [3] finds that there is a marked increase in the frequency
of transitions from the doublet CG. There are also some smaller
effects of neighboring bases on the frequencies of transitions from
adenine and thymine. The work also determines that the transition
frequency from either of these bases is reduced by having G on
the right (or C on the left) and increased by having T on the
right (or A on the left). Hess [11] also concludes that substitution
rates, representing averages over those for different regions of
the genome, are distributed over a 60-fold range with strong
biases in certain neighbor-pair environments. Studies indicate
that substitution rates vary for the same base-pair for different
neighbor-pair environments. Arndt et al. [2] introduces a model of
DNA sequence evolution that can account for biases in mutation
rates that depend on the identity of the neighboring bases. All the
above efforts clearly indicate that neighboring bases have some
effect on the mutation of a particular base. But none of these studies
analyze the fine-grain effects of neighboring bases during each step
of evolution.

Morton et al. [16] have analyzed 1776 aligned SNP sequences
generated from the nuclear genes of maize to study the effect of
neighborhood compositions on mutation dynamics. Their studies
have found that the A + T content of flanking nucleotides has an
influence of various aspects of mutation dynamics. The sequences
used in their study were pre-generated, while the sequences
in our study are dynamically generated by changes in states of
cellular automata. Siepel and Haussler [23] incorporate context-
dependence in phylogenetic models to improve the quality of
phylogenetic trees. Thus, the motivation of their work is similar
to ours. Their work focuses on using their improved context-
dependent phylogenetic models to estimate the pattern and rates
of substitutions on the branches of a given phylogenetic tree.
Their work also reports better estimates of branch lengths. In
addition, their work has the potential to refine phylogenetic tree
construction. They have estimated substitution rates and context
effects for 160,000 non-coding sites and 3 million sites in coding
regions in mammalian genomes. Our work tries to determine
finer-grained context-dependent effects on individual steps of
mutations.

DNA evolution has been modeled as cellular automata in the
work by Shirakoulis et al. [24]. In this work, application of cellular
automatarules to a DNA strand is treated as a matrix multiplication
modulo 4. This strategy, however, cannot consider all possible
cellular automata rules. The work by Stewart et al. [25] had
prepared a global grid for studying arthropod evolution. The effort
implemented a parallel version of fastDNAmI [17] algorithm on
a global grid using a maximum likelihood approach to construct
better phylogenetic trees. While this effort deals with constructing
a better phylogenetic tree, we try to refine the phylogenetic tree
using grid computing. We also try to find additional information
about these trees by modeling the DNA sequence evolution as
cellular automata rules.
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4. Methodology

In this section, we describe the techniques used for transfor-
mation of sequences from an ancestor to a progeny, and our as-
sumptions regarding evolutionary rates to manage the number of
successful transformations.

4.1. Sequence transformation on a branch

Our first step is to derive a sequence transformation methodol-
ogy that, given an ancestor and a progeny sequence, starts with
the ancestor sequence, applies a set of rules for neighbor-based
mutations for a certain number of mutation steps to arrive at
the progeny sequence. We subsequently invoke this methodology
multiple times for a given ancestor-progeny pair to form differ-
ent sets of rules and number of time steps corresponding to dif-
ferent ways of transformation from the ancestor to progeny. The
next section describes our primary focus of running large num-
ber of ensemble experiments on grids by multiple invocations
of the sequence transformation methodology for different ances-
tor-progeny pairs with the aim of deriving statistics regarding
the most likely rules and number of time steps for the ances-
tor-progeny pairs.

We use Phylip [18] to construct phylogenetic trees. DNA
sequences were downloaded from the HIV Sequence database at
Los Alamos [21]. The sequences were aligned by ClustalW web
interface [6]. The aligned sequences were then input to Phylip to
obtain a phylogenetic tree. Each branch in the phylogenetic tree
corresponds to an ancestor-progeny pair. For each branch, we
apply a set of cellular-automata rules for transforming an ancestor
sequence to the progeny sequence. We compare a sequence,
produced during the transformation, with the progeny sequence
using a similarity metric defined as the percentage of the number
of base pairs in the sequence matching the corresponding base
pairs in the progeny sequence. Thus, a similarity value of 1
indicates that the transformation has resulted in the progeny
sequence.

A naive approach for transformation is to randomly choose a
cellular-automata rule at each time step and apply the rule to the
current sequence. But this approach can lead to the sequences
deviating from the progeny sequence as illustrated in Fig. 3. This
figure shows the similarity values of the sequences when using
the naive approach for an ancestor-progeny branch corresponding
to a phylogenetic tree constructed for gag sequences of HIV virus
using the Phylip package. The progeny sequence in this branch has
accession number X52154 and the ancestor sequence is one of the
intermediate sequences generated by the Phylip package.

For successful transformation of an ancestor to a progeny, we
can make use of the fact that not all the base-pairs mutate at
each time step. Thus, at a given time step, we apply a random
cellular automata rule only to those base-pairs in the current
sequence which differ with the corresponding base-pairs in the
progeny sequence. This approach can also be biologically justified
since most of the successful sequences (which form complete
proteins) are less prone to mutations than others. This selective
application of cellular automata rules helps in the convergence of
sequences to a progeny sequence as shown in Fig. 4. This figure
shows the similarity value for each time step when using selective
application of cellular automaton rules for the same branch. As
seen in the figure, this approach completes the transformation
in 141 time steps. During transformation, applications of certain
cellular automata rules improve the similarity of the current
sequence to the progeny sequence while applications of other
cellular automata rules cause no change in the similarity. The step
structure in the figure illustrates the switches or changes between
these two kinds of rules.

Application of a Random Cellular Automata Rule
0.65 T T T T T

0.6 | 1

055 ]

0.5 1
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0.35 1
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025 1 L 1 i
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Fig. 3. Application of random cellular automata rules.

Selective Application of a rule
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Fig. 4. Selective application of cellular automata rules.

Current Sequence

[cle[r[a]c[c]r]c]T]

Progeny Sequence

[alr[afafcla]c[c]q]

Rules
1.CGT — T;2.GTA — A; 3. TAC — A; 4. ACG — G; 5.CGT — A

Fig. 5. Example: Dynamic formation of cellular automata rules.

In dynamic formation of cellular automata rules, we try to
dynamically create a cellular automata rule using a sequence
obtained during the transformation and the progeny sequence.
Fig. 5 illustrates the dynamic formation of a rule. The current
sequence on which a rule is to be applied forms the left hand
sides of the transitions of the rule. The progeny sequence forms the
right hand sides of the transitions. For example, in Fig. 5, the left
hand side of the first transition is formed by the first three base-
pairs of the current sequence, namely, CGT; and the right hand
side of the transition is formed by the corresponding base-pair in
the progeny sequence, T. We begin the formation of the rule from
the first few base-pairs of the current and the progeny sequences.
These base-pairs form a window in the current sequence and
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Dynamic Formation of Rule with Selective Application
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Fig. 6. Dynamic formation and selective application of cellular automata rules.
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Fig. 7. lllustration of the greedy algorithm.

map to a single base-pair in the child sequence. The size of this
window is 2 - n + 1 where n is the neighborhood size used in
the cellular automata rule. In our example, the neighborhood size
is one, hence the window consists of three base-pairs including a
neighbor on either side of the base-pair under consideration for
mutation. We slide this window over the entire parent sequence or
until we find a contradicting transition during the formation of the
rule. A contradicting transition is found when two windows in the
current sequence containing exactly the same sub-sequence map
to different base-pairs in the corresponding progeny sequence.
In our example, transitions 1 and 5 contradict with each other
as they try to map the same sequence, CGT, to different base-
pairs. If a contradicting transition is found, we selectively apply
a random cellular automata rule to the current sequence leading
to a new sequence and repeat the procedure of dynamic rule
formation to the new sequence. With dynamic rule formation
and selective application of cellular automata rules, the number
of time steps required for the transformation between the same
ancestor-progeny pair is reduced considerably as shown in Fig. 6.
In Fig. 6, a dynamic rule was formed at the 52nd time step
leading to convergence to the progeny sequence. The difference in
similarity values shown in Figs. 4 and 6 illustrate the added benefits
due to dynamic rule formation.

Based on the above principles, we have written a program,
sequence transformer, that uses selective application and dynamic
formation of cellular automata rules for transformation on
an ancestor-progeny branch. The sequence transformer is a
fundamental component in our infrastructure. It takes as input,
sequences for an ancestor and a progeny and produces as output

the number of time steps required for the transformation from the
ancestor to the progeny and the cellular automata rules applied
during the transformation. The output also contains information
regarding the exact time steps at which a cellular automata rule
was applied. Initially, after alignment of the sequences, the base
pairs corresponding to some segments of the ancestor sequences
are not known. The sequence transformer also fills these unknown
segments in the ancestor sequence with random base pairs. This
assignment of unknown segments is also recorded as output of the
sequence transformer.

4.2. Pseudo molecular clock assumption

Molecular clock is an assumption of constant rate of evolu-
tion [13], i.e. the rate of evolutionary change of any specified pro-
tein is approximately constant over time and over different lin-
eages in the phylogenetic tree. Thus, according to strict molecular
clock, there exists a single rate of mutation « such that
b]:Ol'[];bZZOl'tz;...;bn:Ol-tn (1)
where b1, by, bs, ..., b, are branch-lengths of the n branches in
the phylogenetic tree and t, t,, t3, .. ., t, are the time steps taken
for mutations of the corresponding branches. Branch length is a
measure of the difference between the ancestor and progeny of
a branch and is obtained along with the phylogenetic tree from
the Phylip package. The time steps are outputs from our sequence
transformer program. The strict molecular clock assumption has
been used in some phylogenetic inferences [13].

In our work, we use a pseudo-molecular clock assumption.
According to this, o1, a3, a3, . .., a;, are related such that

bi=a01-ti<by=ay - thp <---<b, =0, -t (2)
and
th<th<ty<--- <ty (3)

This assumption is reasonable since the greater the branch lengths
or greater the difference between the ancestor and progeny
sequences, the more the time steps required to transform from an
ancestor to a progeny.

After many invocations of the sequence transformer for differ-
ent branches, we accept only those outputs of the sequence trans-
former that adhere to the pseudo-molecular clock assumption. To
find such valid transformations, we use a greedy algorithm. The
greedy algorithm starts with branches in the phylogenetic tree
sorted by their branch lengths. For each branch, a linked list is
maintained. Every node in a linked list corresponds to one invoca-
tion of the sequence transformer and contains the inputs and out-
puts for the invocation including the number of time steps taken
for mutations on the branch. The greedy algorithm shown in Algo-
rithm 1 finds a node, prev_node, in the first linked list having the
smallest number of time steps. The prev_node is inserted in a chain.
The algorithm then considers the next linked list and finds a node
with the smallest time step value greater than the time step value
of prev_node. This node now becomes the prev_node and is added
to the chain. The entire procedure is then repeated for all linked
lists corresponding to all the branches. During this algorithm, a
branch whose linked list does not have a node with a time step
value greater than that of prev_node may be found. Such branches
are not included in the chain. We then try to form another chain
which may contain the remaining branches. We repeat this proce-
dure so that a node of every branch is included in some chain. At
the end of this algorithm, we obtain different chains, each having
different lengths. A chain containing all the branches in the phylo-
genetic tree is called complete chain.

The working of the greedy algorithm is illustrated in Fig. 7. The
figure shows linked lists for seven branches. The numbers in the
nodes of the linked lists represent the time steps. The figure shows
the two chains that are produced from the greedy algorithm on the
example. The numbers in bold font represent one chain and the
numbers in bold-italic font represent another.
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Algorithm 1 Greedy Algorithm for Chain Formation

Input: Array of linked lists L[] corresponding to branches. N, the number
of branches

Output: Longestchain
{Chains[]: Array of linked lists with each element holding a chain }
{inChain[]: array of N elements where inChain[i] indicates if branch i
belongs to a chain}

1: chainCount <= 0; fori <= 0 to N — 1 do inchain[i] < 0 end for

2: fori<<=0toN — 1do

3: ifinchain[i] == 1 then

4: continue

5: endif

6: prev_node <= node in L[i] such that node.length is smallest

7 Insert prev_node in Chains[chainCount]; inchain[i] = 1;

tmp_node = NULL
8. forj<i+1toN — 1do
9: tmp_node < node in L[j] such that node.length >
prev_node.length and node.length is smallest
10: if tmp_node # NULL then

11: prev_node = tmp_node; Insert prev_node in
Chains[chainCount]; inchain[j] < 1

12: end if

13:  end for

14:  chainCount + +

15: end for

16: Longest chain < Chains[i] such that Chains[i].length is highest in the
array of linked lists Chains[]

5. Sequence transformation on grids

Although a single invocation of a sequence transformer for a
single ancestor-progeny pair takes small number of time steps
and hence little time to execute, the number of invocations of
sequence transformer for the ancestor-progeny pair to obtain
statistics regrading transformations is very large. This is due to the
exponential number of possible rules that can be applied at a single
step and the different number of time steps that can be needed
for transformation from an ancestor to a progeny. This makes our
application, of multiple invocations of sequence transformer for
different ancestor-progeny pairs to derive statistics regarding the
most like rules and number of time steps for the ancestor-progeny
pairs, a long-running application suitable for grid computing. Our
application can be ever-running since the more the number of
invocations of sequence transformer, the higher the quality of the
statistics that can be derived. In order to explore the vast space
of parameters and to converge on the most likely values for the
parameters, we use the distributed resources of a computational
grid. This method is similar to the ensemble method used for
climate prediction in ClimatePrediction.Net [5].

5.1. Master-worker paradigm

A master-worker paradigm is used for invocations of the se-
quence transformer, formation of complete chains, and inser-
tions of parameters corresponding to the complete chains into a
database. The overall design of our master-worker infrastructure
is illustrated in Fig. 8.

The master is responsible for assigning branches to the workers
and collecting results from them when they complete their
calculations. The master assigns branches to the workers in round-
robin fashion. The master, after assigning a branch to a worker,
does not wait for the worker to complete its calculations, but
proceeds to the next worker. When the first worker completes its
calculations, the master is notified of the completion. Thus there is
parallelism in the calculations by the workers. The master stores
the results from the workers into linked lists corresponding to
the branches assigned to the workers. Additionally, the master

transformation
code

time-steps,rules.unknown base-pairs

master
neighborhoodsize, branch

databasg

Statistics Collection Programs f————> :(i

Fig. 8. The Master-worker design.

periodically invokes the greedy algorithm for chain formation with
the available snapshot of linked list values for various branches. If
a complete chain can be formed from the current set of linked list
values, the master forks another process to insert the parameter
values corresponding to the complete chain into a PostgreSQL[19]
database and to possibly form additional chains from the same set
of values. Note that the greedy algorithm gives us only one chain
from the available set of parameter values, while there may be
many complete chains in a given snapshot of linked list values.
To obtain additional chains, the forked process deletes an element
from the original complete chain and invokes the greedy algorithm
to find another complete chain. This procedure is repeated by
deleting different sets of elements from the original complete
chain. During this process, whenever a complete chain is formed,
itis inserted into the database.

A worker takes a branch from the master, fills the unknown
base-pairs randomly and invokes the sequence transformer. When
the transformation is complete, it sends the results back to the
master. The results consist of the number of time steps required for
transformations, the rules used during the transformations and the
assignment of base-pairs to the unknown portions of the ancestor
sequence. The worker then waits for a new branch from the master.
The number of worker processes are not related to the number of
branches. Hence our framework can make use of any number of
available grid resources for the execution of worker processes.

5.2. Phases of execution

The master process operates in one of two phases. In phase I,
shown in Fig. 9(a), the master continuously gives new branches to
the worker processes and collects results from them. The master
initially considers all branches for allocations to workers. Once the
number of branches in the longest chain exceeds 60% of the total
number of branches, the master considers only those branches
that are not in the longest chain for allocations to workers. Thus,
more resources are used for difficult branches for complete chain
formation. To avoid potentially large differences between the
number of invocations of the sequence transformer for any two
branches at this stage, we fix a threshold, allocation_threshold,
for maximum difference between the maximum and minimum
invocations for any two branches in the phylogenetic tree. If this
difference exceeds the threshold, the branch with the minimum
number of invocations is assigned to the workers until the
difference becomes less than the threshold. During phase I, the
master also invokes the chain formation algorithm periodically.

Once a complete chain is formed, the master initiates phase
II. Phase II, shown in Fig. 9(b), involves the insertion of complete
chains into the database and the formation of additional complete



86 Y. Joshi, S. Vadhiyar / J. Parallel Distrib. Comput. 69 (2009) 80-90

Give branches to workers

y

| Accept results from workers |

}

| Calculate the length of the longest chain

No

Isa
complete chain
found?

Yes

Phase Il

(a) Phase I in master.

Phase Il

Y

Insert values into the database

y

Delete element(s) from the chain

J

Try to find new chain

Isa
complete chain
found?

Quit

(b) Phase II in master.

Fig.9. Phases in master.

chains from the same data. Note that for phase II to start, phase
I must complete. But, once phase Il has been started, the next
round of phase I can be started immediately, ensuring pipelined
parallelism between phase I and phase Il in the master.

5.3. Grid computing techniques

A simple Unix shell script was used to start the master process
on the master machine and execute the worker processes on
a given set of remote client machines through ‘ssh’ commands.
Another shell script was run periodically for every 10 min to
monitor the status of the worker processes and restart the failed
worker processes on the client machines. The shell scripts use Unix
password-based security mechanisms to establish connections
to the remote client machines. For communications between
the master and the worker processes, we used Unix TCP/IP
socket functions with external data representation (XDR) standard
for encoding and decoding data for communication between
heterogeneous resources. These communications include transfer
of the branch IDs from the master to the workers and the
results, namely, the number of time steps and cellular automata
rules from the workers to the master. The DNA sequences
corresponding to the branches of a phylogenetic tree were
pre-staged to the client machines using Unix FTP mechanisms.
The pre-staging helped in avoiding the communications of the
sequences between the master and the worker processes every
time a branch is allocated to a worker. Though we use simple
mechanisms for remote process execution and management,
monitoring, data transfers and security, it is easy to upgrade the
infrastructure to use the grid standard mechanisms of Globus
toolkit [8], namely, Grid Resource Allocation and Management
(GRAM) [7] for execution management, WebMDS for monitoring
and discovery [31], GridFTP [1] for data access and movement, and
GSI for security [27].

The grid resources can be highly dynamic in terms of load
and availability. Due to the randomness involved in the sequence
transformer, the computation times for sequence transformer
executions on different branches can differ and can cannot be
determined a priori. Thus, scheduling strategies that map tasks
with larger computations to faster client machines cannot be

employed. Hence round-robin scheduling of tasks to the resources
was employed at the master. However, the round-robin scheduling
can lead to load imbalance among branches due to different rates of
progress on different branches. We used load balancing techniques
to adapt to the resource and application dynamics in grids. We also
employed fault-tolerant techniques for sustaining computations in
the presence of resource failures.

5.3.1. Load balancing

During phase I, when the number of branches in the longest
chain is less than 60% of the total number of branches, all branches
are allocated to the workers for calculations. During this stage,
there is a possibility that a particular branch is always assigned to
a slow worker hampering the progress for the branch. A threshold,
loadbalance_threshold, is fixed for maximum allowed difference
between the number of invocations of sequence transformer for
any two branches. If the difference exceeds the threshold, the
branch with the minimum number of invocations is allocated
to two workers during each iteration until the difference drops
below the threshold. This technique allows uniform progress for all
branches irrespective of the different loads on the grid resources
where the workers are executing. Theoretically, any number of
phase I and phase Il processes can be executing at any given point.
However, both phase I and phase Il processes consume memory
on the machine where the master is executing. Hence, phase I
and phase II processes must be started after verifying whether the
required amount of memory is available at the master machine. We
follow a simplistic approach where only one phase I and one phase
Il processes may be active at any given point of time. This controls
the load on the master machine allowing efficient execution of the
master.

5.3.2. Fault tolerance

For each worker, the master forks a process that sends the
parameters to and receives the results from the worker. The forked
process maintains a connection with the worker throughout the
calculation of the branch. After the results are sent back by the
worker, the forked child process notifies the parent of the arrival
of results. Hence, even if the worker fails during its execution,
only the forked process gets killed and the master will be able
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to continue its execution. Also, the master forks a new process
for phase II operations. The forked phase II process does not need
to communicate with the main master process. This achieves not
only parallelism but also fault tolerance because even if the phase
Il process fails, it doesn't affect the execution of the main master
process. The master process will eventually fork off another phase
Il process. Finally, even if the master fails after some time, the
results obtained so far are still accessible from the database. The
user can still collect the statistics for the results from the database
irrespective of whether the master is alive. Due to the durability
property of databases, we can continue to build upon the previous
successful transformations in the case of the master failure.

6. Statistics collection

We have developed various statistics collection programs that
retrieve values from the database and give various kinds of
statistics. There can be different complete chains with different
parameters satisfying the pseudo molecular clock assumption. The
statistics collection programs extract collective statistics from all
the complete chains. These statistics collection programs can be
executed offline by interested users at any point of time. The
various statistics that are of interest are:

(1) Timesteps: number of time steps required for transformation.
This information can be used to obtain more accurate measures
about rates of evolution. We obtain the average and standard
deviation values of the time steps for a transformation for a
particular branch across different complete chains.

(2) Unknown base-pairs: probabilities of a base-pair assignment
to the unknown segments of the ancestor DNA sequences.
These probabilities may help in re-building the complete
intermediate sequences of the phylogenetic tree.

(3) Rules: various rules used during transformation. These rules
may give insights on the impact of neighboring base-pairs
on the evolution of DNA sequences. We collect popular rules
within a particular branch across all the complete chains and
for a single complete chain across all branches.

(4) Differential rule analysis: probability of a particular rule being

used at a given time step of transformation in a given branch.

This analysis may give finer insights into the individual time

steps of mutation.

Popularity of transitions: the number of times a particular

transition is used for a given branch. This may be useful in

determining the exact effects of neighboring base-pairs on
mutations.

—
8]
-

7. Experiments and results

We conducted experiments and obtained interesting statistics
for three HIV genomic segments corresponding to gag, gagpol
and env sequences. For brevity, we present results corresponding
to only gag sequences. Similar results were obtained for gagpol
and env sequences.The results were obtained by executing the
statistics collection programs on the PostgreSQL databases formed
for the sequences. Since the grid infrastructure that we developed
could execute the transformations for long periods of time and
produce better statistics, the results presented in this section
should be treated as representing good samples and demonstrating
the potential of the infrastructure.

The sequences were downloaded from the HIV Sequence
database at Los Alamos [21] and were aligned by ClustalW web
interface [6]. The lengths of the aligned sequences were 1690,
4494 and 2817 for gag, gagpol and env sequences respectively.
These numbers also denote the number of base-pair transitions
in a single transformation step for the corresponding sequence.
Thus, successful transformations for these sequences with our
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Table 2

The distributed infrastructure

Cluster and location Number
of m/cs

Specifications

Torc cluster, University of 8
Tennessee (UT), USA

DAS-2, Vrije Universiteit, 9
Netherlands

AMD cluster, Indian 6
Institute of Science, India

GNU/Linux 2.6.8, Dual PIIl 933 MHz, 512
MB RAM, 40 GB Hard Drive, 100 Mbps
Ethernet

GNU/Linux 2.4.21, Dual PIIl 996 MHz,
1GB RAM, 20 GB Hard Drive, 100 Mbps
Fast Ethernet.

AMD Opteron 246 based 2.21 GHz
servers, Fedora Core 4.0, 1 GB RAM, 160

GB Hard Drive, Gigabit Ethernet

Table 3
Differential rule analysis for gag sequences

Branch number Rule used

(Ancestor-progeny)

11 (15-16)

Time-steps Prob.

CAGGCAAACGCCTGTT
ACATTAATTTCGTGCC

GTTAAAAGTGTGCGGC
TGATGCGCAAATGCCC
GGGTCAATTTTGGCAT
GACCATATTGTCCTCA

GATACTAAGTTCATAG
AGAAGAACGATTACTT
CCGAAGTGATTGAAGC
GCTTGTTTCTGGCGAT

TTTTGTGGTCCACTCA

CCTTATTCGCAAAATA

TCGCAGCGACCGCATA
AACATACCGGCTGGCG
ATAAGCTGGACTCAAC
ACGAGTGCCAAATCTT
ATATGTGCGGTTACTA

TCGGTCTCCGGAGGTG
CACTTACCGCCGGATG
GCACTAGAGAACTATA

42-43 0.95
12 (1-45) 43-44 0.95
29 (26-27) 59-61 0.98
32 (16-02_AG)

65-66 0.92

83 (6-21) 198-199 0.94

The 64 characters in column 2 of the table represent the 64 right-hand sides of the
transitions shown in Table 1.

cellular automata rules, that define only 64 transitions, indicate
that a single neighbor-dependent transition defined by a rule
in an evolution step can occur at more than one position of
the sequence. For each of the three aligned sequence types, a
phylogenetic tree was obtained using the Phylip [18] package.
The number of branches of the phylogenetic trees were 84,
47 and 46 for gag, gagpol and env, respectively. We utilized
a grid infrastructure consisting of 23 machines distributed in
3 countries, as shown in Table 2, for our experiments. These
machines operated in non-dedicated modes and were used by local
users for different purposes. The worker processes were executed
on all the machines. The master process and the PostgreSQL
database, where information pertaining to the complete chains of
a sequence type are stored by the master, were started on one of
the AMD machines in Indian Institute of Science. The results that
were obtained correspond to obtaining statistics with 7332, 4759
and 3251 complete chains collected in the PostgreSQL databases
for gag, gagpol and env sequences, respectively, after 13, 4 and 3
days, respectively, from the start of the corresponding experiments
on the distributed infrastructure. Each complete chain contains all
the branches of the phylogenetic tree for a particular sequence
type. Each branch of a chain is associated with a set of rules and a
certain number of time steps for transformations from the ancestor
to progeny sequence of the branch. Different chains may have
different sets of rules and different number of time steps for the
branch.

Our first interest is to establish if our techniques, based on
cellular automata and involving ensemble experiments on grids,
can verify the phenomenon of neighbor-dependent mutations
in some steps of evolution. Table 3 shows the probabilities
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Table 4 Table 5

Summary of time step information for Gag sequences Resolution of unknown positions for gag sequences

Branch number Average number of time Standard deviation S. Seq. Position prob prob prob prob prob prob (pyra-

(Ancestor-progeny) steps no. no. (A) (© (G) (T) (purines) midines)
0(8-9) 15.657665 1961112 (EmE) W & @& € = @xd
4(19-14) 31.242908 2.085160 1 26 (3) 1390 034 014 040 0.10 0.74 0.25
5 (43-44) 32.274139 2.096791 2 26 (3) 375 0.17 024 008 050 025 0.74
6(20-21) 34.051281 1.852813 3 4(1) 410 043 011 030 0.15 0.73 0.26
7 (13-24) 35.154255 1.833268 4 9(14) 411 012 034 013 039 0.26 0.73
8(24-36) 36.161758 1.827739 5 10 (15) 386 0.12 041 014 031 0.26 0.73
9(5-4) 37.184532 1.814149 6 17 (21) 1251 026 007 046 019 073 0.26

10/(29-30) 38.198307 LB Columns, 4, 5, 6, and 7 show the probabilities of occurrence of the corresponding

LLils- 6 AT LRI base-pairs in an unknown position of an intermediate sequence

12 (1-45) 40.259411 1.904292 :

13(12-13) 41.311649 1.974289

14 (14-18) 42.380253 1.991383 Table 6

15 (25-26) 43.405754 1.986514 Usefulness of large number of runs

16 (22-8) 44.409302 1.990247 Branch Average number of time steps Standard deviation

17 (22-15) 45.484451 2.040152

of applications of some cellular automata rules for neighbor-
dependent mutations at certain discrete time steps of mutations
on some branches of the phylogenetic tree formed from gag
sequences. The probability for a rule was obtained by dividing
the number of times the rule was applied and the total number
of applications of rules for the time step(s). The high probability
numbers for about 7000 samples indicate that the corresponding
rules for neighbor-dependent mutations are most likely to have
been followed in the corresponding steps of evolution. For
example, the third entry shows shows that there is 98% probability
for the corresponding rule to have been applied during steps 59-61
of mutations in the corresponding branch. If mutations of DNA
segments are independent of their neighbors, all the applied rules
for neighbor-dependent mutations would have been applied with
approximately equal low probabilities. Thus these results show
that our cellular automata rules can capture the highly probable
neighbor-dependent mutations at some time steps of mutations.
Unlike the previous efforts that deal with specific neighbor-
dependent transitions [3,16], our work studies the combined
effects of a set of neighbor-dependent transitions that define arule.

Our work also tries to determine the number of time steps
taken for mutations from the ancestor to progeny sequences of
branches of a phylogenetic tree. The resolution of time steps is
useful for analyzing the mutations of existing sequences and can
also help in expanding the phylogenetic tree to predict future
sequences. Table 4 shows the averages and standard deviations of
the number of time steps taken for mutations for some branches of
the phylogenetic tree for gag sequences. The averages and standard
deviations were obtained over the 7332 complete chains formed
for the gag sequences. The low standard deviation values for large
number of branches indicate that we are able to determine the
most likely number of time steps needed for mutations from the
ancestor to progeny sequences of the branches irrespective of the
rules applied for the mutations. For example, for branch 10, the
most likely number of time steps needed for mutations from the
ancestor to the progeny of the branch are in the range 36-40.
These fine-level details regarding the number of time steps are
not associated with the phylogenetic trees generated by existing
packages.

Table 5 shows the resolutions of unknown positions of the
intermediate gag sequences. The probability of occurrence of a
base-pair in an unknown position of an intermediate sequence,
shown in the table, was calculated by dividing the number of
resolutions of the position with the base-pair by the total number
of resolutions of the position. Entries 1, 3 and 6 of the table
show that the corresponding positions of the sequences are most
likely to be occupied by purines (A and G) than pyrimidines (C
and T). The other entries show that the corresponding positions

Part 1. On day X. Number of complete chains = 1347

0 14.625093 3.565527
1 20.830734 3.153974
Part 2. On Day (X + 10). Number of complete chains = 7607

0 15.832522 1.890947
1 22.199816 1.708907

of the sequences are most likely to be occupied by pyrimidines
than purines. Resolution of the intermediate sequences leads
to completeness and improvement in quality of the associated
phylogenetic tree. This in turn can enhance the studies that utilize
these phylogenetic trees for better predictions of future sequences.

In order to show that our long-running computations can
have potential long term benefits in resolving uncertainties
associated with mutations, we conducted experiments with gag
sequences on the 6 AMD machines in India. We then observed the
average number of time steps in mutations of 2 branches of the
phylogenetic tree at 2 different periods of time separated by 10
days. Table 6 shows the results corresponding to the 2 branches.
The first part of the table shows the results obtained on a particular
day when 1347 complete chains were collected in the PostgreSQL
database and the second part shows the results obtained 10
days later when 7607 complete chains were collected. The lower
standard deviation values for the results in the second part of the
table show that the average number of time steps converges with
increasing number of executions. Thus, our work can give more
definite findings regarding mutations as more time is spent by the
application on grid resources. Thus, our application regarding DNA
sequence transformations is a natural grid application that can run
continuously and make use of more grid resources, when available,
to yield continuous better results.

8. Discussion

The primary focus of our current work has been exploring
different ways of convergence to progeny sequence from an
ancestor sequence using cellular automata rules. Our techniques,
namely, selective application of rules and dynamic formation of
rules, follow greedy approaches to attain convergence. In order
to model evolutions more realistically, we plan to follow only
selective application of rules and probabilistically freeze a position
in the current sequence once the base-pair at the position matches
with the corresponding base-pair in the progeny sequence.

Currently, we assume that a single rule for neighbor-dependent
mutations is applied for the entire sequence at a single time step.
In future, we plan to split a sequence into windows of different
sizes and apply different rules for different windows in a time step.
This will help in faster convergence especially for larger sequences



Y. Joshi, S. Vadhiyar /. Parallel Distrib. Comput. 69 (2009) 80-90 89

where same neighborhoods can lead to different transitions of a
base-pair in different regions of the sequence. We also plan to focus
more on popularity of individual transitions that define a rule.
While mutations in a time step will be based on cellular automata
rules, the analysis of mutations will be on transitions. This will
not only help in considerably reducing the storage complexity
associated with the rules, but can also lead to more definite
statistics regarding neighbor-dependent mutations.

In this work, we had considered only the effects of a left and
a right neighbor on transitions of a base-pair. We plan to explore
larger neighborhood sizes. However, for large neighborhood sizes
and small sequences like HIV, the probability of finding a base-pair
at different positions of a sequence with same flanking neighbors
is low. Hence, cellular automata rules, that imply same transitions
for a base-pair when flanked with same neighbors, will not be
applicable for larger neighborhood sizes. Thus, mutation analysis
should be performed at the level of transitions. Considering
very large neighborhood sizes also necessitates management
and analysis of many hundred thousand transitions resulting in
significant increase in storage complexity. We plan to restrict
our work to analyze the effects of maximum of three flanking
neighbors on either side of a base-pair.

We also plan to consider larger sequences similar to those found
in human genomes [12]. Though the number of time steps for
convergence does not increase with the increase in length of the
sequence, the time taken for processing a single time step will
increase. We plan to employ finer-level parallelization scheme
where the sequence transformer will be parallelized by splitting
the sequence into multiple regions and dividing the regions across
processors. We plan to employ a 2-level parallelization by dividing
the grid resources into several clusters. While different sequence
transformer instances will be executed simultaneously at different
clusters, parallelization of a sequence transformer instance will be
attained within a cluster of machines.

9. Conclusions

In this work, we have developed techniques based on cellular
automata to analyze the rules for neighborhood-based mutations
on branches of a phylogenetic tree. Fine-grained analysis of
rules at different time steps of mutations, and resolving the
number of time steps of mutations and incomplete intermediate
sequences associated with phylogenetic trees are the primary
contributions of our work to evolution studies. The key elements
of the contributions are a novel approach to studying mutations
by exploring different rules for transformations from an ancestor
to a progeny sequence, building a master-worker application
for simultaneous exploration of different number of rules,
development of the application as an ever-running application
suitable for grid computing, and techniques for coordination,
maintenance and statistical analysis of large-scale ensemble
explorations on grids. Based on the results collected for three
HIV sequences, we have verified the phenomenon of neighbor-
dependent mutations, found that certain combinations of these
mutations occur with greater than 90% probabilities, determined
the average number of time steps of mutations over large
number of explorations with less than 2 standard deviations,
and also resolved unknown positions of incomplete intermediate
sequences associated with phylogenetic trees. We were also able to
show that grids are very suitable for our sequence transformation
application since the ever-expanding grid resources can be used
for increasing the exploration space and help in convergence of
findings regarding mutations.

10. Future work

Apart from dealing with various research challenges covered in
Section 8, we also plan to develop robust scheduling mechanisms
to map the individual sequence transformations to the processors
of a grid. Existing scheduling techniques that need expected time
to completion will not be adequate because the number of time
steps needed for sequence transformations cannot be determined
a priori. Considering very large neighborhood sizes and studying
varying impacts of different neighborhoods are other challenging
research problems that may be considered in future.
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