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Abstract—A phylogenetic or evolutionary tree is con-
structed from a set of species or DNA sequences and depicts
the relatedness between the sequences. Predictions of future
sequences in a phylogenetic tree are important for a variety
of applications including drug discovery, pharmaceutical
research and disease control. In this work, we predict
future DNA sequences in a phylogenetic tree using cellular
automata. Cellular automata are used for modeling neighbor-
dependent mutations from an ancestor to a progeny in
a branch of the phylogenetic tree. Since the number of
possible ways of transformations from an ancestor to a
progeny is huge, we use computational grids and middle-
ware techniques to explore the large number of cellular
automata rules used for the mutations. We use the popular
and recurring neighbor-based transitions or mutations to
predict the progeny sequences in the phylogenetic tree. We
performed predictions for three types of sequences, namely,
triose phosphate isomerase, pyruvate kinase, and polyketide
synthase sequences, by obtaining cellular automata rules on
a grid consisting of 29 machines in 4 clusters located in 4
countries, and compared the predictions of the sequences
using our method with predictions by random methods. We
found that in all cases, our method gave about 40% better
predictions than the random methods.
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I. INTRODUCTION

Study of the evolution of different species or organisms
is important to biologists since it has practical applications
including drug discovery, disease control, and population
management [1]. Availability of DNA sequence databases
[2], [3] in the last few decades has enabled the study
of evolutions at the molecular level. During evolution, a
DNA segment consisting of a sequence of purines and
pyrimidines (also called base-pairs) changes to a different
sequence of base-pairs. Phylogenetic trees give a picture
of relatedness between various DNA sequences. A branch
in a rooted phylogenetic tree connecting ancestor and
progeny indicates that one sequence (progeny) has evolved
from the other (ancestor).

Predictions of future sequences in a phylogenetic tree
are important for a variety of applications including
designing drugs to combat viruses, developing method-
ologies to apply corrections to evolutionary paths, and
deploying mechanisms to accommodate future sequences.
Existing efforts on phylogenetic inference are primarily
concerned in the construction of trees from a given set of
sequences [4]–[7]. In this paper, we predict future DNA
sequences of phylogenetic trees based on modeling the
evolutions of the given DNA sequences in the trees. We

predict future sequences by using cellular automata [8], [9]
to model mutations of DNA sequences in a phylogenetic
tree. We use cellular automata to model neighbor-based
mutations of DNA sequences where each base pair in a
DNA sequence represents a cell. We represent mutations
of base pairs of a DNA sequence in terms of a cellular
automata rule that changes the base-pair at a position of
a DNA sequence based on the base-pair values at the
position and its neighboring positions in the sequence.

Modeling DNA sequence mutations or transformations
using cellular automata, where each cell can assume one of
four possible states corresponding to four different base-
pairs of a DNA sequence, requires exploration of a huge
search space and needs a large number of computing
cycles. To explore the large number of transformations
in a reasonable amount of time, we have developed a
computational grid system to conduct simultaneous mod-
eling of different transformations on different ancestor-
progeny branches of the phylogenetic tree. After obtaining
the cellular automata rules for different time steps in dif-
ferent transformations of different branches, we calculate
statistics regarding popular neighbor-dependent mutations
for each time step of each branch. We use these statistics
on an evolutionary path of the tree to predict the future
sequences in the path. We validated our predictions by
predicting the sequences of a phylogenetic tree and com-
paring the predicted and actual sequences of the tree. We
performed predictions for three sequences, namely, triose
phosphate isomerase, pyruvate kinase, and polyketide syn-
thase sequences, by obtaining cellular automata rules on
a grid consisting of 29 machines in 4 clusters located in 4
countries, and compared the predictions of the sequences
using our method with predictions by random methods.
We found that in all cases, our method gave about 40%
better predictions than the random methods.

The rest of the paper is organized as follows. Section
II gives a brief background. Section III describes our
methodology for obtaining cellular automata rules for
neighbor-dependent mutations on different branches of a
phylogenetic tree. In Section IV, we describe our method-
ology of obtaining statistics regarding popular neighbor-
dependent transitions and using the statistics to predict
future sequences. Section V presents our experiments and
results on grid resources. In Section VI, existing efforts on
phylogenetic inference are discussed. Section VII presents
conclusions and future work.
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II. BACKGROUND

In this section, we give brief descriptions of phyloge-
netic trees, cellular automata and the relationship between
cellular automata and DNA evolutions and other neces-
sary background including PSSM matrix molecular clock
assumption.

A. DNA Sequences

DNA is a nucleic acid that contains the genetic instruc-
tions for the development and function of living things.
The building blocks of the DNA polymer are nucleotides,
which in turn consist of a phosphate group, a sugar ring
group and either a purine or a pyrimidine base group. Two
possible purines are guanine (G) and adenine (A) and the
two possible pyrimidines are thymine (T) and cytosine
(C). These building blocks of DNA are also known as base
pairs of DNA. We can view a DNA strand as a line of cells
with each cell having one of the four values (A,G,C or T).
Three base pairs in a DNA sequence form one codon. Each
codon corresponds to either one of the 20 amino acids or
to a control codon (start codon or end codon). A chain of
amino acids form a protein which are the basic functional
blocks of the organisms. During mutations, some base
pairs in a DNA strand change giving rise to a different
strand.

B. Phylogenetic Trees

A phylogenetic tree, also called an evolutionary tree, is
a tree showing the evolutionary interrelationships among
various species that are believed to have a common
ancestor. The leaves of the tree represent various species or
genomic sequences. An internal node of the tree represents
an abstract sequence whose existence is presumed. A
branch in a phylogenetic tree connecting an ancestor
and a progeny indicates that one sequence (progeny) is
evolved from the other (ancestor). We use Phylip [10]
to construct phylogenetic trees. DNA sequences were
downloaded from sequence database at NCBI [3]. The
sequences were aligned by ClustalW web interface [11].
The aligned sequences were then input to ’dnamlk’ pro-
gram of Phylip to obtain phylogenetic tree for a given set
of sequences. The Phylip output file also contained the
lengths of the branches, intermediate sequences and other
debugging information.

C. Cellular Automata

A cellular automaton is a regular array of identical finite
state automata where the next state of an array element
is determined solely by its current state and the state of
its neighbors. The change of state of the array element is
defined by a cellular automata rule [12]. Cellular automata
are powerful tools for analyzing DNA mutations. An
example of the evolution of one dimensional cellular
automata is shown in Figure 1. Each cell can have one
of the two possible states - 0 or 1. The neighborhood size
is 1, i.e. the state of each cell at the next time step is
dependent on the state of that cell, the state of its single
left neighbor and the state of its single right neighbor. The

Time steps Cells
0 0 1 0 0 0 1 1
1 1 1 1 1 0 0 1
2 0 0 0 1 1 0 0

Figure 1. Evolution of Cellular Automata through time steps

0 0 0 0 0 1 0 1 0 0 1 1
1 0 1 0

1 0 0 1 0 1 1 1 0 1 1 1
1 1 1 0

Figure 2. Rule that governs the evolution of cellular automata shown
in Figure 1

rule that governs this evolution is depicted in Figure 21. To
determine the state of the 3rd cell at time step 1, a triplet,
100, is formed using the values of the left neighbor, the
3rd cell and the right neighbor, respectively, in time step
0. This triplet is looked up in the rule given by Figure 2,
and the value of the cell is changed to 1 in time step 1. In
general, one dimensional cellular automata with P states
have P 2·n+1 transitions for a rule and the total number of
possible rules are PP 2·n+1

.

D. Cellular Automata and Neighbor-based Mutations

There are strong indications that mutations of DNA
base-pairs are affected by neighboring base-pairs [13]–
[15]. We make an attempt to find out this relationship
by modeling DNA as cellular automato where the DNA
mutations are governed by the cellular automata rules.
The DNA molecule can be viewed as a one-dimensional
cellular automato, with four states per cell, corresponding
to each of the four base-pairs. Thus, the base of this
cellular automata is 4. In this work, we consider only those
rules with neighborhood size of 1, i.e. the transition of a
base-pair in a DNA sequence during evolution depends on
the base-pair and its left and right neighboring base-pairs.
Each rule consists of 64 transitions where the left-hand
side of a transition contains three base pairs corresponding
to a base pair at a position and its left and right neighbors.
The right-hand side of each transition can be one of the 4
base-pairs giving rise to 464 rules.

E. Position Specific Scoring Matrix (PSSM)

A Position Specific Scoring Matrix (PSSM) enables the
scoring of multiple alignments with sequences. A PSSM is
calculated over a set of sequences. It contains five columns
corresponding to four base pairs and one for uncertainty
base and number of rows equal to the number of bases in
the DNA sequences or strands. Entry at row i and column
j corresponds to the probability of occurrence of the base
corresponding to column j at position i of a strand.

F. Molecular Clock

Molecular clock [16] is an assumption that gives the
relation between lengths of the branches in a phylogenetic

1In our work, we use cellular automata with wrap-around, i.e. the left
neighbor of the first cell is the last cell, and the right neighbor of the
last cell is the first cell.
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tree and the rate of evolution or the time steps taken for
the evolutions in the branches, as shown in Equation 1.

b1 = α1 · t1; b2 = α2 · t2; · · · ; bn = αn · tn (1)

In the equation, b1, b2, b3, . . . , bn are branch-lengths of the
n branches in the phylogenetic tree and t1, t2 , t3, . . . , tn
are the time steps taken for transformations of the cor-
responding branches. Branch length is a measure of the
difference between the ancestor and progeny of a branch
and is obtained along with the phylogenetic tree from the
Phylip package. alpha1, alpha2, . . . , alphan denote the
rates of mutations. According to linear molecular clock
assumption, α1, α2, α3, ..., αn are related such that

b1 = α1 · t1 < b2 = α2 · t2 < · · · < bn = αn · tn (2)

and
t1 < t2 < t3 < · · · < tn (3)

This assumption is reasonable since greater the branch
lengths or greater the difference between the ancestor and
progeny sequences, the more the time steps required to
transform from an ancestor to a progeny. In our work, we
use a modification of a linear molecular clock assumption.

III. SEQUENCE TRANSFORMATIONS FOR A

PHYLOGENETIC TREE

In this section, we first describe our algorithm for
transformation of an ancestor to progeny sequence of a
branch of a phylogenetic tree and formation of cellular
automata rules for neighbor-dependent mutations. We also
explain the master-worker grid computing architecture,
involving distributed grid resources, for exploring the large
number of cellular automata rules for the branches.

A. Sequence Transformation on a Branch

Our first step is to derive a sequence transformation
methodology that, given an ancestor and a progeny se-
quence, starts with the ancestor sequence, applies a set of
rules for neighbor-based mutations for a certain number of
mutation steps to arrive at the progeny sequence. We apply
the methodology for each branch for transforming the
ancestor to progeny sequence of the branch. We compare
a sequence produced during the transformation, with the
progeny sequence using a similarity metric defined as the
percentage of the number of base pairs in the sequence
matching the corresponding base pairs in the progeny
sequence. We have developed a program called sequence
transformer that performs the transformations on a branch.
Each sequence in a phylogenetic tree contains a series
of valid regions where each valid region starts with a
start codon and ends with a stop codon. For sequence
transformation on a branch involving an ancestor and a
progeny, the sequence transformer first finds the valid
regions in the ancestor and progeny sequences, finds the
intersection of positions of the valid regions of the two
sequences, and forms the working region containing the
intersection positions. The algorithm tries to transform the
working region of the ancestor to the working region of
the progeny.

1) Sequence Transformation Algorithm: The sequence
transformer starts with an ancestor sequence as the current
sequence and mutates the base pairs for a certain number
of time steps until the current sequence transforms to
the progeny sequence. For each time step, the algorithm
traverses the current sequence starting from a random
position and considers mutation of base pair in each
position until it loops back to the starting position. The
algorithm builds a rule table for each time step containing
the neighbor-based transitions or mutations of a base pair
with a neighborhood size of 1. The rule table contains a
maximum of 64 entries corresponding to the 64 possible
left hand sides of the transitions where the left-hand side
of each transition contains three base pairs corresponding
to a base pair at a position and its left and right neighbors.

The sequence transformer uses a Position Specific Scor-
ing Matrix (PSSM) that is specific for a branch. For each
position, the algorithm uses the probabilities in the PSSM
for the position to decide if the base pair at the position
should be mutated or preserved. The algorithm also uses
the PSSM to determine the specific neighbor-dependent
mutations for the base pairs that are mutated. To decide
if a base pair in a position of the current sequence should
be mutated, the algorithm compares the base pair with
the base pair in the corresponding position of the progeny
sequence. If the base pairs are different, the base pair in
the position of the current sequence is mutated. If the two
base pairs are equal, the algorithm uses the probabilities
for all four possible base pairs for the position from the
PSSM to form a Roulette wheel of four sectors. Each
sector corresponds to a base pair and the length of a sector
is proportional to the probability of the corresponding base
pair at the position as given in the PSSM. The algorithm
then generates a random number, determines the sector
of the Roulette wheel containing the random number, and
selects the associated base pair. If the selected base pair is
the same as the base pairs in the position of the current and
the progeny sequence, the algorithm decides to not mutate
the base pair in the position of the current sequence and
preserves the base pair.

If the algorithm decides to mutate the base pair in the
current position, it forms a window of three base pairs
containing the base pair in the position and its immediate
left and right neighboring base pairs. To determine the
specific mutation for the base pair, the algorithm looks up
the rule table to find the transition containing the three
base pairs in the window in the left hand side. If the right
hand side of the transition is empty, the algorithm uses
the PSSM matrix to form a Roulette wheel of four sectors
corresponding to the position, generates a random number,
and selects the base pair corresponding to the sector
containing the random number. The algorithm mutates the
base pair in the position to the selected base pair and
also fills the right hand side of the transition in the rule
table with the selected base pair. If the right hand side of
the transition in the rule table contains a base pair, the
algorithm mutates the base pair in the current position to
the base pair in the rule table. The process is repeated for
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Figure 3. Master-Worker Paradigm

the next position by sliding the window by one position
and continued until positions are considered.

2) Determining PSSM for a Branch: To determine the
PSSM for a branch for formation of cellular automata
rules, a set of sequences will have to be considered. In
our approach, we automatically divide the phylogenetic
tree into different regions or groups of similar sequences
using K-Means clustering algorithm [17]. We then form a
group PSSM for each group of sequences. For formation
of cellular automata rules for a branch, our sequence
transformer uses the group PSSM of the group containing
the progeny sequence of the branch.

B. Multiple Sequence Transformations on Grids

Since our sequence transformer involves randomness
in generation of cellular automata rules, each invocation
of the sequence transformer for a given branch can give
different transformations corresponding to different num-
ber of time steps and different sets of rules. The number
of such transformations from an ancestor to a progeny
sequence can thus be large due to exponential number of
possible rules that can be applied at a single time step and
the number of time steps. To explore the large number of
cellular automata rules for different transformations of a
branch and for different branches, we use grid computing
middleware and resources.

1) Master-Worker Paradigm: A master-worker
paradigm is used for invocations of the sequence
transformer, formation of cellular automata rules, and
insertions of rules into a database. The paradigm is
illustrated in Figure 3. The master is responsible for
assigning branches to the workers and collecting results
from them when they complete their calculations. When
a worker completes its calculations, the master is notified
of the completion and the worker sends the results back
to the master. The master stores the results from the
workers into linked lists corresponding to the branches
assigned to the workers. The master also periodically
calls a complete chain formation algorithm to select
a subset of neighbor-dependent mutations based on an
evolutionary property. The property and the algorithm are
described in the next subsection.

A worker takes a branch from the master, forms the
working region of the ancestor and progeny sequences in

the branch, fills the unknown base-pairs randomly and in-
vokes the sequence transformer. When the transformation
is complete, it sends the results back to the master. The
results mainly consist of the number of time steps required
for transformations and the rule tables for the time steps
containing the neighbor-dependent mutations.

2) Piecewise Linear Molecular Clock Assumption and
Selection of Cellular Automata Rules: The master process
at any point of time has a linked list of outputs from
the worker process for each branch. Each node in the
linked list corresponds to one invocation of the sequence
transformer by a worker for a branch and contains the
number of time steps taken for mutations as one of
the values. The master process selects only a subset of
the nodes in the linked lists such that the time steps
corresponding to the nodes satisfy certain evolutionary
property and inserts the parameters of the selected nodes
in a database. The particular evolutionary property is
the assumption of molecular clock related to the rate of
evolution.

Let b1, b2, · · · , bn, be the branch lengths of the branches
arranged in ascending order and let t1, t2, · · · , tn be the
corresponding time steps. According to linear molecular
clock assumption, the time steps are related as:

t1 < t2 < t3 < · · · < tn (4)

For computation feasibility, we use piecewise linear
molecular clock assumption in which two time steps, ti
and ti+1 corresponding to branch lengths, bi and bi+1,
are related as:

ti−1 ≤ ti ≤ ti−1 · (1 + thres1) (5)

or
(1 − thres2) · ti−1 ≤ ti ≤ ti−1 (6)

For our work, we use values of 0.1 and 0.5 for the
threshold factors, thres1 and thres2, respectively, shown
in Equations 5 and 6, respectively. For a given snapshot
of time step values for the branches, our complete chain
formation algorithm first tries to satisfy the upper limit
condition in Equation 5 for a branch. If it is not able to
satisfy the condition, it next tries to satisfy the lower limit
condition in Equation 6.

The master process periodically invokes a greedy al-
gorithm, called complete chain formation algorithm, with
the available snapshot of linked list values, to select only
those outputs of sequence transformers that adhere to the
piecewise linear molecular clock assumption. The greedy
algorithm starts with branches in the phylogenetic tree
sorted by their branch lengths. The algorithm finds a node,
prevNode, in the first linked list having the smallest
number of time steps. The prevNode is inserted in a
chain. The algorithm then considers the next linked list
and first tries to find a node with the smallest time step
value greater than the time step value of prevNode such
that the absolute difference between the time step values
is less than the upper limit threshold. If such a node
cannot be found, the algorithm tries to find a node with
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greatest time step value smaller than the time step value
of prevNode such that the absolute difference between
the time step values is less than the lower limit threshold.
This node now becomes the prevNode and is added to
the chain. The entire procedure is then repeated for all
linked lists corresponding to all the branches. A chain
containing all the branches in the phylogenetic tree is
called complete chain. The upper limit threshold is fixed
to maximize the chance of finding a complete chain. The
lower threshold is used to prevent large deviation from
linear molecular clock assumption. If a complete chain can
be formed from the current set of linked list values, the
master forks another process to insert the parameter values
corresponding to the complete chain into a PostgreSQL
[18] database. The master also forms additional complete
chains from the same set of linked list values by deleting
some nodes from the original complete chain and invoking
the greedy algorithm, and inserts the complete chains into
the database.

3) Load Balancing: The master employs round-robin
scheduling of tasks to the worker resources. Since the
processor speeds and network links in grids can be het-
erogeneous, the speed of communications between the
master and the workers on the distributed resources and
the amount of work done by the workers per unit time can
vary by large amounts. Hence, the round-robin scheduling
can lead to load imbalance among the workers due to het-
erogeneity and load dynamics on grid resources. We used
load balancing techniques to adapt to the grid resource
and application dynamics. The master dynamically decides
the number of branches or batch size to be allocated
to a worker at a single step based on the times taken
for communications with the worker and computations
performed in the worker. To balance the load among the
workers, the master periodically monitors the times taken
for communication of inputs to and outputs from each
worker and for computation performed by the worker
for a single branch or batch size of 1. It then calculates
the communication-to-computation ratio, ratioi, for each
worker and finds the minimum of the ratios of the workers,
ratiomin. For each worker i, the master then finds the
number of branches to be allocated to worker i or batch
size for worker i, batchi, at a given iteration as batchi =

ratioi

ratiomin
. Thus, workers with larger communication-to-

computation ratios will be allocated more branches so
that the high network latency spent for communicating
the branches is amortized by the computations for the
branches.

IV. PREDICTIONS OF SEQUENCES

For predictions of sequences in the phylogenetic tree,
we use the neighbor-dependent transitions contained in the
rule tables for the different branches that are stored in
the database by the master process. To predict a progeny
sequence from an ancestor sequence, we use the rule tables
of all the branches in the path from the root to the ancestor
of the branch. We denote this path as history path. The
number of time steps required for obtaining the progeny

from the ancestor is predicted as the average of the time
steps of the branches in the history path. To determine the
number of time steps in each branch of the history path,
we obtain the different time steps for the branch from
different complete chains inserted in the database by the
master process and calculate the average of the time steps
across all the complete chains.

For prediction of the progeny sequence, our prediction
algorithm starts with the ancestor sequence, and performs
mutations for the predicted number of time steps to obtain
the progeny sequence. For a particular time step, the
prediction algorithm collects all transitions contained in
the rule tables of the branches in the history path for
the time step to form a transition collection. In each
transition, the left-hand side consists of three base pairs,
and the right-hand side consists of a base pair or an empty
value. A transition with an empty value represents the
preservation of the middle base pair in the left-hand side
of the transition. For each position in the current sequence
at a given time step, the prediction algorithm follows the
procedure similar to the sequence transformer procedure
described in Section III to decide if the base pair at the
position should be mutated or preserved. The prediction
algorithm first forms a PSSM using the sequences in
the history path, then forms a Roulette wheel for the
position from the probabilities for the position in the
PSSM, generates a random number, and selects the base
pair associated with the sector of the Roulette wheel
corresponding to the random number. If the selected base
pair is the same as the base pair in the current position, the
algorithm decides to not mutate the base pair in the current
position and preserves the base pair. If the selected base
pair is different, the algorithm decides to mutate the base
pair in the current position. This method of preservation
of base pairs in some positions of the current sequence is
denoted as explicit preservation.

If the prediction algorithm decides to mutate the base
pair in the current position at the current time step, it
forms a sliding window of three base pairs containing the
base pair in the position and the base pairs in the left
and right neighboring base pairs similar to the procedure
in the sequence transformer. The prediction algorithm
then calculates the total number of occurrences of those
transitions in the transition collection for the current
time step where the left-hand sides of the transitions
consist of the three base pairs in the sliding window.
The algorithm then forms a Roulette wheel consisting
of five sectors based on the number of occurrences of
five distinct transitions. Each sector in the Roulette wheel
represents a transition with the left-hand side equal to
the three base pairs in the sliding window and the right-
hand side equal to one of the four base pairs or an
empty value. The size of the sector is proportional to the
number of occurrences of the corresponding transition in
the transition collection. The prediction algorithm then
generates a random number between 0 and the total
number of occurrences of all transitions, locates the sector
containing the random number, and selects the right-hand
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Figure 4. Prediction Model

side of the transition corresponding to the sector. If the
selected right-hand side is a base pair, the prediction
algorithm mutates the base pair in the current position
to the selected base pair. If the selected right-hand is an
empty value, the base pair in the current position is not
mutated and is preserved. This method of preservation
of base pairs is denoted as implicit preservation. Thus,
popular transitions used in the history path with large
number of occurrences have high probability of selection
and usage during predictions of sequences. The overall
prediction methodology is illustrated in Figure 4.

A. Validation of Predictions

1) Basic Criteria: For a prediction of progeny sequence
from an ancestor sequence, X , we obtain both the actual
progeny sequence, Y , and the predicted progeny sequence
by our method, Y ′. We then calculate the similarity of
ancestor and actual progeny sequences, similarity(X,Y )
or initial similarity, and actual and predicted progeny
sequences, similarity(Y ′, Y ) or CA similarity. The basic
criteria that our prediction method should satisfy is that
similarity(Y ′, Y ) > similarity(X,Y ).

2) Complete Random Prediction Strategy: We compare
our prediction method with a completely random predic-
tion method in which random mutations are applied and
random positions are preserved for the predicted number
of time steps.

3) Improved Random Prediction Strategy: We also
compare our prediction method with an improved random
prediction method that also applies random mutations.
But the number of time steps is estimated based on the
lengths of the branches in the history path and using the
linear molecular clock assumption. Also, a base pair in a
position at a given time step is preserved with a probability
Q = 1−P . P represents the probability of mutation of a
base pair at a position and is calculated as P = (1/L)(1/t),
where L is the length of the sequence and t is the number
of time steps.

V. EXPERIMENTS AND RESULTS

In this section, we present the results of our predictions
on three different phylogenetic trees corresponding to
three different types of sequences, namely, triose phos-
phate isomerase, pyruvate kinase, and polyketide synthase,
using a grid consisting of machines from four countries.
The sequences were downloaded from the NCBI database
[3] and were aligned using ClustalW web interface [11].

Table I
SEQUENCES AND THEIR PROPERTIES

Sequence name Sequence
length

Number
of
sequences

Days of
Execu-
tion

Number of
Complete
Chains

Triose phosphate
isomerase

12248 100 14 200

Pyruvate kinase 4634 300 14 260
Polyketide synthase 3626 115 10 202

Table II
THE GRID INFRASTRUCTURE

Cluster and Location Number of
machines

Specifications

Battlecat cluster, Uni-
versity of Tennessee
(UT), USA

8 GNU/Linux 2.6.25, Intel Core 2
Duo 2.13 GHz, 1 Gbps Ethernet

DAS-2, Vrije Univer-
siteit, Netherlands

9 GNU/Linux 2.4.21, Dual PIII
996MHz, 100Mbps Fast Ethernet.

AMD cluster, Indian
Institute of Science,
India

8 AMD Opteron 246 based 2.21
GHz servers, Fedora Core 4.0,
Gigabit Ethernet

Cluster at Faculty of
Engineering Kasetsart
University, Thailand

4 GNU/Linux 2.6.8, Dual PIII 933
MHz, 100 Mbps Ethernet

For each of the aligned sequence types, a phylogenetic
tree was constructed using the Phylip [10] package. The
lengths of the aligned sequences, and the number of
sequences in the binary phylogenetic tree for the sequence
types, are given in Table I. We utilized a grid infras-
tructure, shown in Table II, consisting of 29 machines
distributed in 4 countries for our experiments. The worker
processes were executed on all the machines. The master
process and the PostgreSQL database for storing the
complete chains were started on one of the AMD machines
in Indian Institute of Science. The number of days of
runs in the grid infrastructure and the number of complete
chains for the different types of sequences are also shown
in Table I.

Figure 5 shows the similarities between the predicted
and the actual progeny sequences using our prediction
method (referred as CA method), complete random and
improved random methods for different branch lengths of
the branches. The figures also show the initial similari-
ties between the ancestor and the progeny sequences for
the branches. We find that for all cases, our prediction
methodology gives much better predictions than random
prediction methods. The average improvement in similar-
ity by our method over other methods is 40%. For pyruvate
kinase and polyketide synthase sequences, as shown in
Figures 5(a) and 5(b), our prediction method meets the
basic criteria where the similarity between our predicted
and the actual progeny sequences is greater than the initial
similarity between the ancestor and the actual progeny
sequences. The average improvement in the similarity by
our method over the initial similarity is 40% for pyruvate
kinase and 9.67% for polyketide synthase sequences. This
shows that our method is able to predict correctly the
evolutionary paths towards the progeny sequence from
the ancestor sequence. For some branches of the pyruvate
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Figure 5. Similarity Values for different Branches

kinase sequence, the similarity of our predicted sequences
is about 80% while the initial similarity between the
ancestor and the progeny sequence is only 50%. Thus, our
prediction method is able to cover 60% of the evolution
path from the ancestor to the progeny sequence.

Figure 6 shows the comparison between the similarity
values predicted by our sequences and the initial similarity
for all branches for the sequences using scatter plots. The
line in each graph represents the values corresponding
to initial similarity. Points above the line satisfy the
basic criteria where the similarity between our predicted
sequences with the actual progeny sequences is greater
than the similarity between the ancestor and the progeny
sequences and points below the line do not satisfy the basic
criteria. Figures 6(a) and 6(b) show that our prediction
method correctly predicts the evolution path towards the
progeny sequence and the similarities of the predicted
sequences are greater than the initial similarities for about
83% of the branches in pyruvate kinase and polyketide
synthase sequences. As Figures 5(c) and 6(c) show, the
similarities of our predicted sequences are less than the
initial similarities for large number of branches for triose
phosphate isomerase sequences. The initial similarities of
the branches of the phylogenetic trees for triose phosphate
isomerase sequences are less than 0.5 in many cases and
have large variations between 0.1 and 0.8. Our prediction

(a) pyruvate kinase sequence

(b) polyketide synthase sequence

(c) triose phosphate isomerase sequence

Figure 6. Predicted v/s Initial similarities

method that uses clustering to group similar sequences to
determine PSSM and find popular neighbor-based muta-
tions was not able to find similar sequences for grouping.
Hence our method gave incorrect predictions for the triose
phosphate isomerase sequences.

VI. RELATED WORK

There are a number of studies that analyze the impact
of neighboring bases on the mutation of a particular
base [13], [15]. None of these studies analyze the fine-
grain effects of neighboring bases during each step of
evolution. Siepel and Haussler [14] incorporate context-
dependence in phylogenetic models to improve the quality
of phylogenetic trees and estimate the pattern and rates of
substitutions on the branches of a phylogenetic tree. Our
work uses context-dependence to predict future sequences
of the trees. DNA evolution has been modeled as cellular
automata in the work by Sirakoulis et. al. [19]. However,
the work considers limited cellular automata rules.

Various efforts have performed large-scale phylogenetic
analysis using massively parallel processors [4]–[6]. PBPI
[4] is a parallel Bayesian phylogenetic inference program
that combines likelihood methods and Markov models and
uses algorithmic improvements and parallel processing for
high performance. Blagojevic et al. [5] ports and optimizes
a high performance Maximum Likelihood (ML) program,
RAxML, to the Cell Broadband Engine. The work by Ott
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et al. [6] ports RAxML to IBM Bluegene/L architecture
and performs phylogenetic analysis using both coarse
and fine-grained parallelism. All these efforts construct
phylogenetic trees for a given group of species. Our effort
uses the phylogenetic trees to predict non-existent species.

Large scale phylogenetic tree analysis has also been
performed on computational grids [7], [20]. The work
by Stewart et. al. [7] had prepared a global grid for
studying arthropod evolution. The effort implemented a
parallel version of fastDNAml [21] algorithm on a global
grid using a maximum likelihood approach to construct
better phylogenetic trees. The work by Joshi and Vadhiyar
[20] studies the evolution of HIV sequences using the
molecular clock assumption and cellular automata. Our
work significantly extends their work to predict future
sequences of phylogenetic trees.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have modeled DNA sequence muta-
tions in the phylogenetic trees using cellular automata,
obtained the cellular automata rules for neighborhood-
based mutations on branches of the trees, and predicted
the future sequences of the trees using the recurring and
popular neighborhood-based mutations in the predecessor
branches. We explored large number of cellular automata
rules on distributed grid resources. We formed cellular
automata rules for three types of sequences, namely, triose
phosphate isomerase, pyruvate kinase, and polyketide syn-
thase, by executing our paradigm on a grid consisting of
29 machines in 4 clusters located in 4 countries, and com-
pared the predictions of the sequences using our method
with predictions by random methods. We found that in all
cases, our method gave about 40% better predictions than
the random methods. We plan to augment our prediction
methods to give good predictions for sequences with very
small and very large initial similarities.
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