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Abstract—Preconditioned Conjugate Gradient (PCG) method
has been one of the widely used methods for solving lin-
ear systems of equations for sparse problems. Pipelined PCG
(PIPECG) attempts to eliminate the dependencies in the com-
putations in the PCG algorithm and overlap non-dependent
computations by reorganizing the traditional PCG code and using
non-blocking allreduces. We have developed a novel pipelined
PCG algorithm called PIPECG-OATI (One Allreduce per Two
Iterations) that provides large overlap of global communication
and computations at higher number of cores in distributed
memory CPU systems. Our method achieves this overlapping
by using iteration combination and by introducing new non-
recurrence computations. We compare our method with other
pipelined CG methods on a variety of problems and demonstrate
that our method always gives the least runtimes. Our method
gives up to 3x speedup over PCG method and 1.73x speedup
over PIPECG method at large number of cores.

Index Terms—Preconditioned Conjugate Gradient, distributed
memory systems, pipelining, overlapping communication and
computations

I. INTRODUCTION

Many High Performance Computing applications in Compu-

tational Fluid Dynamics, Electromagnetics, Finance etc. need

to solve Partial Differential Equations over space and time.

These partial differential equations are discretized using finite

volume, finite element or finite difference methods and they

result in a linear system of equations Ax = b. The A matrix

obtained by using these discretization schemes is generally

sparse. Iterative methods are used to solve these linear system

of equations with sparse matrices. In iterative methods, we

begin with an initial guess x0 and iterate till we get the correct

solution. The most widely used iterative methods used for

solving these sparse systems are Krylov Subspace methods.

The basic idea behind Krylov methods when solving a linear

system Ax = b is to build a solution within the Krylov

subspace composed of several powers of matrix A multiplied

by vector b, that is, {b, Ab,A2b, ..., Amb}.

Conjugate Gradient (CG) [1] [2] method is one of the

widely used Krylov Subspace methods and is used to find

the solution of linear systems with symmetric sparse positive

definite matrices. In exact arithmetic, it gives the solution of a

system of size N in N steps. A preconditioner can be applied

to the system to condition the input system and to improve

convergence.

The main computational kernels in Preconditioned Con-

jugate Gradient (PCG) are Sparse Matrix Vector Product

(SPMV), Preconditioner Application (PC), Vector-Multiply-

Adds (VMAs) and Dot Products. The Dot Products need

allreduce operations in distributed memory systems.

For distributed memory systems, the bottleneck in PCG is

the synchronization that happens across all cores due to the

allreduce operations in the algorithm. Hence, existing research

has worked on reducing the number of allreduces to one

per iteration as opposed to the three that exists in the naı̈ve

algorithm [2] [3] [4].

With the advent of non-blocking collectives like

MPI IAllreduce in the MPI-3 standard [5], the overlapping of

allreduce with useful work has been made possible. Gropp’s

Asynchronous PCG [6] was the first work to use non blocking

collectives to overlap allreduces with computation. They used

the naı̈ve PCG consisting of three allreduces per iteration

and introduced inexpensive Vector-Multiply-Add (VMA)

operations to eliminate the dependencies that prevent the

overlap. The resulting algorithm is then able to overlap one

allreduce with SPMV and the other two with PC. Pipelined

PCG (PIPECG) proposed by Ghysels et al [7], on which this

work is based, uses Chronopoulos-Gear PCG [4] which has

one allreduce per iteration. By introducing extra VMAs, they

overlap this allreduce with an SPMV and a PC. Pipelined

PCG with deeper pipelines (PIPELCG) was introduced in [8]

[9] in order to overlap more work with allreduce at higher

core counts. They start with Generalised Minimal Residual

(GMRES) as the base algorithm. Another variant of CG

which has only one allreduce per iteration has three-term

recurrence relations. However, this has been shown to have

low accuracy than the naı̈ve three two-term recurrence PCG

variants. A pipelined version of this variant (PIPECG3) was

proposed by Eller et al [10]. It overlaps the single allreduce

with two SPMVs and two PCs.

In this work, we propose a novel pipelined PCG method for

distributed memory systems, called PIPECG-OATI (PIPECG-

One Allreduce per Two Iterations), using iteration combination

and new non-recurrence computations. We start with PIPECG

and reduce the number of allreduces to one per two iterations

and overlap this allreduce with two PCs and SPMVs. Com-

pared to PCG which has three allreduces per iteration and
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uses blocking allreduces, PIPECG-OATI has one allreduce per

two iterations and uses non blocking allreduce. PIPECG-OATI

provides upto 3x speedup over PCG. Compared to PIPECG

which overlaps one allreduce with one SPMV and one PC,

PIPECG-OATI overlaps the allreduce with two SPMVs and

two PCs so that as number of cores increase, the increasing

latency of allreduce can be hidden by more overlapped work.

PIPECG-OATI provides 1.73x speedup over PIPECG.

The rest of the paper is organized as follows: Section

II gives background related to PCG and PIPECG, Section

III describes our algorithm for PIPECG-OATI method using

iteration combination. Section IV presents the analysis and

comparison of our method compared to other works. Section

V presents the optimizations we have implemented in our

method. Section VI presents experiments, results and discus-

sions for our proposed method and Section VII gives the

conclusions and future work.

II. BACKGROUND

PCG: The Preconditioned Conjugate Gradient Method

(PCG) introduced by Hestenes and Stiefel [1] is given in

Algorithm 1. As shown in Algorithm 1, the computational

Algorithm 1 Preconditioned Conjugate Gradient (PCG)

1: r0 = b−Ax0; u0 = M−1r0;
2: γ0 = (u0, r0); norm0 =

√
(u0, u0)

3: for i=0,1... do
4: if i > 0 then
5: βi = γi/γi−1

6: else
7: βi = 0
8: end if
9: pi = ui + βipi−1

10: s = Api
11: δ = (s, pi)
12: α = γi/δ
13: xi+1 = xi + αpi
14: ri+1 = ri − αs
15: ui+1 = M−1ri+1

16: γi+1 = (ui+1, ri+1);
17: normi+1 =

√
(ui+1, ui+1)

18: end for

kernels in PCG’s for loop are Sparse Matrix Vector Product

(SPMV) in line 10, Preconditioner Application (PC) in line

15, Vector-Multiply-Adds (VMAs) in lines 9, 13 and 14 and

Dot Products in lines 11, 16 and 17. Note that the third Dot

Product (line 17) is for calculating the residual norm which

is used to check for convergence. The SPMV often only

requires communication with the neighbouring nodes which

has been implemented efficiently in state-of-the-art libraries.

Depending on the type of PC we are using, there might be

no communication at all or communication with neighbouring

nodes. Communication efficient PCs already exist in state-

of-the-art libraries. VMAs require no communication. Dot

Products use allreduce which requires all the processors to

synchronize and send their local dot products so that the

global Dot Product can be calculated. In the naı̈ve PCG

Algorithm 1, the allreduce used in the Dot Products cannot

be overlapped with any work because the results of the Dot

Products are needed immediately in the next step. So the

cores remain idle till the communication for calculating global

Dot Product completes. Also there are three allreduces per

iteration, so the cores have to incur synchronization and idling

cost thrice. As the number of cores increase, the time taken

for allreduce increases, thus the cores remain idle for a longer

time and this becomes the bottleneck and hinders obtaining

good performance for PCG at higher number of cores.

PIPECG: The Pipelined Peconditioned Conjugate Gradient

Method (PIPECG) was proposed by Ghysels and Vanroose

[7] for obtaining performance improvements on distributed

memory architectures. As shown in Algorithm 2, PIPECG

Algorithm 2 Pipelined Preconditioned Conjugate Gradient

(PIPECG)

1: r0 = b−Ax0; u0 = M−1r0; w0 = Au0;
2: γ0 = (r0, u0); δ = (w0, u0); norm0 =

√
(u0, u0)

3: m0 = M−1w0; n0 = Am0

4: for i=0,1... do
5: if i > 0 then
6: βi = γi/γi−1; αi = γi/(δ − βiγi/alphai−1);
7: else
8: βi = 0;αi = γi/δ
9: end if

10: zi = ni + βizi−1

11: qi = mi + βiqi−1

12: si = wi + βisi−1

13: pi = ui + βipi−1

14: xi+1 = xi + αipi
15: ri+1 = ri − αisi
16: ui+1 = ui − αiqi
17: wi+1 = wi − αizi
18: γi+1 = (ri+1, ui+1)
19: δ = (wi+1, ui+1)
20: normi+1 =

√
(ui+1, ui+1)

21: MPI Iallreduce on γi+1, δ, normi+1

22: mi+1 = M−1wi+1

23: ni+1 = Ami+1

24: end for

introduces extra AXPY operations (lines 10, 11, 12, 16, 17)

to remove the dependencies between the Dot Products and PC

and SPMV so that PC and SPMV can be computed while the

communication for Dot Products is being completed and the

cores don’t have to be left idle. The MPI Iallreduce (line 21)

for the Dot Products (line 18, 19, 20) can be overlapped with

the PC and SPMV (line 22, 23).

The PIPECG method overlaps a single MPI Iallreduce with

one SPMV and one PC. While this is a reasonable strategy

for lower number of cores, when we run the PIPECG code at

higher number of cores, the time taken by the MPI Iallreduce

can not be fully overlapped by the SPMV and PC. In order
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to hide the latency introduced by MPI Iallreduce at higher

number of cores, we must overlap it with more work.

III. METHODOLOGY

We propose a novel algorithm, PIPECG-OATI, which com-

bines two iterations of PIPECG, reduces the number of

MPI Iallreduce to one per two iterations and then overlaps

it with two SPMVs and two PCs. This is done at the cost

of introducing extra VMA operations. The primary challenge

in combining two iterations of PIPECG and pipelining it is

that it has dependencies that require an extra PC and an

extra SPMV for each combined-iteration. So, a total of three

PCs and three SPMVs would be required in a combined-

iteration as opposed to two PCs and two SPMVs in two

uncombined iterations. Since the PC and SPMV are the most

computationally intensive kernels in each iteration, an extra PC

and SPMV would degrade the performance of PIPECG-OATI.

To deal with this challenge, we introduced new non-recurrence

computations in each iteration of PIPECG-OATI which brings

down the number of PCs and SPMVs to two per combined-

iteration.

Algorithm 3 PIPECG Method: two iterations unrolled

1: r0 = b−Ax0; u0 = M−1r0; w0 = Au0;
2: γ0 = (r0, u0); δ0 = (w0, u0); norm0 =

√
(u0, u0)

3: m0 = M−1w0; n0 = Am0

4: for i=0,2,4,... do
5: if i > 0 then
6: βi = γi/γi−1; αi = γi/(δi − βiγi/αi−1);
7: else
8: βi = 0;αi = γi/δi
9: end if

10: zi = ni + βizi−1; qi = mi + βiqi−1; si = wi + βisi−1

11: pi = ui + βipi−1; xi+1 = xi + αipi; ri+1 = ri − αisi
12: ui+1 = ui − αiqi; wi+1 = wi − αizi
13: γi+1 = (ri+1, ui+1); δi+1 = (wi+1, ui+1); normi+1 =√

(ui+1, ui+1)
14: MPI Iallreduce on γi+1, δi+1, normi+1

15: mi+1 = M−1wi+1; ni+1 = Ami+1

16: βi+1 = γi+1/γi; αi+1 = γi+1/(δi+1 − βi+1γi+1/αi);
17: zi+1 = ni+1 + βi+1zi; qi+1 = mi+1 + βi+1qi
18: si+1 = wi+1 + βi+1si; pi+1 = ui+1 + βi+1pi
19: xi+2 = xi+1 + αi+1pi+1; ri+2 = ri+1 − αi+1si+1

20: ui+2 = ui+1 − αi+1qi+1; wi+2 = wi+1 − αi+1zi+1

21: γi+2 = (ri+2, ui+2); δi+2 = (wi+2, ui+2); normi+2 =√
(ui+2, ui+2)

22: MPI Iallreduce on γi+2, δi+2, normi+2

23: mi+2 = M−1wi+2; ni+2 = Ami+2

24: end for

In Algorithm 3, we unroll two iterations of PIPECG. For

achieving PIPECG-OATI from Algorithm 3, we follow the

below steps:

1) Move the PC and SPMV (line 15) after the PC and

SPMV of the previous iteration (line 23) by introducing

recurrence relations for them.

2) Express the dot products (line 13) as recurrence relations

and move the resulting new dot products after the

previous iteration’s dot products (line 21).

3) As the new dot products will need results of PC and

SPMV beforehand, introduce recurrence relations for the

PC and SPMV.

4) To deal with extra PC and SPMV, introduce new non-

recurrence computations.

Step 1: In order to move the first PC and SPMV (line 15)

immediately after the previous iteration’s PC and SPMV (line

23), we substitute wi+1 = wi − αizi into mi+1 = M−1wi+1.

So we get:

mi+1 = mi − αici where ci = M−1zi.
Substituting mi+1 into ni+1 = Ami+1 we get,

ni+1 = ni − αidi where di = Aci.
Now, introducing recurrence relations for ci and di in a similar

way-

ci = gi + βici−1 where gi = M−1ni.

di = hi + βidi−1 where hi = Agi.
Thus, gi and hi can be moved to the previous iteration on line

25 and we get Algorithm 4. The recurrence relations added in

this step are shown in red.

Algorithm 4 PIPECG-OATI: After Step 1

1: r0 = b−Ax0; u0 = M−1r0; w0 = Au0;
2: γ0 = (r0, u0); δ0 = (w0, u0); norm0 =

√
(u0, u0)

3: m0 = M−1w0; n0 = Am0; g0 = M−1n0; h0 = Ag0
4: for i=0,2,4,... do
5: if i > 0 then
6: βi = γi/γi−1; αi = γi/(δi − βiγi/αi−1);
7: else
8: βi = 0;αi = γi/δi
9: end if

10: zi = ni + βizi−1; qi = mi + βiqi−1; si = wi + βisi−1

11: pi = ui + βipi−1; ci = gi + βici−1; di = hi + βidi−1;
12: xi+1 = xi + αipi; ri+1 = ri − αisi
13: ui+1 = ui − αiqi; wi+1 = wi − αizi
14: γi+1 = (ri+1, ui+1); δi+1 = (wi+1, ui+1); normi+1 =√

(ui+1, ui+1)
15: MPI Iallreduce on γi+1, δi+1, normi+1

16: mi+1 = mi − αici; ni+1 = ni − αidi
17: βi+1 = γi+1/γi; αi+1 = γi+1/(δi+1 − βi+1γi+1/αi);
18: zi+1 = ni+1 + βi+1zi; qi+1 = mi+1 + βi+1qi
19: si+1 = wi+1 + βi+1si; pi+1 = ui+1 + βi+1pi
20: xi+2 = xi+1 + αi+1pi+1; ri+2 = ri+1 − αi+1si+1

21: ui+2 = ui+1 − αi+1qi+1; wi+2 = wi+1 − αi+1zi+1

22: γi+2 = (ri+2, ui+2); δi+2 = (wi+2, ui+2); normi+2 =√
(ui+2, ui+2)

23: MPI Iallreduce on γi+2, δi+2, normi+2

24: mi+2 = M−1wi+2; ni+2 = Ami+2

25: gi+2 = M−1ni+2; hi+2 = gi+2

26: end for

Step 2: We need to move the dot products (line 14) to the

previous iteration in a way such that we obtain one allreduce

per two iterations. In order to do this, we substitute the full
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equations for ri+1, ui+1 and wi+1 into the dot products like

the following-

γi+1 = (ri+1, ui+1) = ((ri − αisi), (ui − αiqi))

= (ri, ui)− αi(ri, qi)− αi(si, ui) + α2
i (si, qi).

Further, we can use the transformation q = M−1s to obtain-

(ri, qi) = (ri,M
−1si) = (M−1ri, si) = (ui, si) = (si, ui)

This reduces the number of dot products to be calculated as

we obtain-

γi+1 = (ri, ui)− 2αi(si, ui) + αi
2(si, qi)

Expressing δi+1, (si, ui) and (si, qi) in similar ways and

using transformations to reduce the number of dot products,

we obtain the new dot products that we need to calculate.

Combined with the dot products of the previous iteration, we

need to calculate a total of ten dot products stored in an array

λ, all of which can be computed using one allreduce. We

express γ (line 11) and δ (line 12) as a function of the elements

of array λ and we get Algorithm 5. Here we observe that some

elements of λ require mi+2 and ni+2 which have been moved

to line 23. Now the MPI IAllreduce on line 29 only overlaps

one PC and one SPMV on line 30.

Step 3: In order to get values of mi+2 and ni+2 before the

λ are calculated, we use these recurrence relations-

ci+1 = gi+1 + βi+1ci
di+1 = hi+1 + βi+1di
mi+2 = mi+1 − αi+1ci+1

ni+2 = ni+1 − αi+1di+1

For calculating gi+1 and hi+1, we introduce the following

recurrence relations-

ai = ei + βiai−1

bi = fi + βibi−1

gi+1 = gi − αiai
hi+1 = hi − αibi

where ai = M−1di, bi = Aai, ei = M−1hi and fi = Aei.
After Step 3, we obtain Algorithm 6. Here, we can see that

each iteration then requires three PCs and SPMVs. ai+1 =
M−1di+1 is the extra PC and bi+1 = Aai+1 is the extra

SPMV introduced by iteration combination.

Step 4: In order to calculate ai+1 = M−1di+1 (line 35,

Algorithm 6 ) and bi+1 = Aai+1 (line 36, Algorithm 6), we

introduce the following non-recurrence computations:

ai+1 = (gi+1 − gi+2)/αi+1

bi+1 = (hi+1 − hi+2)/αi+1

These computations remove the need for an extra PC and

SPMV by storing two extra vectors gi+1 and hi+1.

Algorithm 7 captures all the described reorganizations,

recurrence relations and new non-recurrence computa-

tions. Putting it all together, PIPECG-OATI overlaps one

MPI Iallreduce (line 15) with two PCs and two SPMVs (lines

16 and 17) at the cost of introducing 21 new Vector Operations

and 7 new Dot Products (shown in Algorithm 8) which can

be computed with a single allreduce.

Comparing our PIPECG-OATI algorithm of Algorithm 7

with the PIPECG algorithm of Algorithm 2, we see that we

are able to reduce the number of allreduces to one per two

iterations and overlap this allreduce with two PCs and SPMVs

Algorithm 5 PIPECG-OATI: After Step 2

1: r0 = b−Ax0; u0 = M−1r0; w0 = Au0;
2: γ0 = λ7 =(r0, u0); δ0 = λ8 =(w0, u0); norm0 =

λ9 =
√
(u0, u0)

3: m0 = M−1w0; n0 = Am0; g0 = M−1n0; h0 = Ag0
4: λ1 = (w0,m0);λ4 = (n0,m0)
5: for i=0,2,4,... do
6: if i > 0 then
7: βi = γi/γi−1; αi = γi/(δi − βiγi/αi−1);
8: else
9: βi = 0;αi = γi/δi

10: end if
11: γi+1 = λ7−2αi(λ8+βiλ0)+αi

2(λ1+2∗βiλ2+βi
2λ3)

12: δi+1 = λ8−αi(λ1+βiλ2)−αi(λ1+βiλ2)+αi
2(λ4+

βiλ5 + βiλ5) + βi
2λ6

13: βi+1 = γi+1/γi; αi+1 = γi+1/(δi+1 − βi+1γi+1/αi);
14: zi = ni + βizi−1; qi = mi + βiqi−1; si = wi + βisi−1

15: pi = ui + βipi−1; ci = gi + βici−1; di = hi + βidi−1;
16: xi+1 = xi + αipi; ri+1 = ri − αisi
17: ui+1 = ui − αiqi; wi+1 = wi − αizi
18: mi+1 = mi − αici; ni+1 = ni − αidi
19: zi+1 = ni+1 + βi+1zi; qi+1 = mi+1 + βi+1qi;
20: si+1 = wi+1 + βi+1si pi+1 = ui+1 + βi+1pi;
21: xi+2 = xi+1 + αi+1pi+1; ri+2 = ri+1 − αi+1si+1

22: ui+2 = ui+1 − αi+1qi+1; wi+2 = wi+1 − αi+1zi+1

23: mi+2 = M−1wi+2; ni+2 = Ami+2

24: λ0 = (ui+2, si+1);λ1 = (wi+2,mi+2);
25: λ2 = (wi+2, qi+1);λ3 = (si+1, qi+1);
26: λ4 = (ni+2,mi+2);λ5 = (ni+2, qi+1);
27: λ6 = (zi+1, qi+1);λ7 = (ri+2, ui+2);
28: λ8 = (ui+2, wi+2);λ9 = (ui+2, ui+2);
29: MPI Iallreduce on λ0 to λ9

30: gi+2 = M−1ni+2; hi+2 = gi+2

31: γi+2 = λ7; δi+2 = λ8;normi+2 =
√
λ9

32: end for

without introducing any more PC and SPMV, because of the

new non-recurrence computations we introduced.

IV. ANALYSIS AND COMPARISON WITH DIFFERENT

METHODS

In this section, we analyse and compare state-of-the-art

variants of PCG as shown in Table 1. The # Allr column shows

the number of allreduces per two iterations for every method.

The Time column shows the time taken per two iterations for

global allreduce (G), Preconditioner (PC) and Sparse Matrix

Vector Product (SPMV). The FLOPS column lists the number

of Floating Point Operations (xN) in VMAs and Dot Products

for two iterations. The Memory column counts the number of

vectors that need to be kept in the memory (excluding x and

b).

The PCG method [1] has six allreduces per two iterations. It

uses blocking allreduces and provides no overlap with useful

work. Therefore, the times for the allreduce and PC and SPMV

add up. PIPECG-OATI has one allreduce per two iterations
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Algorithm 6 PIPECG-OATI: After Step 3

1: r0 = b−Ax0; u0 = M−1r0; w0 = Au0;
2: γ0 = λ7 = (r0, u0); δ0 = λ8 = (w0, u0); norm0 = λ9 =√

(u0, u0)
3: m0 = M−1w0; n0 = Am0; g0 = M−1n0; h0 = Ag0;

e0 = M−1h0; f0 = Ae0
4: λ1 = (w0,m0);λ4 = (n0,m0)
5: for i=0,2,4,... do
6: if i > 0 then
7: βi = γi/γi−1; αi = γi/(δi − βiγi/αi−1);
8: else
9: βi = 0;αi = γi/δi

10: end if
11: γi+1 = λ7−2αi(λ8+βiλ0)+αi

2(λ1+2∗βiλ2+βi
2λ3)

12: δi+1 = λ8−αi(λ1+βiλ2)−αi(λ1+βiλ2)+αi
2(λ4+

βiλ5 + βiλ5) + βi
2λ6

13: βi+1 = γi+1/γi; αi+1 = γi+1/(δi+1 − βi+1γi+1/αi);
14: zi = ni + βizi−1; qi = mi + βiqi−1; si = wi + βisi−1

15: pi = ui + βipi−1; ci = gi + βici−1; di = hi + βidi−1;
16: ai = ei + βiai−1; bi = fi + βibi−1;
17: xi+1 = xi + αipi; ri+1 = ri − αisi
18: ui+1 = ui − αiqi; wi+1 = wi − αizi
19: mi+1 = mi − αici; ni+1 = ni − αidi
20: gi+1 = gi − αiai; hi+1 = hi − αibi
21: zi+1 = ni+1 + βi+1zi; qi+1 = mi+1 + βi+1qi;
22: si+1 = wi+1 + βi+1si pi+1 = ui+1 + βi+1pi;
23: ci+1 = gi+1 + βi+1ci; di+1 = hi+1 + βi+1di;
24: xi+2 = xi+1 + αi+1pi+1; ri+2 = ri+1 − αi+1si+1

25: ui+2 = ui+1 − αi+1qi+1; wi+2 = wi+1 − αi+1zi+1

26: mi+2 = mi+1 − αi+1ci+1; ni+2 = ni+1 − αi+1di+1

27: λ0 = (ui+2, si+1);λ1 = (wi+2,mi+2);
28: λ2 = (wi+2, qi+1);λ3 = (si+1, qi+1);
29: λ4 = (ni+2,mi+2);λ5 = (ni+2, qi+1);
30: λ6 = (zi+1, qi+1);λ7 = (ri+2, ui+2);
31: λ8 = (ui+2, wi+2);λ9 = (ui+2, ui+2);
32: MPI Iallreduce on λ0 to λ9

33: gi+2 = M−1ni+2; hi+2 = gi+2

34: ei+2 = M−1hi+2; fi+2 = Aei+2

35: ai+1 = M−1di+1

36: bi+1 = Aai+1

37: γi+2 = λ7; δi+2 = λ8;normi+2 =
√
λ9

38: end for

Method # Allr Time for allreduce (G),
Preconditioner (PC) and
SPMV operations

FLOPS Memory

PCG 6 6G+2PC+2SPMV 24 4
PIPECG 2 max(2G, 2PC+2SPMV) 44 9
PIPELCG 2 max(G,2PC+2SPMV ) 52 14
PIPECG3 1 max(G, 2PC+2SPMV) 90 25
PIPECG-
OATI

1 max(G, 2PC+2SPMV) 80 19

TABLE I
DIFFERENCES BETWEEN VARIOUS PCG METHODS FOR TWO ITERATIONS

OF EXECUTION. L=2 FOR PIPELCG.

Algorithm 7 PIPECG-OATI (PIPECG-One Allreduce per Two

Iterations): After Step 4

1: r0 = b−Ax0; u0 = M−1r0; w0 = Au0;
2: γ0 = λ7 = (r0, u0); δ0 = λ8 = (w0, u0); norm0 = λ9 =√

(u0, u0)
3: m0 = M−1w0; n0 = Am0; g0 = M−1n0; h0 = Ag0;

e0 = M−1h0; f0 = Ae0
4: λ1 = (w0,m0);λ4 = (n0,m0)
5: for i=0,2,4,... do
6: if i > 0 then
7: βi = γi/γi−1; αi = γi/(δi − βiγi/αi−1);
8: else
9: βi = 0;αi = γi/δ

10: end if
11: γi+1 = λ7−2αi(λ8+βiλ0)+αi

2(λ1+2∗βiλ2+βi
2λ3)

12: δi+1 = λ8−αi(λ1+βiλ2)−αi(λ1+βiλ2)+αi
2(λ4+

βiλ5 + βiλ5) + βi
2λ6

13: βi+1 = γi+1/γi; αi+1 = γi+1/(δi+1 − βi+1γi+1/αi);
14: VecOps

15: MPI Iallreduce on λ0, λ1...λ9

16: gi+2 = M−1ni+2; hi+2 = Agi+2

17: ei+2 = M−1hi+2; fi+2 = Aei+2

18: ai+1 = (gi+1 − gi+2)/αi+1

19: bi+1 = (hi+1 − hi+2)/αi+1

20: γi+2 = λ7; δi+2 = λ8; normi+2 =
√
λ9

21: end for

Algorithm 8 VecOps

1: zi = ni + βizi−1; qi = mi + βiqi−1; si = wi + βisi−1

2: pi = ui + βipi−1; ci = gi + βici−1; di = hi + βidi−1;
3: ai = ei + βiai−1; bi = fi + βibi−1;
4: xi+1 = xi + αipi; ri+1 = ri − αisi
5: ui+1 = ui − αiqi; wi+1 = wi − αizi
6: mi+1 = mi − αici; ni+1 = ni − αidi
7: gi+1 = gi − αiai; hi+1 = hi − αibi
8: zi+1 = ni+1 + βi+1zi; qi+1 = mi+1 + βi+1qi;
9: si+1 = wi+1 + βi+1si pi+1 = ui+1 + βi+1pi;

10: ci+1 = gi+1 + βi+1ci; di+1 = hi+1 + βi+1di;
11: xi+2 = xi+1 + αi+1pi+1; ri+2 = ri+1 − αi+1si+1

12: ui+2 = ui+1 − αi+1qi+1; wi+2 = wi+1 − αi+1zi+1

13: mi+2 = mi+1 − αi+1ci+1; ni+2 = ni+1 − αi+1di+1

14: λ0 = (ui+2, si+1);λ1 = (wi+2,mi+2);
15: λ2 = (wi+2, qi+1);λ3 = (si+1, qi+1);
16: λ4 = (ni+2,mi+2);λ5 = (ni+2, qi+1);
17: λ6 = (zi+1, qi+1);λ7 = (ri+2, ui+2);
18: λ8 = (ui+2, wi+2);λ9 = (ui+2, ui+2);
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and uses non-blocking allreduce which helps in overlapping

PC and SPMV with allreduce. Therefore, the time taken per

two iterations is the time taken for allreduce or the time for

PC and SPMV, whichever is larger.

The PIPECG method [7] has two allreduces per two itera-

tions and overlaps one allreduce with one SPMV and one PC.

PIPECG-OATI overlaps one allreduce with two PCs and two

SPMVs so that as number of cores increase, the increasing

times of allreduce can be overlapped with more work.

The PIPELCG method [8] has two allreduces per two

iterations, while PIPECG-OATI has one allreduce per two

iterations. PIPELCG uses GMRES as the base algorithm

and hence is prone to restarts whereas PIPECG-OATI starts

with PIPECG as the base algorithm and has no restarts.

Due to the inherent nature of the PIPELCG algorithm, it

cannot compute preconditioned and unpreconditioned residual

norms as it requires extra PC and SPMV to compute these

norms. PIPECG-OATI allows us to compute preconditioned

and unpreconditioned residual norms without the extra PC

and SPMV, because of the non-recurrence computations we

introduced.

When compared to PIPECG3 method [10], PIPECG-OATI

has lower number of FLOPS and lower memory requirements

resulting in performance improvements. Also, PIPECG3 uses

the three-term recurrence variant of PCG as the base algorithm

and hence can provide lower accuracy of solution in certain

cases whereas PIPECG-OATI uses PIPECG as base algorithm

which provides similar accuracy in all cases.

The PIPECG-OATI method will give performance improve-

ments over other methods when the time taken for global

allreduce (G) is completely overlapped by the two PCs and

SPMVs in the problem. Since G increases as number of

cores increase and the times of PC and SPMV depend on the

number of non zeroes in the matrix of the problem, we predict

that we gain performance improvements at higher number of

cores for heavily computationally intensive problems. Thus,

we conclude that PIPECG-OATI has various advantages over

state-of-the-art PCG variants. We also note that the number

of floating point operations in PIPECG-OATI are significantly

more than that in PCG, PIPECG and PIPELCG methods. We

introduce optimizations in the next section to deal with this

overhead.

V. OPTIMIZATION

In this section, we discuss implementation optimizations

that help in getting significant performance improvement by

making efficient memory accesses.

AYPX (Z, beta, N);
AXPY (W, -alpha, Z);
Dot (Z, Q, lambda[6]);

for ( i = 0; i<n; i++)
{
 Z[i] = N[i] + beta * Z[i];
 W[i] = W[i] - alpha * Z[i];
 lambda[6] += Z[i] * Q[i];

}

Fig. 1. Merging VecOps

As shown in Figure 1 left, in the naı̈ve implementation of

PIPECG-OATI, we call individual AYPX, AXPY and DOT

functions to implement the VecOps. However if we merge

the VecOps as shown in Figure 1 right, we can reuse the

vectors already loaded in the cache and reduce the number

of vector reads and writes to the main memory. Since the

main memory accesses are expensive as compared to cache

accesses, merging VecOps eliminates the need for accessing

main memory repeatedly. As PIPECG-OATI introduces 21

extra VMAs and 7 new Dot Products as shown in Algorithm

8, using this technique helps in efficient memory accesses

and hence reduces the overhead introduced by these extra

operations.

In addition to this, we used the pragma CRI ivdep directive

before the for loop of the merged VecOps. This helps the

compiler to take advantage of the vector architecture of the

underlying CPUs.

VI. EXPERIMENTS AND RESULTS

A. Experiment Setup
We ran tests on our Institute’s supercomputer cluster called

SahasraT, a Cray-XC40 machine which has 1376 compute

nodes. Each node has two CPU sockets with 12 cores each,

128GB RAM and connected using Cray Aries interconnect.

We have implemented our PIPECG-OATI method in the

PETSc library [11]–[13]. We use cray-mpich version 7.7.2. For

the non-blocking collective MPI Iallreduce to make progress,

it is necessary to configure our customised PETSc code with

–LIBS=-ldmapps for dynamic linking to the DMAPP library

and set MPICH NEMESIS ASYNC PROGRESS to 1 in the

job script. Our implementation for PIPECG-OATI is available

in the open-source PETSc repository 1.

We ran tests with 2D 9-point, 3D 27-point and 3D 125-

point Poisson Problems with varying number of unknowns.The

equation Ax = b is solved in the tests. The RHS vector b is

initialized to Ax∗ where x∗ is assigned to a vector of ones.

The solution vector x0 is initialized to a vector of zeroes.

Our method, PIPECG-OATI, is compared with PCG,

PIPECG, PIPELCG (with L=2) and PIPECG3 methods avail-

able in PETSc. We use Jacobi Preconditioner in all tests.

Each test was run four times and the average speedup gained

is presented. We present results for strong scaling, accuracy

and detailed timing breakdown of our method compared with

state-of-the-art methods. We also discuss the performance

improvements gained due to our optimizations.

B. Strong Scaling Experiments and Results
Figure 2 shows the strong scaling of different methods on a

9pt 2D Poisson problem with 1 million (1M) unknowns on up

to 70 nodes (1680 cores). All the methods run to convergence

for an absolute tolerance of 10−4 in 1120 iterations. We plot

the speedup obtained by each method with respect to PCG on

one node (24 cores).

1Available as KSPPIPECG2. URL: https://www.mcs.anl.gov/petsc/petsc-
current/docs/manualpages/KSP/KSPPIPECG2.html#KSPPIPECG2
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Fig. 2. Strong scaling of different methods on a 9-pt Poisson problem with
1M unknowns.

We observe from Figure 2 that PCG reaches 9x speedup

at 20 nodes and then the speedup degrades as the number

of nodes increase further. This happens because the allreduce

time increases as the number of nodes increase and PCG does

not overlap it with any computation. For PIPECG, we observe

that 5x speedup is gained but it is always less than PCG despite

PIPECG overlapping one allreduce with computations. This

happens because the cost of unoptimized VecOps in PIPECG

overshadows the allreduce it overlaps with computation. As 9-

pt stencil Poisson problem provides less number of non zeroes,

hence one PC and one SPMV are not very expensive and not

much of the allreduce is overlapped. So, PIPECG does not

provide much overlap and in addition introduces unoptimized

VecOps. This leads to low performance of PIPECG than the

other methods. We see that PIPECG3 and PIPECG-OATI both

perform better than PCG and PIPECG reaching 19x and 24x

speedup respectively. This happens as they overlap two PCs

and two SPMVs with the allreduce. So, even though a single

PC and SPMV in 9-pt problem are not very expensive, two PCs

and two SPMVs provide considerable work to be overlapped

with the allreduce. Furthermore, we see that the PIPECG-OATI

provides better speedup than PIPECG3. This is because the

number of FLOPS per iteration in PIPECG-OATI are lower

than that in PIPECG3 (as discussed in Section IV). Also, the

optimized implementation of the VecOps in PIPECG-OATI

help in achieving better memory accesses and hence better

performance.

So, for the 9-pt problem with 1M unknowns, PIPECG-OATI

provides up to 3x speedup wrt PCG (at 70 nodes), up to 6x

speedup wrt PIPECG (at 70 nodes) and up to 1.36x speedup

wrt PIPECG3 (at 30 nodes).

As discussed in Section IV, PIPELCG method cannot

compute the preconditioned norm of the residual whereas

all the other methods determine the convergence based on

the preconditoned residual norm. As PIPELCG determines

convergence based on only natural norm of the residual, we

ran the method to convergence for natural norm and observed

that it gives different (more) number of iterations than the

other methods. Due to this reason, we cannot compare the

total time of convergence for PIPECG-OATI with PIPELCG.

Since the norm type changes only the number of iterations

taken by a method to reach to convergence and has no effect

on what happens inside the iteration itself, we compare the

time taken per two iterations in PIPELCG with the time

taken per combined-iteration in PIPECG-OATI and find that

PIPECG-OATI gives up to 1.89x speedup over PIPELCG for

this problem (at 70 nodes).

Figure 3 shows the strong scaling of different methods on

a 9pt 2D Poisson problem with 2M unknowns on up to 110

nodes (2640 processes). All the methods run to convergence

for an absolute tolerance of 10−3 in 1390 iterations.

Fig. 3. Strong scaling of different methods on a 9-pt Poisson problem with
2M unknowns.

The trends in the Figure 3 are the same as that for Figure

2 and can be explained by the same reasons. It must be noted

that in 2M case, PIPECG-OATI starts showing performance

improvement over PCG at 30 nodes as opposed to 20 nodes in

the 1M case (Figure 2). This happens because two PCs and two

SPMVs for the smaller 1M problem are enough to completely

overlap the cost of allreduce at 20 nodes. When we have the

larger 2M problem, the two PCs and SPMVs start completely

overlapping the cost of allreduce from 30 nodes on wards.

We also note that the speedup provided by PIPECG-OATI

degrades as we go from 90 to 100 nodes but then increases

again for 110 nodes. On finer analysis of multiple runs of the

experiment, we found that the allreduce takes a larger time at

100 nodes, even more than 110 nodes. This can also be seen in

the performance given by the other methods. Every method’s

performance degrades at 100 nodes but they perform better at

110 nodes. We understand this is a system specific issue.

For the 9-pt problem with 2M unknowns, PIPECG-OATI

provides up to 2x speedup wrt PCG (at 110 nodes), up to 3.05x

speedup wrt PIPECG (at 110 nodes) and up to 1.54x speedup

wrt PIPECG3 (at 100 nodes). We compared the time per two

iterations in PIPELCG with the time per combined-iteration
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in PIPECG-OATI and found that PIPECG-OATI gives up to

5x speedup over PIPELCG for this problem (at 110 nodes).

Figure 4 shows the strong scaling of different methods on

a 27-pt 3D Poisson problem with 2M unknowns on up to 110

nodes (2640 processes). All the methods run to convergence

for an absolute tolerance of 10−6 in 158 iterations.

Fig. 4. Strong scaling of different methods on a 27-pt Poisson problem with
2M unknowns.

We observe from Figure 4 that PCG reaches 20x speedup

at 90 nodes and then the speedup degrades as the number

of nodes increase further. For PIPECG, we observe that 22x

speedup is gained. Here PIPECG performs better than PCG

because the PC and SPMV in the 27-pt 3D problem are ex-

pensive enough to completely overlap the cost of the allreduce.

The unoptimized VMAs do produce some overhead but it is

overshadowed by the complete overlapping of allreduce with

PC and SPMV. We see that PIPECG3 gives almost the same

performance as PIPECG and reaches 23x speedup. PIPECG-

OATI performs better than PCG and PIPECG reaching 31x

speedup. It must be noted here that PIPECG-OATI starts

performing better than PIPECG at 50 nodes because the

overlap provided by PIPECG-OATI becomes more than the

overlap provided by PIPECG.

So, for the 27-pt problem with 2M unknowns, PIPECG-

OATI provides up to 1.82x speedup wrt PCG (at 110 nodes),

up to 1.4x speedup wrt PIPECG (at 110 nodes) and up to 1.3x

speedup wrt PIPECG3 (at 90 nodes). We compared the time

per two iterations in PIPELCG with the time per combined-

iteration in PIPECG-OATI and found that PIPECG-OATI gives

up to 2.34 speedup over PIPELCG for this problem (at 110

nodes).

From this section we conclude that PIPECG-OATI gives

varying speedups over all the other methods for different

problems. This is because it overlaps two PCs and two SPMVs

with a single allreduce and has optimized implementation of

VecOps. We also observed that PIPECG-OATI starts perform-

ing better than PCG when the cost of allreduce is large enough

to be completely overlapped by two PC and two SPMV times

which depends on the number of non zeroes in the matrix of

the problem. This cost of allreduce increases as the number of

cores increase, so we can say that PIPECG-OATI method gives

performance improvements over PCG at higher number of

cores. We also observed that PIPECG-OATI starts performing

better than PIPECG when the overlap provided by PIPECG-

OATI is greater than that provided by PIPECG. Since the

overlap provided by PIPECG-OATI will become greater only

when the allreduce cost increases which happens at higher

number of cores, so we conclude that PIPECG-OATI performs

better than PIPECG at higher number of cores. So, in this

section we verify experimentally what we found theoretically

in Section IV.

C. Accuracy Experiments and Results
In the OpenFOAM [14] [15] based Computational Fluid Dy-

namics applications which solve Pressure Poisson Equations,

we see that default values for absolute tolerance are set to

10−6 for 3D problems and 10−3 for 2D problems. Our method

reaches both of these values faster than the other methods.

The PIPECG method [7], PIPELCG method [8] and

PIPECG3 method [10] have been shown to stagnate at higher

values of absolute residuals than the PCG method. The

PIPECG, PIPELCG, PIPECG3 and PIPECG-OATI methods

are equivalent to the PCG method in exact arithmetic but

in floating point arithmetic, rounding errors are introduced

due to the introduction of recurrence relations and hence they

stagnate at higher values of residuals.

In this section, we plot the values of absolute residuals

reached by different methods against the time taken by them

to reach these values at 110 nodes. This tells us that which

method would reach a particular residual threshold fastest.

Fig. 5. Solver Accuracy/Performance Experiment for 27-pt Poisson problem.
Absolute Residual Values as a function of time at 110 nodes.

Figure 5 shows the absolute residual values attained by

each method as a function of time for the 27-pt 3D 2M

unknowns problem on 110 nodes (2640 cores). Here, we see

that PIPECG-OATI reaches the threshold of 10−6 fastest as

compared to PCG, PIPECG and PIPECG3 with PCG being

the slowest. This can be verified from Figure 4 as PCG
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provides the least speedup and PIPECG-OATI provides the

most speedup at 110 nodes.

Fig. 6. Solver Accuracy/Performance Experiment for 9-pt Poisson problem.
Absolute Residual Values as a function of time at 110 nodes.

Figure 6 shows the absolute residual values attained by each

method as a function of time for the 9-pt 2D 2M unknowns

problem on 110 nodes (2640 cores). Here we see that PIPECG-

OATI reaches the threshold of 10−3 fastest as compared to

PCG, PIPECG and PIPECG3 with PIPECG being the slowest.

Thus we conclude that for widely used values of absolute

tolerance, our method can be used to solve the linear system

of equations obtained from CFD applications with high per-

formance.

D. Detailed Timing Breakdowns
In this section, we measure the times taken by the indi-

vidual kernels in the PCG variants and see how they vary

as the number of nodes increase. We present the detailed

timing breakdown for 9-pt and 27-pt Poisson Problems with

2M unknowns. We note here that we split the Dot Product

operation into two parts- one is the computation of the partial

dot product and the other is the allreduce to compute the global

dot product. We include the computation part in the VecOps

kernel because in our optimized implementation (section V),

we merge the vector operations for computing partial dot

products with the vector operations for computing VMAs. We

also note here that the allreduce time that we show in the

figures correspond to the non-overlapped part of the allreduce

kernel.

Figure 7 shows the detailed timing breakdown for PCG,

PIPECG and PIPECG-OATI as number of nodes increase

for the 9-pt 2D Poisson Problem with 2M unknowns. For

all methods, we see that the time taken for PC and SPMV

decreases as the number of nodes increase as more computing

power becomes available for these compute-intensive kernels.

For PCG, the time taken for VecOps remains almost constant

as the number of nodes increase. The time taken for allreduce

increases as the number of nodes increase. Also, the PCG

has dependencies such that no part of the allreduce time

Fig. 7. Detailed timing breakdowns for PCG, PIPECG and PIPECG-OATI
as number of nodes increase for 9-pt Poisson Problem with 2M unknowns

can be overlapped with useful computations. For PIPECG,

we see that the VecOps take the most time in the total

execution time because of unoptimized implementation of

VecOps. PIPECG has independent computations which can

be overlapped with a non-blocking allreduce and thus is

able to overlap the allreduce. But here, as the number of

nodes increase, the computations become smaller and time for

allreduce becomes bigger, which results in decreasing overlap

of the allreduce. For PIPECG-OATI, we see that the optimized

implementation of VecOps helps to significantly decrease the

time taken by VecOps. Also, the time taken for VecOps

decreases as the number of nodes increase. PIPECG-OATI has

more independent computations which can be overlapped with

the nonblocking allreduce. This results in PIPECG-OATI is

able to overlap allreduce with more work than PIPECG and

hence significantly lesser times for the non-overlapped part of

the allreduce in PIPECG-OATI, as shown in the results.

Fig. 8. Detailed timing breakdowns for PCG, PIPECG and PIPECG-OATI
as number of nodes increase for 27-pt Poisson Problem with 2M unknowns

Figure 8 shows the detailed timing breakdown for PCG,
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PIPECG and PIPECG-OATI as number of nodes increase for

27-pt 3D Poisson Problem with 2M unknowns. For PIPECG,

we see that the VecOps are not the dominating factor in

the total execution time because the PC and SPMV for

3D problems are compute intensive and they become the

dominating factor. Here also, PIPECG-OATI is more effective

in overlapping work at higher number of nodes than PIPECG.

PIPECG-OATI starts performing better than PIPECG at 50

nodes because it can overlap larger part of allreduce as it has

more work and it also has optimized VecOps. For this problem,

the allreduce is completely overlapped in the PIPECG-OATI

method and the communication time is almost non-existent

resulting in linear scalability.

From Figures 7 and 8, we observe that PIPECG-OATI

performs better than PCG and PIPECG when the time taken

by allreduce increases and can be completely overlapped by

the two PCs and two SPMVs provided by the problem. It

also provides optimized VecOps which reduce the significant

overhead introduced by the extra recurrence relations of the

algorithm.

E. Performance Improvements due to Optimizations
We compared the performance of PIPECG-OATI with unop-

timized VecOps to PIPECG-OATI with optimized VecOps. We

found that the performance improvement is 64% for 9-pt, 55%

for 27-pt and 30% for 125-pt problems. This shows us that if

we didn’t optimize the VecOps in PIPECG-OATI, we will not

get any improvement over PIPECG because though the overlap

may be more, the overhead introduced by 21 extra VMAs and

7 new Dot Products will dominate the time (similar to when

PIPECG performs worse than PCG). Further we notice that

as the problem becomes more compute intense (9-pt to 27-pt

to 125-pt), the performance improvement given by optimized

VecOps decrease because then the total execution time begins

to be dominated by PC and SPMV. If we have a highly

compute-intensive problem, unoptimized VecOps PIPECG-

OATI and optimized VecOps PIPECG-OATI will give the same

performance.

VII. CONCLUSION AND FUTURE WORK

In this work, we developed a novel PIPECG-OATI method

for Distributed Memory Systems which reduces the number

of allreduces to one per two iterations and overlaps it with

two PCs and two SPMVs using MPI Iallreduce at the cost

of introducing more VMAs and Dot Products. We use it-

eration combination and also introduce new non-recurrence

computations to achieve this aim. We provide an optimized

implementation of PIPECG-OATI which helps in efficient

memory accesses and hence gives performance improvements.

Our method PIPECG-OATI gives up to 3x speedup wrt PCG,

1.73x speedup wrt PIPECG, 1.33x speedup wrt to PIPECG3

and 5x speedup wrt PIPELCG. We conclude that PIPECG-

OATI gives performance benefits over PCG and PIPECG at

high number of cores when the allreduce cost becomes more

and can be completely overlapped by the two PCs and two

SPMVs provided by the problem.

In the future, we plan to reduce the number of allreduces

to one per S number of iterations and overlap it with useful

work with support for unpreconditioned, preconditioned and

natural norms. We plan to use Residual Replacement Strategy

to increase the attainable accuracy of the PIPECG-OATI

method while trying to bring down the number of PCs and

SPMVs associated with it. We plan to test and analyse the

behaviour of our method PIPECG-OATI on multi-node multi-

GPU systems.

REFERENCES

[1] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of research of the National Bureau of
Standards, vol. 49, pp. 409–436, 1952.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. USA:
Society for Industrial and Applied Mathematics, 2003.

[3] E. D”Azevedo, V. Eijkhout, and C. Romine, “Lapack working note 56:
Reducing communication costs in the conjugate gradient algorithm on
distributed memory multiprocessors,” USA, Tech. Rep., 1993.

[4] A. T. Chronopoulos and C. W. Gear, “S-step iterative methods for
symmetric linear systems,” J. Comput. Appl. Math., vol. 25, no. 2,
p. 153–168, Feb. 1989. [Online]. Available: https://doi.org/10.1016/
0377-0427(89)90045-9

[5] “Mpich 3.3.3,” 2019. [Online]. Available: https://www.mpich.org/
[6] W. Gropp, “Update on libraries for blue waters,” Tech. Rep.

[Online]. Available: http://jointlab.ncsa.illinois.edu/events/workshop3/
pdf/presentations/Gropp-Update-on-Libraries.pdf

[7] P. Ghysels and W. Vanroose, “Hiding global synchronization latency
in the preconditioned conjugate gradient algorithm,” Parallel Comput.,
vol. 40, no. 7, p. 224–238, Jul. 2014. [Online]. Available: https:
//doi.org/10.1016/j.parco.2013.06.001

[8] J. Cornelis, S. Cools, and W. Vanroose, “The communication-hiding
conjugate gradient method with deep pipelines,” 2018.

[9] S. Cools, J. Cornelis, and W. Vanroose, “Numerically stable recurrence
relations for the communication hiding pipelined conjugate gradient
method,” 2019.

[10] P. R. Eller and W. Gropp, “Scalable non-blocking preconditioned conju-
gate gradient methods,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’16. IEEE Press, 2016.

[11] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune,
K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp,
D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C.
McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F.
Smith, S. Zampini, H. Zhang, and H. Zhang, “PETSc Web
page,” https://www.mcs.anl.gov/petsc, 2019. [Online]. Available: https:
//www.mcs.anl.gov/petsc

[12] S. Balay, S. A. a, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev,
D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills,
T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang,
and H. Zhang, “PETSc users manual,” Argonne National Laboratory,
Tech. Rep. ANL-95/11 - Revision 3.13, 2020. [Online]. Available:
https://www.mcs.anl.gov/petsc

[13] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient
management of parallelism in object oriented numerical software li-
braries,” in Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 1997,
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